南京中考数学试题压轴汇编

合集下载

2010-2020南京中考汇编(二)压轴题

2010-2020南京中考汇编(二)压轴题

2010-2020南京中考汇编(二)压轴题一.反比例函数的性质(共1小题)1.(2011•南京)【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.①填写下表,画出函数的图象;x…1234…y……②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.二.二次函数图象与几何变换(共1小题)2.(2016•南京)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,云中默·默学森得到函数y =2x 的图象;也可以把函数y =x 的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y =2x 的图象. 类似地,我们可以认识其他函数.(1)把函数y =的图象上各点的纵坐标变为原来的 倍,横坐标不变,得到函数y=的图象;也可以把函数y =的图象上各点的横坐标变为原来的 倍,纵坐标不变,得到函数y =的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y =x 2的图象上所有的点经过④→②→①,得到函数 的图象; (Ⅱ)为了得到函数y =﹣(x ﹣1)2﹣2的图象,可以把函数y =﹣x 2的图象上所有的点 .A .①→⑤→③B .①→⑥→③C .①→②→⑥D .①→③→⑥ (3)函数y =的图象可以经过怎样的变化得到函数y =﹣的图象?(写出一种即可)三.二次函数的应用(共1小题)3.(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义; (2)求线段AB 所表示的y 1与x 之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?四.二次函数综合题(共1小题)4.(2019•南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)第3 页共34 页五.全等三角形的判定与性质(共1小题)5.(2014•南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.云中默·默学森【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.六.勾股定理(共1小题)6.(2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.(1)已知∠APB是⊙O上关于点A、B的滑动角,①若AB是⊙O的直径,则∠APB =°;②若⊙O的半径是1,AB=,求∠APB的度数;(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线P A、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.七.正方形的性质(共1小题)7.(2010•南京)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC 于点G,连接EG、FG.(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;(2)P是MG的中点,请直接写出点P的运动路线的长.八.四边形综合题(共1小题)8.(2020•南京)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,第5 页共34 页云中默·默学森即在点C 处建燃气站,所得路线ACB 是最短的.为了证明点C 的位置即为所求,不妨在直线l 上另外任取一点C ',连接AC '、BC ',证明AC +CB <AC ′+C 'B .请完成这个证明.(2)如果在A 、B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由). ①生态保护区是正方形区域,位置如图③所示; ②生态保护区是圆形区域,位置如图④所示.九.圆的综合题(共1小题) 9.(2018•南京)结果如此巧合! 下面是小颖对一道题目的解答.题目:如图,Rt △ABC 的内切圆与斜边AB 相切于点D ,AD =3,BD =4,求△ABC 的面积.解:设△ABC 的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x . 根据切线长定理,得AE =AD =3,BF =BD =4,CF =CE =x . 根据勾股定理,得(x +3)2+(x +4)2=(3+4)2. 整理,得x 2+7x =12. 所以S △ABC =AC •BC =(x +3)(x +4) =(x 2+7x +12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.一十.几何变换综合题(共1小题)10.(2017•南京)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB>BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB、PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC.他发现,在矩形ABCD 中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过第7 页共34 页云中默·默学森程.(3)已知矩形一边长为3cm ,另一边长为acm ,对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a 的取值范围. 【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为cm .一十一.相似三角形的判定与性质(共1小题)11.(2011•南京)如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. (1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ABC >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E .试说明E 是△ABC 的自相似点; (2)在△ABC 中,∠A <∠B <∠C .①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.一十二.相似形综合题(共1小题)12.(2013•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC ∽△A ′B ′C ′,且沿周界ABCA 与A ′B ′C ′A ′环绕的方向相同,因此△ACB 和△A ′B ′C ′互为顺相似;如图②,△ABC ∽△A ′B ′C ′,且沿周界ABCA 与A ′B ′C ′A ′环绕的方向相反,因此△ACB 和△A ′B ′C ′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是;互为逆相似的是.