电流源

合集下载

电压源与电流源

电压源与电流源

精选ppt
14
US = IS RS RS = R0
II
I
UUSS+-+RRSS
IS US RS
UU
IS GS
US ISRS
U
精选ppt
15
注意事项
❖等效互换是对外电路而言的,内部电 路并不等效。
❖理想电压源与理想电流源之间不能等 效变换。
❖等效变换时注意电源的方向,电流源 的流向是电压源负到正的方向。
精选ppt
9
2.等效为理想电压源的电路
两个理想电压源串联,可以用一个 等效的电压源替代,替代的条件是
US = US1 + US2
a
+
a
US1 -
+
US
+
-
US2 -
b 精选ppt
b
10
例题:
a
a
R
US
US
b (a)
b
a
a
IS
US
US
b (b)
b
精选ppt
11
3.等效为理想电流源的电路
两个理想电流源并联,可以用一个 等效的电流源替代,替代的条件是
精选ppt
16
本节课结束, 谢谢大家!
精选ppt
17
5
二、电流源
1. 理想电流源(恒流源)
I 特点: (1)I输出电流恒定I = IS,
IS
IS 与端电压无关。
U
(2)输出端电压取决于外
0 电路。
U
理(想3)电内流阻源R伏S=安∞特性
精选ppt
6
2. 实际电流源
I IS
RS U

电压源和电流源

电压源和电流源
一 、 电压源
1、 理想电压源 定义: 输出的电压与流过该元件的电流无关。
电路符号: i + _uS
I+ _US
u us
0
i
理想电压源的伏安特性
理想电压源的V-A特性
特点: 恒压不恒流。
US恒定,I由电源和外电路共同决定。
理想电压源的开路与短路
i=0
++
uS
_
u=_uS
开路
+
+
i=∞
RL
iS
, 当R0很小时,iSC很大,
0
此种情况不允许出现。
二、 电流源
1、 理想电流源
定义: 输出的电流与该元件的端电压无关。
电路符号:
i
iS
+
i
iS
u
-
理想电流源的伏安特性
0
u
理想电流源的V-A特性
特点: 恒流不恒压。 iS恒定,u由电源和外电路共同决定。
理想电流源的开路与短路
i=iS
+
Байду номын сангаас
iS
外部特性曲线
i
is
k
0
u
电流源模型外特性
特例:
(1)a,b端开路,不接负载时,此时
i=0,u
uOC
iS GS
(2)a,b短路,电源短路时, u=0 i iSC iS
一般情况下,为带负载正常工作。
ia
iS R0
u=0 iSC
b
小结
1、理想电压源和理想电流源是忽略了实际电源内阻后的理想电路元件。
u=0
_
RL
短路
i=iS

