2019年5月北京市朝阳区2019届高三第二次综合练习(二模)数学(文)试题(解析版)
二、函数的概念与基本初等函数1(学生)

函数 第1页(共4页) 函数 第2页(共4页)专题二 函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷文数】已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<2.【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+ 3.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .54.【2019年高考天津文数】已知0.223log 7,log 8,0.3a b c ===,则a ,b ,c 的大小关系为 A .c b a << B .a b c << C .b c a << D .c a b << 5.【2019年高考北京文数】下列函数中,在区间(0,+∞)上单调递增的是 A .12y x = B .y =2x - C .12log y x =D .1y x=6.【2019年高考全国Ⅰ卷文数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .7.【2019年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg Em m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A .1010.1B .10.1C .lg10.1D .10−10.18.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是9.【2019年高考全国Ⅲ卷文数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314)10.【2019年高考江苏】函数y =的定义域是 .11.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23x f x x =+的零点所在的一个区间是 A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)12.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是A .3x y =B .1ln||y x = C .||2x y =D .cos y x =13.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0x x x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .1514.【山东省济宁市2019届高三二模数学】已知是定义在上的周期为4的奇函数,当时,,则A .B .0C .1D .215.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为 A .(,1)-∞- B .3(,)2-∞- C .3(,)2+∞D .(4,)+∞16.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .217.【北京市房山区2019届高三第一次模拟测试数学】关于函数,下列说法错误的是 A .是奇函数 B .在上单调递增C .是的唯一零点D .是周期函数函数 第3页(共4页) 函数 第4页(共4页)18.【天津市北辰区2019届高考模拟考试数学】已知函数是定义在上的偶函数,且在上单调递增,则三个数,,的大小关系为A .B .C .D .19.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x af x x x a ⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是A .(),0-∞B .(),1-∞C .()1,+∞D .()0,+∞20.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为A .1,82⎛⎫⎪⎝⎭ B .)8,1( C .10,(8,)2⎛⎫+∞ ⎪⎝⎭D .(,1)(8,)-∞+∞21.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是 A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 22.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是A .10,4⎛⎫ ⎪⎝⎭ B .1,4⎛⎫+∞ ⎪⎝⎭ C .1,44⎛⎫ ⎪⎝⎭D .()4,+∞23.【陕西省西安市2019届高三第三次质量检测数学】若定义在上的函数满足且时,,则方程的根的个数是A .B .C .D .24. 【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为 A .[]1,2- B .37,22⎡⎫-⎪⎢⎣⎭ C .37,22⎡⎤-⎢⎥⎣⎦ D .3,42⎛⎤- ⎥⎝⎦25.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()f x =,则()f x 的定义域为____________.26.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数为偶函数,则__________.27.【甘肃、青海、宁夏2019届高三上学期期末联考数学】若函数()()212(0,0)f x mx n x m n =+-+>>的单调递增区间为1,2⎡⎫+∞⎪⎢⎣⎭,则11m n+的最小值为__________. 28.【东北三省三校(辽宁省实验中学、东北师大附中、哈师大附中)2019届高三第三次模拟考试数学】若函数在上单调递增,则的取值范围是__________.。
北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学(文)试题Word版

3. 已知 a log 3 e , b ln3 , c log3 2 ,则 a , b , c 的大小关系是
( A) c a b ( C) a b c
(B) c b a (D) b a c
4. 在数学史上,中外数学家使用不同的方法对圆周率
进行了
估算 . 根据德国数学家莱布尼茨在 1674 年给出的求 的方法绘
制
的程序框图 如图所示 . 执行该程序框图,输出 s 的值为
( A) 4
( B) 8 3
( C) 52 15
( D) 304 105
开始
k 0, s 0 s s ( 1)k 4
2k 1
k k1 否
k ≥3 是
输出 s 结束
5. 已知平面向量 a, b 的夹角为 2π,且 a 1, b 2 ,则 a b 3
16. (本小题满分 13 分)
如图,在四边形 ABCD 中, A 60 , ABC 90 .已知 AD 3 , BD 6 .
