【师说】2017届高考数学(文)二轮复习 高考大题标准练(七) Word版含解析

合集下载

【师说】2017届高考数学(文)二轮复习 高考大题标准练(六) Word版含解析

【师说】2017届高考数学(文)二轮复习 高考大题标准练(六) Word版含解析

高考大题标准练(六)满分75分,实战模拟,60分钟拿下高考客观题满分! 姓名:________ 班级:________1.(2015·新课标全国卷Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a = 2.所以△ABC 的面积为1.2.设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x+a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n ,求数列{b n }的前n 项和S n . 解:(1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2·cos x .对任意n ∈N *,f ′⎝⎛⎭⎫π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1,所以a n =2+1·(n -1)=n +1.(2)由b n =2⎝⎛⎭⎫a n +12a n =2⎝⎛⎭⎫n +1+12n +1=2n +12n +2知, S n =b 1+b 2+…+b n =2n +2·n (n +1)2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n 2+3n +1-12n . 3.(2015·新课标全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)解:(1)值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.4.如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)证明:在线段BC1上存在点D,使得AD⊥A1B.并求BDBC1的值.解:(1)因为AA1C1C为正方形,所以AA1⊥AC.因为平面ABC⊥平面AA1C1C,且AA1垂直于这两个平面的交线AC,所以AA1⊥平面ABC.(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A 1B →=0,n ·A 1C 1→=0,即⎩⎪⎨⎪⎧3y -4z =0,4x =0. 令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈n ,m 〉=n ·m |n ||m |=1625. 由题意知二面角A 1-BC 1-B 1为锐二面角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→.所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD →=(4λ,3-3λ,4λ).由AD →·A 1B →=0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925. 5.(2016·新课标全国卷Ⅱ)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM |=|AN |时,求△AMN 的面积;(2)当2|AM |=|AN |时,证明:3<k <2.解:(1)设M (x 1,y 1),则由题意知y 1>0.由已知及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0. 解得y =0或y =127,所以y 1=127. 因此△AMN 的面积S △AMN =2×12×127×127=14449. (2)证明:设直线AM 的方程为y =k (x +2)(k >0),代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0. 由x 1·(-2)=16k 2-123+4k 2得x 1=2(3-4k 2)3+4k 2, 故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题意,设直线AN 的方程为y =-1k(x +2), 故同理可得|AN |=12k 1+k 23k 2+4. 由2|AM |=|AN |得23+4k 2=k 3k 2+4, 即4k 3-6k 2+3k -8=0.设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点.f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)内单调递增.又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)内有唯一的零点,且零点k 在(3,2)内,所以3<k <2.6.(2015·新课标全国卷Ⅱ)已知函数f (x )=ln x +a (1-x )。

【师说】2017届高考数学(文)二轮复习 高考小题标准练(二) Word版含解析

【师说】2017届高考数学(文)二轮复习 高考小题标准练(二) Word版含解析

高考小题标准练(二)时间:40分钟 分值:75分 姓名:________ 班级:________一、选择题(本大题共10小题,每小5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x ≤1},B ={x |0<x <4},则A ∩B =( ) A .{x |x <4} B .{x |0<x ≤1} C .{x |0<x <4} D .{x |1≤x <4}解析:A ∩B ={x |x ≤1且0<x <4}={x |0<x ≤1}.故选B. 答案:B2.已知等比数列{a n }的公比为正数,且a 3a 9=2a 25,a 2=1,则a 1=( ) A.12 B.22 C. 2 D .2解析:设数列的公比为q ,由已知得a 1q 2·a 1q 8=2(a 1q 4)2,即q 2=2.又因为等比数列{a n }的公比为正数,所以q =2,故a 1=a 2q =12=22,故选B.答案:B3.设i 是虚数单位,则复数(2+i)(1-i)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:(2+i)(1-i)=3-i ,其在复平面内对应的点(3,-1)位于第四象限.故选D. 答案:D4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200解析:若销售量y (件)与销售价格x (元/件)负相关,则y 关于x 的函数为递减函数,排除选项B ,D ;由价格的实际意义知,起初价格不能为负数,排除选项C ,故选A.答案:A5.设函数f (x )=cos x -sin x ,把f (x )的图象按向量a =(m,0)(m >0)平移后,图象恰好为函数y =-f ′(x )的图象,则实数m 的值可以为( )A.π4B.34π C .π D.π2解析:因为f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4=2cos ⎝⎛⎭⎫x +π4,所以y =-f ′(x )=-⎝⎛⎭⎫-2sin ⎝⎛⎭⎫x -π4′=2cos ⎝⎛⎭⎫x -π4=2cos ⎣⎡⎦⎤⎝⎛⎭⎫x -π2+π4,故只需把f (x )的图象向右平移π2个单位长度即得函数y =-f ′(x )的图象,所以m =π2.故选D.答案:D6.在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长等于( )A .3 3B .2 3 C. 3 D .1解析:圆x 2+y 2=4的圆心O (0,0)到直线3x +4y -5=0的距离d =|-5|5=1,则弦AB 的长|AB |=2r 2-d 2=2 3.故选B.答案:B7.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5 D .6解析:因为x +3y =5xy ,即1y +3x =5,所以15(3x +4y )×⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3x y +12y x +135≥15×2×36+135=5.故选C.答案:C8.已知△ABC 内有一点O ,满足OA →+OB →+OC →=0,且OA →·OB →=OB →·OC →,则△ABC 一定是( )A .钝角三角形B .直角三角形C .等边三角形D .等腰三角形解析:由题意OA →·(-OC →-OA →)=(-OC →-OA →)·OC →,所以|OA →|=|OC →|.又因为OB →=-(OA →+OC →),所以OB 是AC 的中垂线,点B 在AC 的中垂线上,故AB =BC ,所以△ABC 是等腰三角形.故选D.答案:D 9.甲、乙两人玩游戏,规则如流程图所示,则甲胜的概率为( ) A.12 B.13 C.34 D.23解析:取出两球为同色球时,甲胜,则甲胜的概率P =3×24×3=12.故选A.答案:A10.实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +3y -3≥0,3x +y -9≤0,z =ax +y 的最大值为2a +3,则a 的取值范围是( )A .[-3,1]B .[-1,3]C .(-∞,-1]D .[3,+∞)解析:由z =ax +y 得y =-ax +z .作出可行域知,要使z =ax +y 的最大值为2a +3,即直线y =-ax +z 经过点(2,3)时取最大值,此时直线y =-ax +z 的斜率-a 满足-3≤-a ≤1,所以a ∈[-1,3].故选B.答案:B二、填空题(本大题共5小题,每小5分,共25分.请把正确答案填在题中横线上)11.设函数f (x )=2x (e x +a e -x )(x ∈R )是奇函数,则实数a =__________.解析:由题意得g (x )=e x +a e -x 为偶函数,由g (x )=g (-x ),得a =1. 答案:112.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λμ的值为__________.解析:因为AP →=AB →+BP →,BP →=13BD →,所以AP →=AB →+13BD →.因为BD →=AD →-AB →,AD →=23AC →,所以BD →=23AC →-AB →,所以AP →=AB →+13⎝⎛⎭⎫23AC →-AB →=23AB →+29AC →,又因为AP →=λAB →+μAC →,所以λ=23,μ=29.故λμ=3.答案:313.甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分情况如下面茎叶图所示,则甲、乙两名运动员得分的中位数分别是__________.解析:观察茎叶图易知甲的分数是6,8,9,15,17,19,23,24,26,32,41,共11个,中位数是最中间一个19;乙的分数是5,7,8,11,11,13,20,22,30,31,40,共11个,中位数是最中间一个13.答案:19,1314.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为__________.解析:根据几何体的三视图知,该几何体是四棱锥.其底面为梯形,面积为12(4+2)×4=12,四棱锥的高为5,故体积为13×12×5=20.答案:2015.设函数f (x )=a sin2x +b cos2x ,其中a ,b ∈R ,ab ≠0.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对一切x ∈R 恒成立,则下列结论:①f ⎝⎛⎭⎫11π12=0 ②⎪⎪⎪⎪f ⎝⎛⎭⎫7π10<⎪⎪⎪⎪f ⎝⎛⎭⎫π5 ③f (x )既不是奇函数也不是偶函数 ④f (x )的单调递增区间是⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) ⑤存在经过点(a ,b )的直线与函数f (x )的图象不相交. 其中正确的是__________(写出所有正确结论的序号).解析:f (x )=a sin2x +b cos2x =a 2+b 2·sin(2x +φ)≤a 2+b 2.因为f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对一切x ∈R 恒成立,所以x =π6是函数的对称轴.又周期T =π,所以函数f (x )的对称轴为x =k π+π6,x =k π+2π3,对称中心为⎝⎛⎭⎫k π+5π12,0,⎝⎛⎭⎫k π+11π12,0,因此f ⎝⎛⎭⎫11π2=0,故①正确;因为7π10-π5=π2=T 2,所以⎪⎪⎪⎪f ⎝⎛⎭⎫7π10=⎪⎪⎪⎪f ⎝⎛⎭⎫π5,故②错误;因为f (0)≠0,y 轴不是对称轴,所以f (x )既不是奇函数也不是偶函数,故③正确;函数f (x )在区间⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z )上可能递增也可能递减,故④错误;因为b <a 2+b 2,所以点(a ,b )在直线y =±a 2+b 2之间,过点(a ,b )的直线与f (x )的图象一定相交,故⑤错误.故填①③.答案:①③。