电路基础原理电流源与电压源的区别与应用

电路基础原理电流源与电压源的区别与应用

电路基础原理电流源与电压源的区别与应用在电路中,电流源和电压源是两个基本的电子元件。

它们在电路中扮演着不同的作用,并且有着各自的特点和应用。

本文将探讨电流源和电压源的区别以及它们在电路中的应用。

一、电流源和电压源的区别1.1 电流源电流源是一个能够持续地提供稳定电流的元件。

当电路中存在电流源时,该源会向电路提供稳定的电流,无论电路中其他元件的电阻值如何,电流源的输出电流都不会改变。

电流源的电流输出是独立于电路中其他元件的。

1.2 电压源电压源是一个能够持续地提供稳定电压的元件。

电压源会向电路提供恒定的电压,无论电路中其他元件的电阻值如何,电压源的输出电压都不会改变。

电压源的电压输出是独立于电路中其他元件的。

1.3 区别与联系电流源和电压源的最大区别在于它们的输出特性。

电流源输出的是稳定的电流,而电压源输出的是稳定的电压。

此外,电流源和电压源通常可以相互转换,通过不同电路的设计可以将电流源转换为电压源,或者将电压源转换为电流源。

二、电流源和电压源的应用2.1 电流源的应用电流源在电路中有着广泛的应用。

一个常见的应用场景是在实验室中,用于提供稳定的电流供给。

例如,在进行电阻的测量时,需要一个稳定的电流源。

此外,电流源还常被应用于常流源电路中,通过控制电流的大小来实现对其他元件的工作状态的控制。

2.2 电压源的应用电压源同样在电路中有重要的应用。

一个例子是在直流电路中,电压源可以被用作电路的电源,为电路提供恒定的电压。

另外,在电子设备和电器中,我们常常使用电池和电源适配器作为电路的电压源,为设备提供所需的电压。

电压源的应用还包括在放大器电路中,通过控制电压源的大小来控制放大倍数。

2.3 电流源与电压源的组合应用在一些复杂的电路中,电流源和电压源可以结合使用,在实现不同的功能和控制上起到互补的作用。

例如,在集成电路设计中,常常使用电流源作为参考电流源,通过与其他电路元件配合使用来提供恒定的电流和电压。

这种组合应用能够满足电路对恒定电流和电压的要求,提高整体电路的性能和稳定性。

电压源、电流源和受控源

电压源、电流源和受控源
在某些电源供应系统中,电流源用于产生稳定的输出电流,确保负载 获得足够的功率。
受控源的实际应用
受控源在电子设备和系统中用 于实现特定的信号处理或控制
功能。
在放大器和振荡器中,受控源 用于改变电路的增益或频率响
应。
在模拟电路中,受控源用于实 现加法、减法、乘法或除法等 运算。
在传感器和测量系统中,受控 源用于产生激励信号或参考电 压,以便测量其他电路参数。
04
电压源、电流源和受控 源的比较
特性比较
01
02
03
电压源
电压源能够提供恒定的输 出电压,不受负载变化的 影响。
电流源
电流源能够提供恒定的输 出电流,不受负载变化的 影响。
受控源
受控源的输出电压或电流 受外部控制信号的影响, 可以模拟各种电路元件的 特性。
应用比较
电压源
电压源主要用于提供稳定的电压 参考,如模拟电路中的偏置电压。
受控源的输出阻抗与独立电源的输出阻抗不同, 其值可能受到控制量的影响。
受控源的应用
在模拟电路中,受控源可以作为放大器、混频器、乘法器等电子器件使用,实现信 号的放大、频率变换、信号处理等功能。
在数字电路中,受控源可以作为比较器、触发器等电子器件使用,实现信号的比较、 逻辑运算等功能。
在电力电子系统中,受控源可以作为逆变器、斩波器等使用,实现直流电的逆变、 交流电的整流等功能。
05
电压源、电流源和受控 源的实际应用
电压源的实际应用
01
电压源在电子设备和系统中扮演着提供稳定电压的角色,确保设备正 常运行。
02
在电池供电的系统中,电压源负责将电池的化学能转换为电能,为负 载提供稳定的电压。
03