(Ⅰ)求 sin ABD 的值;
(Ⅱ)若 CD 2 ,且 CD BC ,求 BC 的长.
D
C
A
B
17. (本小题满分 13 分)
某电视台举行文艺比赛,并通过网络对比赛进行直播
A. 有最小值 3
B.
2
C. 为定值 3
D.
有最大值 5 2
为定值 2
A1
F B1
D1 C1
A B
D E
C
第二部分(非选择题 共 110 分)
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.把答案填在答题卡上.
9. 函数 f ( x) 2sin x cosx cos2 x 的最小正周期为 .
北京市朝阳区2018届高考二模数学试题(文)含答案

北京市朝阳区高三年级第二次综合练习数学学科测试(文史类) 第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|320A x x x =-+<,{}|1B x x =≥,则AB =( )A .(2]-∞,B .(1)+∞,C .(12),D .[1)+∞, 2.计算2(1)i -=( )A .2iB .2i -C .2i -D .2i +3.已知x ,y 满足不等式220101x y x y y --⎧⎪+-⎨⎪⎩,,≤≥≤则3z y x =-的最小值是( )A .1B .3-C .1-D . 72-4.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( )AB 62- C.625.“01a <<且01b <<”是“log 0a b >”的( ) A .充分而不必要条件 B .必要而不充分条件 C.充分必要条件 D .既不充分也不必要条件6.如图,角α,β均以Ox 为始边,终边与单位圆O 分别交于点A ,B ,则OA OB ⋅=( )A .sin()αβ-B .sin()αβ+ C.cos()αβ- D .cos()αβ+7.已知定义在R 上的奇函数()f x 在[0)+∞,上单调递减,且0a b +>,0b c +>,,0a c +>,则()()()f a f b f c ++的值( )A .恒为正B .恒为负 C.恒为0 D .无法确定8.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( )A .4B .5 C.6 D .7第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上) 9.执行如图所示的程序框图,则输出的S = .10.双曲线22143x y -=的焦点坐标是 ;渐近线方程是 .11.已知0x >,0y >,且满足4x y +=,则lg lg x y +的最大值为 . 12.已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .13.在平面直角坐标系xOy 中,点P (不过原点)到x 轴,y 轴的距离之和的2倍等于点P 到原点距离的平方,则点P 的轨迹所围成的图形的面积是 .14.如图,已知四面体ABCD 的棱AB ∥平面α,且AB =1.四面体ABCD 以AB 所在的直线为轴旋转x 弧度,且始终在水平放置的平面α上方.如果将四面体ABCD 在平面α内正投影面积看成关于x 的函数,记为()S x ,则函数()S x 的最小值为 ;()S x 的最小正周期为 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.已知函数()2sin (sin cos )f x x x x a =+-的图象经过点(1)2π,,a ∈R .(1)求a 的值,并求函数()f x 的单调递增区间; (2)若当[0]2x π∈,时,求函数()f x 的最小值.16.已知数列{}n a 的前n 项和2n S pn qn =+(p ,q ∈R ,*n ∈N )且13a =,424S =. (1)求数列{}n a 的通项公式;(2)设2n a n b =,求数列{}n b 的前n 项和n T . 17.(1)根据表中数据写出这10年内银杏数列的中位数,并计算这10年栽种银杏数量的平均数;(2)从统计的数据中,在栽种侧柏与银杏数量之差的绝对值不小于300株的年份中,任意抽取2年,恰有1年栽种侧柏的数列比银杏数量多的概率.18.如图,在四棱锥P ABCD -中,平面PBC ⊥平面ABCD .PBC △是等腰三角形,且3PB PC ==.四边形ABCD 是直角梯形,AB DC ∥,AD DC ⊥,5AB =,4AD =,3DC =(1)求证:AB ∥平面PDC ;(2)当平面PBC ⊥平面ABCD 时,求四棱锥P ABCD -的体积;(3)请在图中所给的五个点P ,A ,B ,C ,D 中找出两个点,使得这两点所在的直线与直线BC 垂直,并给出证明.19. 