【师说】2017届高考数学(文)二轮复习 大题专项强化练七 Word版含解析

【师说】2017届高考数学(文)二轮复习 大题专项强化练七 Word版含解析

七、立体几何(A组)大题集训练,练就慧眼和规范,占领高考制胜点!姓名:________班级:________ 1.(2016·吉林东北师大附中联考)如图所示的几何体由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.(1)证明:平面P AD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得该四棱锥的体积是三棱锥P-ABF体积的4倍.(1)证明:直三棱柱ADE-BCF中,AB⊥平面ADE,因为AD⊂平面ADE,所以AB⊥AD,又AD⊥AF,AF∩AB=A,所以AD⊥平面ABFE,又AD⊂平面P AD,所以平面P AD⊥平面ABFE.(2)解:由题意得P到平面ABF的距离d=1,所以V P-ABF=13S△ABF d=13×12×2×2×1=23,所以V P-ABCD=13S正方形ABCD h=13×2×2h=4V P-ABF=83,所以h=2.2.(2016·黑龙江哈尔滨六中模拟)如图,在四棱锥P-ABCD中,ABCD为菱形,PD⊥平面ABCD,AC=6,BD=8,E 是棱PB上的动点,△AEC面积的最小值是3.(1)求证:AC⊥DE;(2)求四棱锥P-ABCD的体积.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD,又BD∩PD=D,∴AC⊥平面PBD,∵DE⊂平面PBD,∴AC⊥DE.(2)解:连接EF,∵AD=CD且PD⊥平面ABCD,∴P A=PC,又∵AB=BC且PB为公共边,则△P AB≌△PCB,∴∠PBA=∠PBC,又BA=BC,BE=BE,∴△EAB≌△ECB,∴EA=EC,又由题意知F为AC中点,则EF⊥AC.∵AC =6,∴S △AEC =12AC ·EF =3EF , 因为△AEC 面积的最小值是3,所以EF 的最小值为1, ∵当EF ⊥PB 时,EF 取最小值,∴BE =42-12=15,由EF PD =BE BD ,得PD =815, 又S 菱形ABCD =12AC ·BD =12×6×8=24, 故V P -ABCD =13S 菱形ABCD ·PD =13×24×815=641515.。

【师说】2017届高考数学(人教版文科)二轮专项训练:小题专项滚动练七

【师说】2017届高考数学(人教版文科)二轮专项训练:小题专项滚动练七
解析:∵口袋内有50个大小相同的红球、白球和黑球,从中摸出一个球,摸出白球的概率为0.2,∴口袋内白球有10个,又∵有20个红球,∴黑球为20个.从中摸出一个球,是黑球的概率为P= =0.4.
答案:C
7.某学校对高一年级某班40名学生进行消防安全知识测试,学生的成绩均在40至100分之间,得到的频率分布直方图如图所示,则成绩不低于70分的人数为()
共15组随机数,∴所求概率为0.75.
答案:D
10.先后抛掷一枚骰子两次,并记首次出现的点数为m,第二次出现的点数为n,则双曲线 - =1的渐近线的倾斜角在区间 上的概率为()
A. B.
C. D.
解析:先后抛掷一枚骰子两次,共有不同的结果36种.双曲线 - =1的渐近线的倾斜角在区间 上,
∴1< ≤ ,即1< ≤3,
解析:设事件M为“△PBC的面积大于 ”,如图,D,E分别是三角形的边AB,AC的三等分点,事件M构成的区域是图中阴影部分,因为△ADE与△ABC相似,相似比为 ,所以 = 2= ,由几何概型的概率计算公式得P(M)= = .
答案:B
5.某人驾车出行速度(单位:km/h)的频率分布直方图如图所示,则该人驾车速度的平均值(同一组中的数据用该组区间的中点值作代表)为()
解析:f(x)=cos2x+sinxcosx+1
A. B.
C. D.
解析:由茎叶图可知甲的五次平均成绩为 =104,从甲的五次考试成绩中任选两次的所有选法有(95,102),(95,105),(95,107),(95,111),(102,105),(102,107),(102,111),(105,107),(105,111),(107,111),共10种,设“两次平均成绩超过甲的五次总平均成绩”为事件A,A包含的基本事件为(102,107),(102,111),(105,107),(105,111),(107,111),共5个.所以P(A)= .