什么是电流源

什么是电流源

什么是电流源电流源是电路中常见的一种电子元件,它能够提供稳定的电流输出。

它的作用类似于电压源,只不过电压源输出恒定的电压,而电流源输出恒定的电流。

一、电流源的基本原理电流源的实现原理主要基于欧姆定律,其核心思想是通过合适的电路设计,将一个电流源连接到所需的电路中,使得电流得以稳定输出。

电流源可以分为两种类型:理想电流源和实际电流源。

理想电流源是一种理论模型,在理论计算和电路分析中常常使用。

它的特点是输出电流不受负载电阻的影响,并且能够提供恒定的输出电流。

但是在实际应用中,理想电流源很难实现。

实际电流源是现实世界中常用的一种电子元件。

在实际电路设计中,常常使用一些特定的电路,如恒流二极管、差动放大电路等,来实现近似恒定输出电流的效果。

二、恒流二极管恒流二极管是一种重要的实际电流源,可以通过基准电压和电阻网络来实现稳定的输出电流。

其工作原理基于二极管的特性,即当二极管处于正向工作区时,其电流与电压之间存在近似线性关系。

恒流二极管通常由一个普通二极管和一个电阻组成。

当电流通过电阻时,电压降将被恒流二极管稳定,从而实现稳定的输出电流。

三、差动放大电路差动放大电路是另一种常用的实际电流源,它利用差动放大器的特性来实现稳定的电流输出。

差动放大电路通过将输入电流分配到两个输出端口,并利用负反馈技术来保持输出电流稳定。

差动放大电路一般由一个差动输入级和一个输出级构成。

当输入电流改变时,差动放大器会在输出端口产生一个反向的电流变化,以抵消输入电流的变化,从而实现稳定的输出电流。

四、电流源的应用电流源在电路设计中有着广泛的应用。

以下是电流源的几个典型应用:1. 电流源常用于模拟电路中的偏置电流源,用于提供稳定的工作电流,确保电路正常工作。

2. 电流源常用于传感器电路中,通过恒定的电流激励来驱动传感器,并读取传感器的输出信号。

3. 电流源常用于电解电池充电电路中,通过恒定的电流输出来控制电池的充电过程。

4. 电流源还常用于测试与测量领域,通过提供稳定的电流源以便进行精确的电流测量和分析。

电压源和电流源的区别

电压源和电流源的区别

电压源和电流源的区别
一、电压源
电路中的功能元件称为电源,,可以采纳两种模型表示,即电压源和电流源。

1 .抱负电压源(恒压源)
(1 )符号:
(2 )特点:无论负载电阻如何变化,输出电压即电源端电压总保持为给定的U S 或u s (t) 不变,电源中的电流由外电路打算,输出功率可以无穷大,其内阻为0 。

例:如图: U S =10V
则当R 1 接入时:I =5A
当R 1 、R 2 同时接入时:I =10A
(3) 特性曲线
2 .实际电压源
(1 )符号:
(2 )特点:由抱负电压源串联一个电阻组成,R S 称为电源的
内阻或输出电阻,负载的电压U = U S – IR S ,当R S = 0 时,电压源模型就变成恒压源模型。

(3 )特性曲线
二、电流源
1 .抱负电流源(恒流源)
(1) 符号:
(2) 特点:
无论负载电阻如何变化,总保持给定的Is 或i s (t) ,电流源的端电压由外电路打算,输出功率可以无穷大,其内阻无穷大。

例:如图: I S =1 A
则: 当R =1 W 时,U =1V ,R =10 W 时,U =10 V
(3 )特性曲线
2 .实际电流源
(1 )符号:
(2 )特点:由抱负电流源并联一个电阻组成,负载的电流为I =
I S – U ab / R S ,当内阻R S = 时,电流源模型就变成恒流源模型。

(3 )特性曲线:
3 .恒压源和恒流源的比较。

电工基础:电压源与电流源

电工基础:电压源与电流源
U IRs Us
实际电压源及其伏安特性
3)电压源作电源或负载的判定
根据所连接的外电路,电压源电流(从电源内部看)的实际 方向,可以从电压源的低电位端流入,从高电位端流出, 也可以从高电位端流入,从低电位端流出。
前者电压源提供功率;后者电压源吸收(消耗)功率,此时 电压源将作为负载出现。
【例2-2】 如图所示,B部分电路是由电阻R与另一理想电压源Us2=12V
对Us1电压源来说,U、I参考方向非关联,所以Us1吸收功
Psl= UI 6 1 6W
此时Us1不起电源作用,事实上它成了12V理想电压源的负载。
解:(2) 当R→0时,显然
U Us1=6V
I Uab R
Ps1= UI
此时Ps1吸收功率。
2. 电流源
1)理想电流源 理想电流源简称电流源,其输出电流恒定为Is或为一定时间的函数 Is(t),与电流源两端的电压无关,对负载提供比较稳定的电流。
例题2-3电路
解:(2)1A电流源两端的电压包括5Ω电阻上的电压和2V电压源, 因此
U=U1 +2=5+2=7V P=1×7=7W
例题2-3电路
谢谢
串联构成,作为A部分电路Us1=6V的理想电压源的外部电路,电 压U、电流I参考方向如图中所标。求:
01
R=6Ω时电流I、理想电压源Us1吸收功率Ps1
02
R→0时电流I、Us1吸收功率Ps1
解:(1)a点电位Va=6V, b点电位Vb=12V,电压Uab=Va-Vb =6-12=-6V,根据欧姆定律,得电流 I Uab 6 1A R6
理想电流源及其伏安特性
2)实际电流源 实际的电流源可用理想电流源Is和一个内阻Rs并联的电路 模型来表示。