已知椭圆W :22221x y a b+=(0a b >>A 在圆O :224x y +=上(O 为坐标原点).(1)求椭圆W 的方程;(2)过点A 作直线AQ 交椭圆W 于另外一点Q ,交y 轴于点R ,P 为椭圆W 上一点,且OP AQ ∥,求证:2AQ AR OP⋅为定值.20. 已知函数()x f x xe =,()1g x ax =+,a ∈R .(1)若曲线()y f x =在点(0(0))f ,处的切线与直线()y g x =垂直,求a 的值; (2)若方程()()0f x g x -=在(22)-,上恰有两个不同的实数根,求a 的取值范围;(3)若对任意1[22]x ∈-,,总存在唯一的2(2)x ∈-∞,,使得21()()f x g x =,求a 的取值范围.。
朝阳区2022届高三二模语文试题答案

北京市朝阳区高三年级第二学期质量检测二语文参考答案2022.5一、(本大题共5小题,共18分)1.(3分)B2.(3分)D3.(3分)C4.(3分)C5.(6分)答案要点:①修旧如旧:修复后的晋侯鸟尊锈色斑驳,凤嘴有锈蚀;临时象鼻做锈色处理,与鸟尊整体色泽一致,古朴典雅。
②可识别:临时象鼻没有仿制任何纹饰,以便于观赏者识别。
③可逆:临时象鼻可拆卸,缺失残片找到后被复原回原位,文物得以完整呈现。
【评分说明】每点2分。
意思对即可。
二、(本大题共6小题,共20分)6.(3分)D7.(3分)A8.(3分)D9.(3分)D10.(2分)参考答案:认为这山不曾有过树木11.(6分)答案要点:①短文一借助学“弈”的故事论证说理。
阐述人的“不智”是因为三心二意,不肯认真学习,不能坚持养心。
②短文二围绕“弈”展开论述。
阐明弈棋理论,及弈棋中包含的政事、人文等道理。
【评分说明】每点3分。
意思对即可。
三、(本大题共6小题,共30分)12.(3分)A13.(3分)C14.(6分)答案要点:杜诗:有友来访,宾主尽欢,兴致盎然。
李诗:时局危难,人事飘零,命途难测。
陆诗:向往安定生活,期待太平盛世。
【评分说明】每点2分。
意思对即可。
15.(8分)①自牧归荑②采之欲遗谁③所思在远道④鸿雁长飞光不度⑤鱼龙潜跃水成文⑥猿猱欲度愁攀援⑦有善始者实繁⑧能克终者盖寡【评分说明】每句1分。
有错别字或多字、少字,该句不得分。
16.(4分)答案要点:对美好事物的痴情;不为世俗理解的痴呆。
【评分说明】每点2分。
意思对即可。
17.(6分)【评分说明】结合相关情节3分,分析3分。
(言之成理即可)四、(本大题共4小题,共17分)18.(3分)C19.(3分)A20.(6分)答案要点:①安塞满山桃花和桃花瓣的故事,让少年的作者着迷,充满遐想,也展现了安塞独特的美。
②腰鼓是安塞的一种灿烂的艺术,让作者感到震撼,促使他写作安塞腰鼓。
③“桃花鼓声安塞”和“杏花春雨江南”形成对仗,突出桃花和安塞、安塞腰鼓的精神气质高度相似。
北京市朝阳区2014届高三二模数学(文)试题

北京市朝阳区高三年级第二次综合练习数学学科测试(文史类)2014.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于 (A )()U AB ð (B )A B (C )A B (D )()U AB ð (2)下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为(A ) sin y x = (B )ln y x = (C )3y x = (D ) 2x y = (3)已知抛物线22x y =,则它的焦点坐标是(A )1,04⎛⎫⎪⎝⎭ (B )10,2⎛⎫ ⎪⎝⎭ (C )10,4⎛⎫ ⎪⎝⎭ (D )1,02⎛⎫⎪⎝⎭(4)执行如图所示的程序框图.若输入3a =,则输出i 的值是(A )2 (B ) 3 (C ) 4 (D ) 5(5)由直线10x y -+=,50x y +-=和10x -=所围成的三角形区域(包括边界)用不等式组可表示为(A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩ (B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩ (C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩ (D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩(6)在区间ππ[-,]上随机取一个实数x ,则事件:“cos 0x ≥”的概率为 (A )14 (B ) 34 (C )23 (D )12(7)设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n nS a +的最小值为(A )10 (B )92 (C )72 (D)12+ ( 8 )已知平面上点{2200(,)()()16,P x y x x y y ∈-+-=其中}22004x y +=,当0x ,0y 变化时,则满足条件的点P 在平面上所组成图形的面积是(A) 4π (B) 16π ( C) 32π (D )36π第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.