《师说》2017届高考数学(文)二轮复习课时巩固过关练(二)Word版含解析

《师说》2017届高考数学(文)二轮复习课时巩固过关练(二)Word版含解析

课时巩固过关练(二) 向量运算与复数运算、算法、合情推理A 组一、选择题1.(2016·广东佛山期中)如图,在△ABC 中,已知BD →=2DC →,则AD →等于()A .-12AB →+32AC → B.12AB →+32AC →C.13AB →+23AC →D.13AB →-23AC → 解析:根据平面向量的运算法则可知:AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB→+23AC →.故选C. 答案:C2.(2016·福建南安期中)在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n 是定值,定值为2 D.2m +1n 是定值,定值为3 解析:解法一:过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,∴AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,∴AM AB =n n +n -12=2n 3n -1, ∵AM →=mAB →,∴m =2n 3n -1,整理可得2m +1n =3.解法二:∵M ,D ,N 三点共线,∴AD →=λAM →+(1-λ)AN →.又AM →=mAB →,AN →=nAC →,∴AD →=λm AB →+(1-λ)nAC →①.又BD →=12DC →,∴AD →-AB →=12AC →-12AD →,∴AD →=13AC →+23AB →②.由①②知λm=23,(1-λ)n =13.∴2m +1n =3,故选D. 答案:D3.(2015·陕西高考)对任意向量a ,b ,下列关系式中不恒成立的是( ) A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )(a -b )=a 2-b 2解析:因为|a ·b |=||a ||b |cos 〈a ,b 〉|≤|a ||b |,所以A 选项正确;当a 与b 方向相反时,B 选项不成立,所以B 选项错误;向量平方等于向量模的平方,所以C 选项正确;(a +b )(a -b )=a 2-b 2所以D 选项正确,故选B. 答案:B4.(2016·山东淄博期中)已知矩形ABCD 中,AB =2,BC =1,则AC →·DB →等于( ) A .1 B .-1 C. 6 D .2 2解析:解法一:如图,以A 为坐标原点,AB 为x 轴,AD 为y 轴建立平面直角坐标系,则A (0,0),B (2,0),C (2,1),D (0,1),∴AC →=(2,1),DB →=(2,-1),则AC →·DB →=2-1=1.解法二:记AB →=a ,AD →=b ,则a ·b =0,|a |=2,|b |=1,∴AC →·DB →=(a +b )·(a -b )=a 2-b 2=2-1=1.故选A. 答案:A5.(2016·山东德州一中一模)用数学归纳法证明“1+2+22+…+2n +2=2n +3-1”,在验证n =1时,左边计算所得的式子为( )A .1B .1+2C .1+2+22D .1+2+22+23 解析:当n =1时,左边=1+2+22+23. 答案:D 6.(2016·四川巴蜀中学月考)下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A ,小前提与结论应互换,错误;对于B ,符合演绎推理过程且结论正确;对于C ,大前提和小前提颠倒,错误;对于D ,大、小前提和结论颠倒,错误.故选B.答案:B 7.(2016·四川雅安中学月考)执行如图所示的程序框图,若输入的x ,t 均为2,则输出的S 等于( )A .4B .5C .6D .7解析:若x =t =2,则第一次循环,1≤2成立,则M =11×2=2,S =2+3=5,k =2,第二次循环,2≤2成立,则M =22×2=2,S =2+5=7,k =3,此时3≤2不成立,输出S=7,故选D.答案:D 8.(2016·江西赣州于都实验中学月考)阅读程序框图,若输入m =4,n =6,则输出a ,i 分别是( )A .a =12,i =3B .a =12,i =4C .a =8,i =3D .a =8,i =4解析:由程序框图得:第一次运行i =1,a =4;第二次运行i =2,a =8;第三次运行i =3,a =12,满足a 被6整除,结束运行,输出a =12,i =3.故选A.答案:A9.(2016·安徽江南十校联考)复数i2-i在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:∵i2-i =i (2+i )(2-i )(2+i )=-1+2i5,∴对应的点在第二象限,故选B.答案:B10.(2016·新疆克拉玛依十三中月考)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( )A .2+iB .2-iC .5+iD .5-i解析:∵(z -3)(2-i)=5,∴z -3=52-i =2+i ,∴z =5+i ,∴z =5-i.故选D. 答案:D 二、填空题11.(2016·吉林辽源联考)已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,且a ∥b ,则锐角θ等于__________.解析:∵a ∥b ,∴(1-sin θ)(1+sin θ)=12,∴cos θ=±22.又θ为锐角,∴θ=45°.答案:45° 12.(2016·江西高安段考)已知向量a ,b 满足a +b =(5,-10),a -b =(3,6),则b 在a 方向上的投影为__________.解析:根据a +b =(5,-10),a -b =(3,6),求得a =(4,-2),b =(1,-8),根据投影公式可得b 在a 方向上的投影为a ·b |a |=4+1625=2 5.答案:2 5 13.(2016·河北南宫一中周测)某天,小赵、小张、小李、小刘四人一起到电影院看电影,他们到达电影院之后发现,当天正在放映A ,B ,C ,D ,E 五部影片,于是他们商量一起看其中的一部影片:小赵说:只要不是B 就行; 小张说:B ,C ,D ,E 都行;小李说:我喜欢D ,但是只要不是C 就行; 小刘说:除了E 之外,其他的都可以.据此判断,他们四人可以共同看的影片为__________.解析:根据小赵,小李和小刘的说法可排除B ,C ,E ,剩余A 和D ,再根据小张的说法可知选D 影片.答案:D14.执行如图所示的程序框图,若输出的结果是8,则框图内m 的取值范围是__________.解析:第一次运行:S =2×1,k =2;第二次运行:S =2×1+2×2,k =3;……;当输出结果是8时,此时S =2×1+2×2+…+2×7=56,故m ≤56,并且m >2×1+2×2+…+2×6=42.综上可知m 的取值范围是(42,56].答案:(42,56]15.(2016·黑龙江大庆实验中学期末)化简2+4i(1+i )2的结果是__________.解析:原式=2+4i2i=2-i.答案:2-iB 组一、选择题1.(2016·广东深圳调研)设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充要条件是( )A .a =-bB .a ∥b 且方向相同C .a =2bD .a ∥b 且|a |=|b |解析:非零向量a 、b 使a |a |=b|b |成立⇔a =|a ||b |b ⇔a 与b 共线且方向相同,故选B.答案:B 2.(2016·江西南昌一联)已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫12OA →+12OB →+2OC →,则点P 一定为△ABC 的( )A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:设AB 的中点为M ,则12OA →+12OB →=OM →,∴OP →=13(OM →+2OC →)=13OM →+23OC →,即3OP →=OM →+2OC →,也就是MP →=2PC →,∴P ,M ,C 三点共线,且P 是CM 上靠近C 点的一个三等分点.