电流源和电压源电路

电流源和电压源电路
电流源和电压源电路
目 录
• 电流源和电压源的简介 • 电流源和电压源的基本电路 • 电流源和电压源的应用 • 电流源和电压源的实例分析 • 总结与展望
01 电流源和电压源的简介
电流源的定义和特性
定义
电流源是提供恒定电流的电源, 其输出电流不受负载电阻影响。
特性
电流源的输出电流始终保持恒定 ,不受输入电压或负载变化的影 响。
电压源的定义和特性
定义
电压源是提供恒定电压的电源,其输出电压不受负载电流影 响。
特性
电压源的输出电压始终保持恒定,不受输入电流或负载变化 的影响。
电流源和电压源的符号与表示
符号
电流源通常用带有“+”和“-”号 的三角形符号表示,电压源则用带有 “+”和“-”号的方形符号表示。
表示
在电路图中,电流源和电压源可以用 字母表示,如“I”表示电流源, “V”表示电压源。同时,还会标注相 应的电流或电压值以及正负极性。
宽范围可调
为了满足不同应用场景的需求,未来电流源和电压源电路 将具备宽范围可调的特性,以适应不同的输入和输出条件 。
高集成度与微型化
随着微电子技术的不断发展,未来电流源和电压源电路将 更加注重高集成度和微型化的设计,以减小体积和重量, 降低成本。
ቤተ መጻሕፍቲ ባይዱ
THANKS FOR WATCHING
感谢您的观看
应用场景
03
在电路分析和设计中,有时需要将复杂的电路简化为简单的模
型,这时就需要用到电流源和电压源的等效变换。
03 电流源和电压源的应用
电流源的应用
驱动负载
电流源可以提供稳定的电 流,用于驱动各种电子设 备或机械装置。
保护电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意饮食(食物中毒):
数控恒流源设计
2010-09-21 13:35:29| 分类:默认分类| 标签:字号:大中小订阅
数控恒流源设计
摘要:设计利用集成运放、场效应管对电流放大与单片机的自动控制来实现数控直流电流源。

系统有控制模块与恒流源模块组成。

控制模块使用AT89S52结合按键与四位数码管显示,实现对恒流源的数控和预设值的显示。

恒流源模块采用OP07与IRF640组成的反馈放大电路实现对电流的放大。

控制到恒流源的信号转换采用DAC0832来实现;实测显示模块有ADC0809组成的显示电路来
显示。

并使用自制电源进行供电。

关键词:AT89S51,恒流源,ADC0809,DAC0832,OP07
1硬件电路设计与分析
1.1
恒流源模块:
恒流源分为流控式与压控式,由于压控式易于实现,电路实现相对简单;因此本模块使用了压控式恒流源。

压控式恒流源可以有集成运放芯片与晶体复合管或场效应管来实现;但由于晶体复合管实现起来比较复杂,发热量相对MOS管相对较大,性能参数相对MOS管较差;因此本模块采用高精度集成运放芯片OP07与大功率场效应管IRF640相结合构成的恒流源。

压控恒流源是系统的重要组成部分,它的功能
用电压来控制电流的变化,由于系统对输出电流大小和精度的要求比较高,所以
选好压控恒流源电路显得特别重要。

恒流源是采用了电流反馈的方式来稳定电流的,下图是个典型的正向电流源,利用运放虚短的概念,使R2上的电压保持与V一致,来获得一个I=V/R2的恒流源。

该恒流源电路由运算放大器、大功率场效应管Q1、采样电阻R3、负载电阻R4
等组成。

电路原理图如图所示:
恒流源电路图
调整管采用大功率场效应管IRF640N 更易于实现电压线性控制电流, 满足最大电流和电压线性电流化。

因为当场效应管工作于饱和区时,漏电流Id近似为电压Ugs控制的电流。

即当Ud为常数时,满足:Id=f(Ugs),只要Ugs不变,Id
就不变。

在此电路中,R3为取样电阻,阻值为10欧。

运放采用OP07作为电压跟随器,场效应管Id=Is(栅极电流相对很小,可忽略不计) 所以Io=Is= Ui/R3。

正因为Io=Ui/R3,电路输入电压Ui控制电流Io,即Io不随R4的变化而变化,从而实现
压控恒流。

由于输出电压变化的范围U〈=10V,Iomax=200mA,可以得出负载电阻
R3max=50欧。

1.2控制模块:
由于按键模块、数码管显示、D/A模块本就是控制模块的细化模块;因此在电路设计、分析中把这几个模块在一起分析。

以AT89S52最小系统为核心,外加按键模块、数码管显示模块、以及D/A转换。

D/A设计在使用芯片上采用8位DAC0832芯片,DAC0832输出的电流通过OP07运放放大为电压,再通过一个运放OP07将电压变为正电压,通过单片机控制输出电压大小,实现数模转换,来控制恒流源的输入电压,从而控制恒流源的输出电流,电路图如下:
控制电路图
1.3显示模块:
由于在控制模块的电路分析中已经对液晶显示器进行了分析,并且在软件设计模块中也会有体现,这里不再多做介绍。