计算12i1i+=- . 10.已知两点()1,1A ,()1,2B -,若12BC BA =,则C 点的坐标是 . 11.圆心在x 轴上,半径长是4,且与直线5x =相切的圆的方程是 .12.由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积是 .22俯视图侧视图正视图13.设一列匀速行驶的火车,通过长860m 的隧道时,整个车身都在隧道里的时间是22s .该列车以同样的速度穿过长790m 的铁桥时,从车头上桥,到车尾下桥,共用时33s ,则这列火车的长度为___m .14.在如图所示的棱长为2的正方体1111ABCD A BC D -中,作与平面1ACD 平行的截面,则截得的三角形中,面积最大的值是___; 截得的平面图形中,面积最大的值是___.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC 中,a ,b ,c 分别是角A B C ,,的对边.已知a =π3A =.(Ⅰ)若b =C 的大小; (Ⅱ)若2c =,求边b 的长. 16. (本小题满分13分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数; (Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.A17. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD . (Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ; (Ⅱ)求证:PA ⊥CD ;(Ⅲ)若PA PD AD ==, 求证:平面PAB ⊥平面PCD . 18.(本小题满分13分)已知函数e ()xa f x x⋅=(a ∈R ,0a ≠).(Ⅰ)当1a =时,求曲线()y f x =在点()1,(1)f 处切线的方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当()0,x ∈+∞时,()f x 1≥恒成立,求a 的取值范围. 19.(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l 10mx y ++=与椭圆C 交于,A B 两点,是否存在实数m ,使O A O B O A O B +=-成立?若存在,求m 的值;若不存在,请说明理由.20.(本小题满分13分)已知函数()f x 对任意,x y ∈R 都满足()()()1f x y f x f y +=++,且1()02f =,数列{}n a 满足:()n a f n =,*n ∈N . (Ⅰ)求(0)f 及(1)f 的值; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)若311()()42n naa nb +=-,试问数列{}n b 是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.A北京市朝阳区高三年级第二次综合练习数学学科测试文史类答案 2014.5三、解答题(满分80分) 15. (本小题满分13分) (Ⅰ)解:由正弦定理sin sin a bA B=,=,解得sin 2B =. 由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=. ………6分 (Ⅱ)依题意,222cos 2b c a A bc+-=,即2141224b b +-=.整理得2280b b --=, 又0b >,所以4b =. ………13分另解:由于sin sin a cA C=2sin C =,解得1sin 2C =. 由于a c >,所以π6C =. 由π3A =,得π2B =. 由勾股定理222b c a =+,解得4b =. ………13分16.(本小题满分13分) 解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人), 参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人). 所以参加社区服务时间不少于90小时的学生人数为 4+26=(人). ………5分 (Ⅱ)设所选学生的参加服务时间在同一时间段内为事件A . 