答案:B3.(2015·安徽高考)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC →解析:如图,由题意,BC →=AC →-AB →=(2a +b )-2a =b ,则|b |=2,故A 错误.因为|2a |=2|a |=2,所以|a |=1,又AB →·AC →=2a ·(2a +b )=4|a |2+2a ·b =2×2cos60°=2,所以a ·b =-1,故B ,C 错误,设B ,C 中点为D ,则AB →+AC →=2AD →,且AD →⊥BC →,而2AD →=2a +(2a +b )=4a +b ,所以(4a +b )⊥BC →,故选D.答案:D4.(2016·河南南阳期中)已知△ABC 的外接圆半径为1,圆心为O ,且3OA →+4OB →+5OC→=0,则OC →·AB →的值为( )A .-15 B.15C .-65 D.65解析:∵3OA →+4OB →+5OC →=0, ∴3OA →+4OB →=-5OC →,∴9OA →2+24OA →·OB →+16OB →2=25OC →2,∵A ,B ,C 在圆上,∴|OA →|=|OB →|=|OC →|=1.代入原式得OA →·OB →=0,∴OC →·AB →=-15(3OA →+4OB →)·(OB →-OA →)=-15(3OA →·OB →+4OB →2-3OA →2-4OA →·OB →)=-15.答案:A 5.(2016·甘肃会宁四中期末)将正整数排列如下: 12 3 45 6 7 8 910 11 12 13 14 15 16 …则在表中数字2 016出现在( )A .第44行第81列B .第45行第81列C .第44行第80列D .第45行第80列解析:依题意可知第n 行有(2n -1)个数字,前n 行的数字个数为1+3+5+…+(2n -1)=n 2(个),∵442=1 936,452=2 025,且1 936<2 016,2 025>2 016,∴2 016在第45行,又2 025-2 016=9,且第45行有2×45-1=89个数字,∴2 016在第89-9=80列.故选D.答案:D 6.(2016·广西钦州调研)如图所示的算法中,令a =tan θ,b =sin θ,c =cos θ,若在集合⎩⎨⎧⎭⎬⎫θ⎪⎪-π4<θ<3π4,θ≠0,θ≠π4,θ≠π2中,给θ取一个值,输出的结果是sin θ,则θ值所在范围是()A.⎝⎛⎭⎫-π4,0B.⎝⎛⎭⎫0,π4C.⎝⎛⎭⎫π4,π2D.⎝⎛⎭⎫π2,3π4 解析:程序框图的功能是求a ,b ,c 的最大值.∵输出的结果是sin θ,∴sin θ最大,即⎩⎪⎨⎪⎧sin θ≥cos θ,sin θ≥tan θ,-π4<θ<3π4,θ≠0,θ≠π4,θ≠π2,解得π2<θ<34π,故选D.答案:D 7.(2016·广东佛山期中)对一个作直线运动的质点的运动过程观测了8次,得到如表所示的数据观测次数i 1 2 3 4 5 6 7 8观测数据a i40 41 43 43 44 46 47 488个数据的平均数),则输出的S 的值是( )A .5B .6C .7D .8解析:∵a =18(40+41+43+43+44+46+47+48)=44,S =18(42+32+12+12+02+22+32+42)=7,故选C.答案:C8.已知复数z 对应的向量如图所示,则复数z +1所对应的向量正确的是( )解析:由题图可知z =-2+i ,所以z +1=-1+i ,则复数z +1所对应的向量的坐标为(-1,1),故A 正确.答案:A9.(2016·安徽三校联考)已知复数3+ix -i(x ∈R )在复平面内对应的点位于以原点O 为圆心,以2为半径的圆周上,则x 的值为( )A .2B .1+3iC .±2D .±12解析:3+ix -i =(3+i )(x +i )x 2+1=3x -1x 2+1+3+xx 2+1i ,所以该复数对应的点为⎝⎛⎭⎪⎫3x -1x 2+1,3+x x 2+1,该点在x 2+y 2=2上,所以⎝ ⎛⎭⎪⎫3x -1x 2+12+⎝ ⎛⎭⎪⎫3+x x 2+12=2,解得x =±2,故选C. 答案:C二、填空题10.(2016·福建厦门适应性考试)如图,在△ABC 中,AD →·BC →=0,BC →=3BD →,过点D 的直线分别交直线AB ,AC 于点M ,N .若AM →=λAB →,AN →=μAC →(λ>0,μ>0),则λ+2μ的最小值是__________.解析:AD →=AB →+BD →=AB →+13(AC →-AB →)=23AB →+13AC →.设AD →=xAM →+yAN →(x +y =1),则AD→=xλAB →+yμAC →,则⎩⎨⎧xλ=23,yμ=13,故⎩⎨⎧λ=23x ,μ=13y,故λ+2μ=23⎝⎛⎭⎫1x +1y =23⎝⎛⎭⎫1+y x +x y +1 ≥23⎝⎛⎭⎫2+2y x ×x y =83.当且仅当x =y =12时,等号成立.故答案为83. 答案:8311.(2016·河北衡水期中)已知点P 是边长为4的正三角形ABC 的边BC 上的中点,则AP →·(AB →+AC →)=__________.解析:由P 为边长为4的正三角形ABC 的边BC 上的中点,可得AP →=12(AB →+AC →),AB →·AC→=|AB →|·|AC →|·cos A =4×4×12=8,则AP →·(AB →+AC →)=12(AB →+AC →)2=12(AB →2+AC →2+2AB →·AC →)=12×(16+16+16)=24.答案:2412.(2016·辽宁抚顺月考)已知不等式1+14<32,1+14+19<53,1+14+19+116<74,照此规律总结出第n 个不等式为__________.解析:由已知条件1+14<32,1+14+19<53,1+14+19+116<74,可归纳猜想得出其第n 个不等式为1+122+132+…+1n 2<2n -1n.答案:1+122+132+…+1n 2<2n -1n13.(2013·福建高考)当x ∈R ,|x |<1时,有如下表达式:1+x +x 2+…+x n +…=11-x. 两边同时积分得:120⎰1d x +120⎰x d x +120⎰x 2d x +…+120⎰x nd x +…=120⎰11-xd x , 从而得到如下等式: 1×12+12×⎝⎛⎭⎫122+13×⎝⎛⎭⎫123+…+1n +1×⎝⎛⎭⎫12n +1+…=ln 2. 请根据以上材料所蕴含的数学思想方法,计算:C 0n ×12+12C 1n ×⎝⎛⎭⎫122+13C 2n ×⎝⎛⎭⎫123+…+1n +1C n n ×⎝⎛⎭⎫12n +1=__________.解析:由C 0n +C 1n x +…+C 2n x 2+C n n x n =(1+x)n,两边同时积分得,C 0n120⎰1d x +C 1n120⎰x d x+C 2n120⎰x2d x +…+C n n120⎰x nd x =120⎰(1+x)n d x ,12C 0n +12C 1n ⎝⎛⎭⎫122+13C 2n ⎝⎛⎭⎫123+…+1n +1C n n ⎝⎛⎭⎫12n +1=⎣⎢⎡⎦⎥⎤1n +1(1+x )n +1⎪⎪⎪⎪120=1n +1⎝⎛⎭⎫1+12n +1 -1n +1=1n +1⎣⎡⎦⎤⎝⎛⎭⎫32n +1-1. 答案:1n +1⎣⎡⎦⎤⎝⎛⎭⎫32n +1-114.(2016·广西柳州二中月考)阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是S<__________(填一个数字).解析:由题意知判断框中的条件需在i =4,即S =9时执行此判断框后的“否”,而在i =3,即S =8时执行后面的“是”.答案:915.(2016·湖北枣阳一中月考)定义一种运算如下:⎣⎢⎡⎦⎥⎤ab cd =ad -bc ,则复数⎣⎢⎡⎦⎥⎤1+i -1 2 3i 的共轭复数是__________.解析:复数⎣⎢⎡⎦⎥⎤1+i -1 2 3i =3i (1+i )-(-1)×2=-1+3i ,其共轭复数为-1-3i .答案:-1-3i。