使用ADC0809芯片将模拟信号转换为数字信号,经单片机采集后经数码管显示;测电流时,外串联一个电阻将电流信号转换为电压信号显示。

其中ADC0809的模拟输入电压就是恒流源中采样电阻的
电压,原理图如下:
2 软件设计模块
恒流源的数字控制器采用ATMEL公司的AT89S52,因为在程序不需要涉及精准实时操作,所以使用C语言进行软件编写,这样可以大大提高程序编写
时的效率。

程序设计上使用一个定时器作为系统实时时钟,周期性的进行数码管显示,按键扫描,AD转换和显示内用的切换。

而主循环负责对按键进行处理。

主程序
流程图如图:

5 软件流程图
程序:
#include<absacc.h>
#include<reg51.h>
#define DAC0832 XBYTE[0x7fff] #define uchar unsigned char
#define uint unsigned int
sbit START=P3^0;
sbit OE=P3^1;
sbit EOC=P3^2;
sbit dp=P1^7;
sbit s1=P3^4;
sbit s2=P3^5;
sbit P27=P2^7;
sbit P26=P2^6;
uchar data led[4];
uint data tvdata;
int temp=53; //预设电压
uchar code tv[]={0xfe,0xfd,0xfb,0xf7};
uchar code a[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};
void init() //中断初始化
{ TMOD=0x01;
TH0=(65536-35)/256;
TL0=(65536-35)%256;
EA=1;
ET0=1;
TR0=1;
}
void time0()interrupt 1 //定时器0服务程序
{
TH0=(65536-35)/256;
TL0=(65536-35)%256;
b=~b;
P26=b;
}
void delay(uint i)
{
while(i--);
}
void keyscan() //键盘扫描
{
if(s1==0)
{ delay(10);
if(s1==0)
{
while(!s1);
temp=temp+1;
if(temp>=105)
temp=11;
}
}
{ delay(10);
if(s2==0)
{
while(!s2);
temp=temp-1;
if(temp<11)
temp=105;
}
}
}
void ledxianshi(void) //显示模块
{
uchar k,i;
uint t;
t=(tvdata*1.0/255*500)*10;
led[0]=t%10;
led[1]=t/10%10;
led[2]=t/100%10;
led[3]=t/1000;
for(k=0;k<4;k++)
{
P2=tv[k];
i=led[k];
P1=a[i];
if(k==1)dp=1;
delay(300);
}
}
void main(void)
{
init();
while(1)
{
START=1;
START=0; //启动转换
while(EOC==0);
OE=1;
tvdata=P0;
OE=0;
// START=1;
keyscan();
DAC0832=temp;
ledxianshi();
delay(10);
}
}
设计中存在的问题分析与解决方案:
(1)数码管显示亮度不够:只有第一位较亮,其余三位亮度均不明显;经测试分析原因是没有加数码管驱动芯片,数码管的显示时间较短。

解决方法:加驱动芯片74HC245,将数码管的显示时间延长一些。

(2)用万用表测电流时电流偏小,测量电压时显示正确;经测试分析原因可能是取样电阻10欧太小,恒流源最大输入电压为2V,测电流时万用表内部和表头
都有一定的电阻值共约为1.5欧。

解决方法:将取样电阻加大为25欧,恒流源最大输入电压增加为5V,以减少测量仪器本身的内阻带来的误差。

因为取样电阻不是很大,测量仪器带来的误差不可能忽略,经测试恒流源输入的电压越大,万用表测得的输出电流误差也就越
大。

(3)数码管显示的数据不稳,仅在两个值之间变化;经测试分析得出的结论是原因可能以下几个方面:一是电压源的纹波偏大导致输入的电流不稳;二是AD 模块始终循环采集电压,每次采集的电压并不完全相同,只要采集的电压有一点点变化就会导致显示不稳;三是电路焊接出现的问题。

评论这张
转发至微博。

相关文档
最新文档