由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ; 参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB共15种情况.事件A 包括,,,,,,ab ac ad bc bd cd AB 共7种情况. 所以所选学生的服务时间在同一时间段内的概率7()15P A =.………13分 17. (本小题满分14分) 证明:(Ⅰ)如图,连结AC .因为底面ABCD 是正方形,所以AC 与BD 互相平分. 又因为F 是BD 中点, 所以F 是AC 中点.在△PAC 中,E 是PC 中点,F 是AC 中点, 所以EF ∥PA .又因为EF ⊄平面PAD ,PA ⊂平面PAD ,所以EF ∥平面PAD . ………4分 (Ⅱ)因为平面PAD ⊥底面ABCD ,且平面PAD 平面=ABCD AD ,又CD AD ⊥,CD ⊂平面ABCD , 所以CD ⊥面PAD .A又因为PA ⊂平面PAD ,所以CD PA ⊥.即PA ⊥CD . ………9分(Ⅲ)在△PAD 中,因为2PA PD AD ==, 所以PA PD ⊥.由(Ⅱ)可知PA ⊥CD ,且=CD PD D ,所以PA ⊥平面PCD . 又因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . ………14分 18. (本小题满分13分)(Ⅰ)22e e e (1)()x x x ax a a x f x x x ⋅--'==,0x ≠.当1a =时,2e (1)()x x f x x-'=. 依题意(1)0f '=,即在1x =处切线的斜率为0.把1x =代入e ()xf x x=中,得(1)e f =.则曲线()f x 在1x =处切线的方程为e y =. ………………….4分(Ⅱ)函数()f x 的定义域为{}0x x ≠.22e e e (1)()x x x ax a a x f x x x ⋅--'==.(1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数;当()0f x '<,即0x <和01x <<时,函数()f x 为减函数. (2)若0a <,当()0f x '>,即0x <和01x <<时,函数()f x 为增函数;当()0f x '<,即1x >时,函数()f x 为减函数.综上所述,0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1.0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞.………………….9分(Ⅲ)当()0,x ∈+∞时,要使()f x =e 1xa x⋅≥恒成立,即使e x x a ≥在()0,x ∈+∞时恒成立. 设()e x x g x =,则1()e xxg x -'=.可知在01x <<时,()0g x '>,()g x 为增函数;1x >时,()0g x '<,()g x 为减函数.则max 1()(1)e g x g ==.从而1ea ≥.另解:(1)当0a <时,()e 1a f a =<,所以()f x 1≥不恒成立.(2)当0a >且()0,x ∈+∞时,由(Ⅰ)知,函数()f x 的单调增区间为()1,+∞,单调减区间为()0,1.所以函数()f x 的最小值为(1)e f a =,依题意(1)e 1f a =≥,解得1ea ≥. 综上所述,1ea ≥. ………………….13分 19. (本小题满分14分)(Ⅰ)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c .依题意1,21.c e a a c ⎧==⎪⎨⎪-=⎩ 解得1c =,2a =,所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. ………………….4分 (Ⅱ)不存在实数m ,使||||OA OB OA OB +=-,证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=. 由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>. 设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+. 依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=. 即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=, 整理得21212(1)()10m x x m x x ++++=,所以2(1)m +2843m -+2281043m m -+=+, 整理得2512m =-,矛盾. 