【师说】2017届高考数学(文)二轮复习 课时巩固过关练(七) Word版含解析

【师说】2017届高考数学(文)二轮复习 课时巩固过关练(七) Word版含解析

课时巩固过关练(七) 导数的综合应用一、选择题1.设函数f (x )=2x+ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:f ′(x )=-2x 2+1x =x -2x 2, 令f ′(x )=0,则x =2.当x <2时,f ′(x )=-2x 2+1x =x -2x 2<0; 当x >2时,f ′(x )=-2x 2+1x =x -2x 2>0. 即当x <2时,f (x )是单调递减的;当x >2时,f (x )是单调递增的.所以x =2是f (x )的极小值点,故选D.答案:D2.(2015·湖南卷)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数解析:函数f (x )=ln(1+x )-ln(1-x ),函数的定义域为(-1,1),函数f (-x )=ln(1-x )-ln(1+x )=-f (x ),所以函数是奇函数.f ′(x )=11+x +11-x =21-x 2,在(0,1)上f ′(x )>0,所以f (x )在(0,1)上单调递增,故选A.答案:A3.(2015·福建卷)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>k k -1解析:∵f ′(x )=li m x →0f (x )-f (0)x -0,f ′(x )>k >1,∴f (x )-f (0)x >k >1,即f (x )+1x >k >1, 当x =1k -1时,f ⎝ ⎛⎭⎪⎫1k -1+1>1k -1×k =k k -1,即f ⎝ ⎛⎭⎪⎫1k -1>k k -1-1=1k -1,则f ⎝ ⎛⎭⎪⎫1k -1>1k -1,所以f ⎝ ⎛⎭⎪⎫1k -1<1k -1一定错误.故选C. 答案:C4.(2016·吉林四模)设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R ,有f (-x )+f (x )=x 2,且x ∈(0,+∞)时,f ′(x )>x .若f (2-a )-f (a )≥2-2a ,则实数a 的取值范围为( )A .[1,+∞)B .(-∞,1]C .(-∞,2]D .[2,+∞)解析:∵f (-x )+f (x )=x 2,∴f (x )-12x 2+f (-x )-12x 2=0, 令g (x )=f (x )-12x 2,∵g (-x )+g (x )=f (-x )-12x 2+f (x )-12x 2=0, ∴函数g (x )为奇函数.∵x ∈(0,+∞)时,f ′(x )>x .∴x ∈(0,+∞)时,g ′(x )=f ′(x )-x >0,故函数g (x )在(0,+∞)上是增函数,故函数g (x )在(-∞,0)上也是增函数,由f (0)=0,可得g (x )在R 上是增函数.f (2-a )-f (a )≥2-2a ,等价于f (2-a )-(2-a )22≥f (a )-a 22, 即g (2-a )≥g (a ),∴2-a ≥a ,解得a ≤1,故选B.答案:B5.(2015·新课标全国卷Ⅰ)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34 D.⎣⎡⎭⎫32e ,1 解析:设g (x )=e x (2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方.因为g ′(x )=e x (2x +1),所以当x <-12时, g ′(x )<0,当x >-12时, g ′(x )>0,所以当x =-12时, (g (x ))min =-2e -12, 当x =0时,g (0)=-1,当x =1时,g (1)=e>0,直线y =ax -a 恒过(1,0),斜率为a ,故-a >g (0)=-1,且g (-1)=-3e -1≤-a -a ,解得32e≤a <1,故选D.答案:D二、填空题6.设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =__________.解析:(1)当a =1时,代入题中不等式显然不恒成立.(2)当a ≠1时,构造函数f (x )=(a -1)x -1,g (x )=x 2-ax -1,由它们都过定点P (0,-1),如图所示.设函数f (x )=(a -1)x -1与x 轴的交点M 坐标为(x 0,0),即0=(a -1)·x 0-1,x 0=1a -1, ∴M ⎝ ⎛⎭⎪⎫1a -1,0.易知a <1时不符合题意,∴a >1. ∵x >0时,f (x )·g (x )≥0,∴g (x )过点M ,即⎝ ⎛⎭⎪⎫1a -12-a a -1-1=0, 解得a =32或a =0(舍去). 答案:327.(2015·安徽卷)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是__________.(写出所有正确条件的序号)①a =-3,b =-3 ②a =-3,b =2③a =-3,b >2 ④a =0,b =2⑤a =1,b =2.解析:令f (x )=x 3+ax +b ,求导得f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,所以f (x )单调递增,且至少存在一个数使f (x )<0,至少存在一个数使f (x )>0,所以f (x )=x 3+ax +b 必有一个零点,即方程x 3+ax +b =0仅有一根,故④⑤正确;当a <0时,若a =-3,则f ′(x )=3x 2-3=3(x +1)·(x -1),易知,f (x )在(-∞,-1),(1,+∞)上单调递增,在[-1,1]上单调递减,所以f (x )极大值=f (-1)=-1+3+b =b +2,f (x )极小值=f (1)=1-3+b =b -2,要使方程仅有一根,则f (x )极大值=f (-1)=-1+3+b =b +2<0或者f (x )极小值=f (1)=1-3+b =b -2>0,解得b <-2或b >2,故①③正确,所以使得三次方程仅有一个实根的是①③④⑤.答案:①③④⑤8.(2016·河南南阳期中)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x ·g (x )(a >0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52,若数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和大于62,则n 的最小值为__________.解析:∵f ′(x )g (x )>f (x )g ′(x ),∴f ′(x )g (x )-f (x )g ′(x )>0,∴⎝⎛⎭⎫f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0, 从而可得f (x )g (x )=a x 单调递增,从而可得a >1, ∵f (1)g (1)+f (-1)g (-1)=a +a -1=52, ∴a =2.故f (1)g (1)+f (2)g (2)+…+f (n )g (n )=a +a 2+…+a n =2+22+…+2n =2(1-2n )1-2=2n +1-2>62. ∴2n +1>64,即n +1>6,n >5,n ∈N *.∴n min =6.答案:6三、解答题9.已知函数f (x )=ln x +k e k (k 为常数,e =2.718 28……是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间;(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数.证明:对任意x >0,g (x )<1+e -2.解:(1)由f (x )=ln x +k e x ,得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x >0,所以当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调增区间为(0,1),单调减区间为(1,+∞).(3)因为g (x )=xf ′(x ),所以g (x )=1e x (1-x -x ln x ),x ∈(0,+∞). 由(2)中h (x )=1-x -x ln x ,求导得h ′(x )=-ln x -2=-(ln x -lne -2),所以当x ∈(0,e -2)时, h ′(x )>0,函数h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,函数h (x )单调递减.所以当x ∈(0,+∞)时,h (x )≤h (e -2)=1+e -2.又当x ∈(0,+∞)时,0<1e x <1, 所以当x ∈(0,+∞)时,1e x h (x )<1+e -2,即g (x )<1+e -2. 综上所述,结论成立.10.已知函数f (x )=e x -ax (a 为常数)的图象与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 解:解法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln2.当x <ln2时,f ′(x )<0,f (x )单调递减;当x >ln2时,f ′(x )>0,f (x )单调递增.所以当x =ln2时,f (x )有极小值,且极小值为f (ln2)=e ln2-2ln2=2-ln4,f (x )无极大值.(2)令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1),得g ′(x )=f (x )≥f (ln2)=2-ln4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)对任意给定的正数c ,取x 0=1c, 由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .解法二:(1)同解法一.(2)同解法一.(3)令k =1c(k >0),要使不等式x <c e x 成立,只要e x >kx 成立. 而要使e x >kx 成立,则只需x >ln(kx ),即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立.即对任意c ∈[1,+∞),取x 0=0,当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x, 所以当x >1时,h ′(x )>0,h (x )在(1,+∞)内单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln2),易知k >ln k ,k >ln2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c, 当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .解法三:(1)同解法一.(2)同解法一.(3)①若c ≥1,取x 0=0,由(2)的证明过程知e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x ,即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1,令h ′(x )=0,得x =ln 1c, 当x >ln 1c时,h ′(x )>0,h (x )单调递增. 取x 0=2ln 2c ,h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增, 所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .11.(2016·山东淄博期中)设函数f (x )=12x 2-2ax +(2a -1)ln x ,其中a ∈R . (1)a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)讨论函数y =f (x )的单调性;(3)当a >12时,证明:对∀x ∈(0,2),都有f (x )<0. 解:(1)a =1时,f (x )=12x 2-2x +ln x ,f ′(x )=x -2+1x, ∴f ′(1)=0.又f (1)=-32, ∴曲线y =f (x )在点(1,f (1))处的切线方程为y +32=0. (2)f (x )的定义域为(0,+∞),f ′(x )=x -2a +2a -1x=x 2-2ax +2a -1x=(x -1)[x -(2a -1)]x, 令f ′(x )=0得x =1或x =2a -1,①当2a -1≤0,即a ≤12时,若x ∈(0,1),f ′(x )<0; 若x ∈(1,+∞),f ′(x )>0.②当0<2a -1<1,即12<a <1时,若x ∈(0,2a -1),f ′(x )>0; 若x ∈(2a -1,1),f ′(x )<0;若x ∈(1,+∞),f ′(x )>0.③当2a -1=1,即a =1时,f ′(x )=(x -1)2x≥0. ④当2a -1>1,即a >1时,若x ∈(0,1),f ′(x )>0;若x ∈(1,2a -1),f ′(x )<0;若x ∈(2a -1,+∞),f ′(x )>0.综上所述:当a ≤12时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1); 当12<a <1时,f (x )的单调递增区间为(0,2a -1)和(1,+∞),单调递减区间为(2a -1,1); 当a =1时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当a >1时,f (x )的单调递增区间为(0,1)和(2a -1,+∞),单调递减区间为(1,2a -1).(3)①当12<a <1时,由(2)知f (x )在(0,2a -1)上单调递增,在(2a -1,1)上单调递减,在(1,2)上单调递增,∴f (x )≤max{f (2a -1),f (2)}.而f (2)=2-4a +(2a -1)ln2=(2a -1)(ln2-2)<0,f (2a -1)=12(2a -1)2-2a (2a -1)+(2a -1)ln(2a -1)= (2a -1)·⎣⎡⎦⎤-a -12+ln (2a -1),记g (a )=-a -12+ln(2a -1), a ∈⎝⎛⎭⎫12,1,g ′(a )=-1+22a -1=-2⎝⎛⎭⎫a -322⎝⎛⎭⎫a -12, 又12<a <1,∴g ′(a )>0. ∴g (a )在a ∈⎝⎛⎭⎫12,1上单调递增.∴当a ∈⎝⎛⎭⎫12,1时,g (a )<g (1)=-32<0, 即-a -12+ln(2a -1)<0成立.又a >12, ∴2a -1>0.∴f (2a -1)<0.∴当12<a <1,x ∈(0,2)时,f (x )<0. ②当a =1时,f (x )在(0,2)上单调递增,∴f (x )<f (2)=ln2-2<0.③当a >1时,由(2)知,f (x )在(0,1)上单调递增,在(1,2a -1)上单调递减,在(2a -1,2)上单调递增.故f (x )在(0,2)上只有一个极大值f (1),∴当x ∈(0,2)时,f (x )≤max{f (1),f (2)}.而f (1)=12-2a =-2⎝⎛⎭⎫a -14<0,f (2)=2-4a +(2a -1)ln2=(2a -1)(ln2-2)<0,∴当a>1,x∈(0,2)时,f(x)<0.时,对∀x∈(0,2),都有f(x)<0. 综合①②③知:当a>12。