所以不存在实数m ,使||||OA OB OA OB +=-. ………………….14分 20. (本小题满分13分)解:(Ⅰ)在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-, 在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =,…………2分 (Ⅱ)在()()()1f x y f x f y +=++中,令x n =,1y =, 得(1)()2f n f n +=+,即12n n a a +-=.所以{}n a 是等差数列,公差为2,又首项1(1)1a f ==,所以21n a n =-,*n ∈N . …………6分 (Ⅲ)数列{}n b 存在最大项和最小项令2111()()22na n t -==,则22111()816256nb t t t =-=--, 显然102t <≤,又因为N n *∈,所以当12t =,即1n =时,{}n b 的最大项为1316b =. 当132t =,即3n =时,{}n b 的最小项为331024b =-. …………13分。
北京市朝阳区2019届初三二模语文试题及答案

朝阳区2019初三二模语文2019.6一、基础·运用(共13分)学校开展了“亲近大自然,走进世园会”的主题活动。
请根据要求完成l~5题。
1、阅读下面文字完成(1)(2)题。
(共2分)2019年中国北京世界园艺博览会(简称“北京世园会”)的办会理念是“让园艺融入自然,让自然感动心灵”,强调顺应自然、保护生态的绿色发展昭.示着未来。
绿色是人类永恒的追求,代表着安全、健康和人与自然的和谐。
城市是人类生活的重.要环境。
伴随着人类文明的① ,人类正从认识自然、改造自然走向②,建设绿色城市已成为人们追求美好生活的新潮流。
让园艺融入自然,让城市融入自然,让绿色融入城市,体观了人类渴望自然、返璞归真的精神追求。
1.对文中加点字的注音和对画线字笔顺的判断全都正确的一项是()(1分)A.昭zhāo “重”字的第七笔是-B.昭zhào “重”字的第七笔是-C.昭zhāo “重”字的第七笔是丨D.昭zhào “重”字的第七笔是丨(2)结合语境分别在横线①②处填入词语,最恰当的一项是()(1分)A.①进程②融人自然、尊重自然B.①进化②融入自然、尊重自然C.①进程②尊重自然、融入自然D.①进化②尊重自然、融入自然2.阅读下面文字,完成(1)(2)题。
(共4分)本届世园会共有110个国家和国际组织参加展示,其展出规模之大、参展方数量之多,刷新了A1类世园会的历史纪录。
多国奇珍花草绿色产品集中亮相,国际馆让大家不出国门就能欣赏到世界园艺。
同时,绿色低碳的设计理念,成为本届世园会的最大亮点。
下沉式庭院设计是天然的雨水收集系统;园中的地道风技术,冬暖夏凉,有效降低场馆空调能耗。
此外,科技创新成果在展会上的应用让人应接不暇。
奇幻光影森林集成AR技术、人工智能技术、人机互动技术等与《山海经》相结合,打造了一个充满想象的奇幻世界。
可以说,2019北京世园会从参展规模、园艺资源、低碳环保方面着力打造了一坞文化盛宴。
2024年北京市朝阳区高考数学二模试卷+答案解析

2024年北京市朝阳区高考数学二模试卷一、单选题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.下列函数中,既是奇函数又在其定义域上是增函数的是()A. B. C. D.3.设等差数列的前n项和为,若,,则()A.60B.80C.90D.1004.已知抛物线C:的焦点为F,点P为C上一点.若,则点P的横坐标为()A.5B.6C.7D.85.已知函数存在最小值,则实数a的取值范围是()A. B. C. D.6.已知,是两个互相垂直的平面,l,m是两条直线,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在平面直角坐标系xOy中,锐角以O为顶点,Ox为始边.将的终边绕O逆时针旋转后与单位圆交于点,若,则()A. B. C. D.8.假设某飞行器在空中高速飞行时所受的阻力f满足公式,其中是空气密度,S是该飞行器的迎风面积,v是该飞行器相对于空气的速度,C是空气阻力系数其大小取决于多种其他因素,反映该飞行器克服阻力做功快慢程度的物理量为功率当,S不变,v比原来提高时,下列说法正确的是()A.若C不变,则P比原来提高不超过B.若C不变,则P比原来提高超过C.为使P不变,则C比原来降低不超过D.为使P不变,则C比原来降低超过9.已知双曲线的右焦点为F,c是双曲线C的半焦距,点A是圆上一点,线段FA与双曲线C的右支交于点若,,则双曲线C的离心率为()A. B. C. D.10.北宋科学家沈括在《梦溪笔谈》中记载了“隙积术”,提出长方台形垛积的一般求和公式.如图,由大小相同的小球堆成的一个长方台形垛积的第一层有ab 个小球,第二层有个小球,第三层有个小球⋯⋯依此类推,最底层有cd 个小球,共有n 层,由“隙积术”可得这些小球的总个数为若由小球堆成的某个长方台形垛积共8层,小球总个数为240,则该垛积的第一层的小球个数为()A.1B.2C.3D.4二、填空题:本题共5小题,每小题5分,共25分。