【师说】2017届高考数学(文)二轮复习 专题能力提升练练二 Word版含解析

【师说】2017届高考数学(文)二轮复习 专题能力提升练练二 Word版含解析

二、函数与导数小题强化练,练就速度和技能,掌握高考得分点! 姓名:________ 班级:________ 一、选择题(本大题共10小题,每小5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[3,4]时,f (x )=ln x ,则( )A .f ⎝⎛⎭⎫sin 12<f ⎝⎛⎭⎫cos 12B .f ⎝⎛⎭⎫sin π3>f (cos π3)C .f (sin1)<f (cos1)D .f ⎝⎛⎭⎫sin 32>f ⎝⎛⎭⎫cos 32 解析:由题意得f (x )是定义在R 上周期为2的偶函数,∵f (x )在[3,4]上是增函数,∴函数f (x )在[-1,0]上是增函数,在[0,1]上是减函数,∵0<cos1<sin1<1,∴选C.答案:C2.函数f (x )=ln ⎝⎛⎭⎫x -1x 的图象大致是( )解析:要使函数f (x )=ln ⎝⎛⎭⎫x -1x 有意义,需满足x -1x>0,解得-1<x <0或x >1,所以排除A ,D ,当x >2时,x -1x一定大于1,所以ln ⎝⎛⎭⎫x -1x >0,故选B. 答案:B3.已知函数f (x )=ax 2+bx +3a +b 是定义在[a -1,2a ]上的偶函数,则y =2cos ⎣⎡⎦⎤(a +b )x -π3的最小正周期是( ) A .6π B .5π C .4π D .2π解析:∵函数f (x )=ax 2+bx +3a +b 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,解得a =13,由f (x )=f (-x )得,b =0,∴y =2cos ⎣⎡⎦⎤(a +b )x -π3=2cos ⎝⎛⎭⎫13x -π3, ∴最小正周期T =2πω=6π.答案:A4.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图1所示,得到函数h (x )的图象如图2所示,由图象得函数h (x )有最小值-1,无最大值.答案:C5.对于偶函数F (x ),当x ∈[0,2)时,F (x )=e x +x ,当x ∈[2,+∞)时,F (x )的图象与函数y =e x +1的图象关于直线y =x 对称,则F (-1)+F (e +1)=( )A .eB .2eC .e +ln(e +1)D .e +2解析:∵F (x )为偶函数,∴F (-1)=F (1)=e +1,∵e +1>2且当x ∈[2,+∞)时,F (x )的图象与函数y =e x +1的图象关于y =x 对称,∴e +1=e x +1,∴x =1,∴F (e +1)=1,∴F (-1)+F (e +1)=e +2.答案:D 6.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:由图象得,f (3)=1,k =f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ),∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 答案:B7.设a =e 636,b =e 749,c =e 864,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:设f (x )=e xx 2,则a =f (6),b =f (7),c =f (8),因为f ′(x )=(x -2)e x x 3,所以当x >2时,f ′(x )>0,所以函数f (x )=e xx2在(2,+∞)上单调递增,所以c >b >a .答案:C8.已知函数f (x )=14x 2+sin ⎝⎛⎭⎫5π2+x ,f ′(x )为f (x )的导函数,则y =f ′(x )的图象大致是( )解析:∵f (x )=14x 2+cos x ,∴f ′(x )=12x -sin x ,f ′(x )是奇函数,故选项B ,D 不正确,当x =π6时,f ′(x )=π12-12<0,故选A.答案:A9.设函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1(x ≤0)e ax (x >0)在[-2,2]上的最大值为2,则实数a 的取值范围是( )A.⎣⎡⎭⎫12ln2,+∞B.⎣⎡⎭⎫0,12ln2 C .(-∞,0) D.⎝⎛⎦⎤-∞,12ln2 解析:设y =2x 3+3x 2+1(-2≤x ≤0), 则y ′=6x (x +1)(-2≤x ≤0), 所以-2≤x <-1时y ′>0, -1<x <0时y ′<0,所以y =2x 3+3x 2+1在[-2,0]上的最大值为2,所以函数y =e ax 在(0,2]上的最大值不超过2,当a >0时,y =e ax 以(0,2]上的最大值e 2a ≤2,所以0<a ≤12ln2,当a =0时,y =1≤2,当a <0时,y =e ax 在(0,2]上的最大值小于1,所以实数a 的取值范围是⎝⎛⎦⎤-∞,12ln2. 答案:D10.已知定义在R 上的函数f (x )满足f (3-x )=f (x ),⎝⎛⎭⎫x -32f ′(x )<0,若x 1<x 2,且x 1+x 2>3,则有( )A .f (x 1)>f (x 2)B .f (x 1)<f (x 2)C .f (x 1)=f (x 2)D .f (x 1)与f (x 2)的大小关系不确定解析:通解:∵⎝⎛⎭⎫x -32f ′(x )<0,∴当x >32时,f ′(x )<0, 当x <32时,f ′(x )>0,∴函数f (x )在⎝⎛⎭⎫32,+∞上是减函数,在⎝⎛⎭⎫-∞,32上是增函数, ∵f (3-x )=f (x ),∴f (x 1)=f (3-x 1), 又x 1<x 2,且x 1+x 2>3,∴x 2>3-x 1.若x 1>32,则f (x 1)>f (x 2),若x 1<32,则x 2>3-x 1>32,又f (x 1)=f (3-x 1)>f (x 2),所以f (x 1)>f (x 2).优解:∵⎝⎛⎭⎫x -32f ′(x )<0, ∴当x >32时,f ′(x )<0,当x <32时,f ′(x )>0,∴函数f (x )在⎝⎛⎭⎫32,+∞上是减函数,在⎝⎛⎭⎫-∞,32上是增函数, ∵f (3-x )=f (x ),∴函数f (x )的图象关于直线x =32对称,不妨取f (x )=-x 2+3x ,则f (x 1)-f (x 2)=(x 1-x 2)(3-x 1-x 2), ∵x 1<x 2,且x 1+x 2>3,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 答案:A二、填空题(本大题共5小题,每小5分,共25分.请把正确答案填在题中横线上)11.已知函数f (x )=4x +1,g (x )=4-x .若偶函数h (x )满足h (x )=mf (x )+ng (x )(其中m ,n 为常数),且最小值为1,则m +n =__________.解析:由题意,h (x )=mf (x )+ng (x )=m ·4x +m +n ·4-x ,h (-x )=m ·4-x +m +n ·4x ,∵h (x )为偶函数,∴h (x )=h (-x ),∴m =n ,∴h (x )=m (4x +4-x )+m ,∵4x +4-x ≥2,∴h (x )min =3m=1,∴m =13,∴m +n =23.答案:2312.函数f (x )=2sin(πx )+11-x(x ∈[-2,4])的所有零点之和为______.解析:函数y =2sin(πx )和函数y =1x -1的图象均关于点(1,0)对称,作出两个函数的图象如图所示,得函数f (x )=2sin(πx )+11-x在[-2,4]上共有四个不同的零点,由对称性得所有零点之和为4.答案:4 13.已知f ′(x )为定义在R 上的函数f (x )的导函数,而y =3f ′(x )的图象如图所示,则y =f (x )的单调递增区间是__________.解析:由y =3f ′(x )≥1,得f ′(x )≥0,由y =3f ′(x )的图象得y =3f ′(x )≥1的解集为(-∞,3],即f ′(x )≥0的解集为(-∞,3],所以y =f (x )的单调递增区间是(-∞,3].答案:(-∞,3]14.曲线f (x )=x -3x上任一点P 处的切线与直线x =0和直线y =x 所围成的三角形的面积为__________.解析:通解:设点P (m ,n ),∵f ′(x )=1+3x2,∴曲线f (x )=x -3x在点P 处的切线方程为y =⎝⎛⎭⎫1+3m 2x -6m , 切线与直线y =x 的交点为(2m,2m ),与直线x =0的交点为⎝⎛⎭⎫0,-6m , ∴切线与直线x =0和直线y =x 所围成的三角形的面积S =12×6|m |×2|m |=6.优解:取点P (3,2),因为f ′(x )=1+3x2,所以曲线f (x )=x -3x 在点P 处的切线方程为y =43x -2,切线与直线y =x 的交点为(6,6),与直线x =0的交点为(0,-2),所以切线与直线x =0和直线y =x 所围成的三角形的面积S =6.答案:615.若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上有极值点,则实数a 的取值范围是__________.解析:因为f (x )=x 33-a 2x 2+x +1,所以f ′(x )=x 2-ax +1.函数f (x )在区间⎝⎛⎭⎫12,3上有极值点,即f ′(x )=0在⎝⎛⎭⎫12,3上有一个解或者两个不相同的解.当有一解时,f ′⎝⎛⎭⎫12f ′(3)≤0,解得52≤a ≤103,经检验a =103时不成立,所以52≤a <103. 当有两解时,依题意可得⎩⎪⎨⎪⎧12<a 2<3f ′⎝⎛⎭⎫12>0f ′(3)>0f ′⎝⎛⎭⎫a 2<0,解得2<a <52.综上可得a ∈⎝⎛⎭⎫2,103. 答案:⎝⎛⎭⎫2,103。

《师说》2017届人教版高考数学(文)二轮数学(文)专项训练高考小题标准练(十)Word版含解析

《师说》2017届人教版高考数学(文)二轮数学(文)专项训练高考小题标准练(十)Word版含解析
A.x=1为f(x)的极大值点
B.x=1为f(x)的极小值点
C.x=-1为f(x)的极大值点
D.x=-1为f(x)的极小值点
解析:f(x)=xex,f′(x)=ex(x+1),ex>0恒成立.令f′(x)=0,解得x=-1.当x<-1时,f′(x)<0,函数单调递减;当x>-1时,f′(x)>0,函数单调递增,所以x=-1为f(x)的极小值点,故选D.
答案:A
9.在四面体S-ABC中,SA⊥平面ABC,SA=AB=AC=BC=2,则该四面体外接球的表面积是()
A.7π B.8π C. D.
解析:因为SA=AB=AC=BC=2,所以△ABC为等边三角形,由正弦定理得△ABC的外接圆的半径r= = .又因为SA⊥平面ABC,SA=2,所以四面体外接球的半径的平方R2= 2+ 2= .其表面积是4πR2= .故选C.
13.设A,B为双曲线 - =λ(a>0,b>0,λ≠0)同一条渐近线上的两个不同的点.已知向量m=(1,0),| |=6, =3,则双曲线的离心率e=__________.
解析:由题意cos〈m, 〉= = = ,所以直线AB与x轴正方向夹角为60°.当λ>0时, =tan60°= ,即b= a,c=2a,e=2;当λ<0时, =tan60°= ,即a= b,c=2b,e= = .
答案:B
7.将函数f(x)=cos2x的图象向右平移 个单位长度后得到函数g(x),则g(x)具有性质()
A.最大值为1,图象关于直线x= 对称
B.在 上单调递增,为奇函数
C.在 上单调递增,为偶函数
D.周期为π,图象关于点 对称
解析:由条件可得g(x)=cos2 =cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考大题标准练(七)
满分75分,实战模拟,60分钟拿下高考客观题满分! 姓名:________ 班级:
________
1.(2015·新课标全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .
(1)求sin ∠B sin ∠C

(2)若∠BAC =60°,求∠B . 解:(1)利用正弦定理转化得:sin ∠B
sin ∠C =DC BD =12.
(2)由诱导公式可得sin ∠C =sin(∠BAC +∠B )=32cos ∠B +1
2
sin ∠B .由(1)知2sin ∠B =sin ∠C ,
所以tan ∠B =
3
3
,∠B =30°. 2.(2015·浙江卷)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+
1
3
b 3+…+1
n
b n =b n +1-1(n ∈N *).
(1)求a n 与b n ;
(2)记数列{a n b n }的前n 项和为T n ,求T n .
解:(1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:
当n =1时,b 1=b 2-1,故b 2=2.
当n ≥2时,1
n b n =b n +1-b n ,整理得b n +1n +1=b n n ,
所以b n =n (n ∈N *). (2)由(1)知a n b n =n ·2n ,
因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1.
故T n =(n -1)2n +1+2(n ∈N *).
3.(2016·新课标全国卷Ⅲ)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1~7分别对应年份2008~2014.
(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:∑i =17y i =9.32,∑i =1
7
t i y i =40.17,
i =1
7(y i -
y )2=0.55,7≈2.646.
参考公式:相关系数r =
∑i =1n
(t i -t )(y i -y )
i =1
n (t i -
t )
2
i =1
n (y i -
y )
2

回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1
n
(t i -t )(y i -y )
i =1
n (t i -
t )2

a ^=y -
b ^t .
解:(1)由折线图中数据和附注中参考数据得 t =4,∑i =1
7
(t i -t
)2=28,
∑i =1
7
(y i -y )2=0.55,
∑i =17
(t i -t )(y i -y )=∑i =1
7
t i y i -t ∑i =1
7
y i =40.17-4×9.32=2.89,
r ≈
2.89
2×2.646×0.55
≈0.99.
因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.
(2)由y =9.32
7
≈1.331及(1)得
b ^=
∑i =17
(t i -t )(y i -y )
∑i =1
7
(t i -t )2
=2.8928
≈0.103, a ^=y -b ^
t ≈1.331-0.103×4≈0.92. 所以,y 关于t 的回归方程为y ^
=0.92+0.10t . 将2016年对应的t =9代入回归方程得 y ^
=0.92+0.10×9=1.82.
所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨. 4.(2016·浙江卷)如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =
1,BC =2,AC =3.
(1)求证:BF ⊥平面ACFD ;
(2)求直线BD 与平面ACFD 所成角的余弦值.
证明:(1)延长AD ,BE ,CF 相交于一点K ,如图所示.
因为平面BCFE ⊥平面ABC ,且AC ⊥BC , 所以AC ⊥平面BCK , 因此,BF ⊥AC .
又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK .
所以BF ⊥平面ACFD . (2)解:因为BF ⊥平面ACK ,
所以∠BDF 是直线BD 与平面ACFD 所成的角.
在Rt △BFD 中,BF =3,DF =32,得cos ∠BDF =21
7

所以直线BD 与平面ACFD 所成角的余弦值为21
7
.
5.(2016·新课标全国卷Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.
(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;
(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.
解:由题意知F ⎝⎛⎭⎫12,0.设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b 22,b ,P ⎝⎛⎭⎫-12,a ,
Q ⎝⎛⎭⎫-12,b ,R ⎝ ⎛

⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l , 则l 的方程为2x -(a +b )y +ab =0. (1)由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则 k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a =-b =k 2.
所以AR ∥FQ .
(2)设l 与x 轴的交点为D (x 1,0),
则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2.
由题设可得2×1
2|b -a |⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.
设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,
由k AB =k DE 可得2a +b =y
x -1(x ≠1).
而a +b 2=y ,所以y 2=x -1(x ≠1).
当AB 与x 轴垂直时,E 与D (1,0)重合.
所以,所求轨迹方程为y 2=x -1. 6.(2016·新课标全国卷Ⅱ)已知函数f (x )=(x +1)·ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1),
f ′(x )=ln x +1
x
-3,f ′(1)=-2,f (1)=0.
故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)
x +1>0.
设g (x )=ln x -a (x -1)
x +1

则g ′(x )=1x -2a
(x +1)2=x 2+2(1-a )x +1x (x +1)2
,g (1)=0.
①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;
②当a >2时,令g ′(x )=0得x 1=a -1-
(a -1)2-1,x 2=a -1+
(a -1)2-1.
由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此
g (x )<0.
综上,a 的取值范围是(-∞,2].。

相关文档
最新文档