朝阳区2023年高三二模语文试题及答案

北京市朝阳区高三年级第二学期质量检测二语文2023.5(考试时间150 分钟满分150 分)本试卷共10 页。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、本大题共 5 小题,共18 分。
阅读下面材料,完成1-5 题。
材料一日前,为欢迎法国总统来访,古琴演奏家李蓬蓬在广州松园奏响了古琴名曲《流水》,以源自春秋时期的琴曲和有千年历史的唐代古琴“九霄环佩”,向世人展示着中国传统文化的无限魅力。
古琴原称“琴”,二十世纪初,为区别西方的小提琴、钢琴等始以“古琴”名之。
古琴是我国最古老的乐器之一,相传为伏羲、神农所创,《新论·琴道》中记载了神农继伏羲之后“上观法于天,下取法于地,近取诸身,远取诸物,削桐为琴,绳丝为弦”的故事。
《诗经》中有“倚桐梓漆,爰伐琴瑟”的诗句。
古人选梧桐木为琴材,充分体现了他们认识自然的智慧。
梧桐木纹理通顺,横向纤维较一般木材多,木质结构呈网络状,形成了天然的微小共鸣腔,具有很好的传声效果。
梧桐树生长时,年轮是均匀增加的,树干整体木质差别不大,可以让声音凝聚而不过度发散。
古人又选用密度更大的梓木做底料。
在古人的认知里,桐木为虚,梓木为实,斫琴选择桐梓,也寄寓着顺应自然,虚实相宜之意。
“九霄环佩”就是以桐木为琴面,以梓木为琴底制作的。
古人用蚕丝制作琴弦。
明代《琴苑要录》中记载,丝弦的制作从选材到成弦需经过几十道工艺,体现了古人于繁复中求精益的精神。
与现代的钢弦相比,丝弦虽然发出的声音较小,却可弹出悠长醇厚、苍古圆润的天籁之声,细腻、微妙、绕梁不绝,令人回味无穷。
(取材于杨致俭的文章)材料二在历史发展进程中,古琴与中国传统文化中的很多器物一样,逐渐由单纯的“器”发展成某种文化的载体,功能变得更加丰富。
儒家认为“琴者,禁也”。
“琴禁说”始自《新论·琴道》“琴之言禁也,君子守以自禁”,后在《白虎通》中发展为“禁人邪恶,归于正道”的传统琴道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
北京市朝阳区
2019届高三年级下学期第二次综合练习(二模)
数学(文)试题
(解析版)
2019年5月
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.
1.已知集合{|1}A x x =>,{|(2)0}B x x x =-<,则A
B =( ) A. {|0}x x >
B. {|12}x x <<
C. {|12}x x ≤<
D. {|0x x >且1}x ≠
【答案】A
【解析】
【分析】
根据不等式的解法得B={x|0<x <2},然后根据并集的定义“由所有属于集合A 或属于集合B 的元素所组成的集合叫做并集”进行求解即可.
【详解】根据不等式的解法,易得B={x|0<x <2},
又有A={x|x >1},则A ∪B={x|x >0}.
故选:A . 【点睛】本题考查并集的运算,注意结合数轴来求解,属于容易题.
2.复数(1)i i +的虚部为( )
A. -1
B. 0
C. 1
D. 【答案】C
【解析】
【分析】
将复数化简成a+bi 的形式,从而可得到复数的虚部.
【详解】i(1+i)=i 11+i -
=-, 所以复数的虚部为1,
故选:C
【点睛】本题考查复数的代数形式的乘法运算,考查复数的有关概念,属于简单题.
3.已知3log a e =,ln3b =,3log 2c =,则a ,b ,c 的大小关系是( )
A. c a b >>
B. c b a >>
C. a b c >>
D. b a c >> 【答案】D
【解析】
【
分析】
利用对数函数的单调性比较大小即可.
【详解】32.7182o 8l g e x y ⋯=,=是增函数,
所以33log e >log 2,即a c >, 33log e <log 31a ==,
ln 3log 3log 1e e b e ==>=,
所以b a c >>,
故选:D
【点睛】解决大小关系问题,一是判断出各个数值所在区间(一般是看三个区间(,0),(0,1),(1,)-∞+∞ );二是利用函数的单调性直接解答.
4.在数学史上,中外数学家使用不同的方法对圆周率π进行了估算.根据德国数学家莱布尼茨在1674年给出的求π的方法绘制的程序框图如图所示.执行该程序框图,输出s 的值为( )。