(填写所有符合要求的序号).(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A,B,C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.第9 页共34 页云中默·默学森2010-2020南京中考汇编(二)压轴题参考答案与试题解析一.反比例函数的性质(共1小题) 1.(2011•南京)【问题情境】已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少? 【数学模型】设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为y =2(x +)(x >0). 【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y =x +(x >0)的图象和性质. ①填写下表,画出函数的图象; x … 1 2 3 4 … y ……②观察图象,写出该函数两条不同类型的性质;③在求二次函数y =ax 2+bx +c (a ≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y =x +(x >0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.【考点】完全平方公式;配方法的应用;一次函数的性质;反比例函数的性质;二次函数的最值.【专题】计算题;压轴题.【解答】解:(1)①故答案为:,,,2,,,.函数y=x +的图象如图:②答:函数两条不同类型的性质是:当0<x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大;当x=1时,函数y=x +(x>0)的最小值是2.③y=x +==+2=+2,∵x>0,所以≥0,所以当x=1时,的最小值为0,∴函数y=x +(x>0)的最小值是2.(2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为时,它的周长最小,最小值是4.二.二次函数图象与几何变换(共1小题)2.(2016•南京)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x 的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.第11 页共34 页云中默·默学森(1)把函数y =的图象上各点的纵坐标变为原来的 6 倍,横坐标不变,得到函数y =的图象;也可以把函数y =的图象上各点的横坐标变为原来的 6 倍,纵坐标不变,得到函数y =的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y =x 2的图象上所有的点经过④→②→①,得到函数 y =4(x ﹣1)2﹣2 的图象;(Ⅱ)为了得到函数y =﹣(x ﹣1)2﹣2的图象,可以把函数y =﹣x 2的图象上所有的点 D .A .①→⑤→③B .①→⑥→③C .①→②→⑥D .①→③→⑥ (3)函数y =的图象可以经过怎样的变化得到函数y =﹣的图象?(写出一种即可)【考点】一次函数图象与几何变换;反比例函数的性质;二次函数图象与几何变换.【解答】解:(1)把函数y =的图象上各点的纵坐标变为原来的6倍,横坐标不变, 设y ′=6y ,x ′=x ,将y =,x =x ′代入xy =1可得y ′=,得到函数y =的图象;也可以把函数y =的图象上各点的横坐标变为原来的6倍,纵坐标不变, 设y ′=y ,x ′=6x ,将y =y ′,x =代入xy =1可得y ′=,得到函数y =的图象;(2)(Ⅰ)函数y=x2的图象上所有的点经过“纵坐标变为原来的4倍,横坐标不变”的变化后,得到y=4x2的图象;y=4x2的图象经过“向右平移1个单位长度”的变化后,得到y=4(x﹣1)2的图象;y=4(x﹣1)2的图象经过“向下平移2个单位长度”的变化后,得到y=4(x﹣1)2﹣2的图象.(Ⅱ)为了得到函数y =﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点先向下平移2个单位长度,得到y=﹣x2﹣2的图象,再把y=﹣x2﹣2的图象向右平移个单位长度,得到y=﹣(x ﹣)2﹣2的图象;最后把y=﹣(x ﹣)2﹣2的图象的横坐标变为原来的2倍,得到y =﹣(x ﹣)2﹣2的图象,即y =﹣(x﹣1)2﹣2的图象.(3)∵y =﹣==﹣1,∴函数y =的图象先将纵坐标变为原来的倍,横坐标不变,得到y =;再向左平移2个单位,向下平移1个单位即可得到函数y =﹣的图象.故答案为:(1)6,6;(2)(Ⅰ)y=4(x﹣1)2﹣2;(Ⅱ)D.三.二次函数的应用(共1小题)3.(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【考点】二次函数的应用.第13 页共34 页云中默·默学森【专题】压轴题.【解答】解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB 所表示的y 1与x 之间的函数关系式为y 1=k 1x +b 1, ∵y 1=k 1x +b 1的图象过点(0,60)与(90,42), ∴∴,∴这个一次函数的表达式为;y 1=﹣0.2x +60(0≤x ≤90);(3)设y 2与x 之间的函数关系式为y =k 2x +b 2, ∵经过点(0,120)与(130,42), ∴,解得:,∴这个一次函数的表达式为y 2=﹣0.6x +120(0≤x ≤130), 设产量为xkg 时,获得的利润为W 元,当0≤x ≤90时,W =x [(﹣0.6x +120)﹣(﹣0.2x +60)]=﹣0.4(x ﹣75)2+2250, ∴当x =75时,W 的值最大,最大值为2250;当90≤x ≤130时,W =x [(﹣0.6x +120)﹣42]=﹣0.6(x ﹣65)2+2535,由﹣0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x ≤130时,W ≤2160, ∴当x =90时,W =﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250. 四.二次函数综合题(共1小题) 4.(2019•南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=3.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是(1,2).(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【考点】二次函数综合题.【专题】综合题;新定义;二次函数图象及其性质.【解答】解:(1)①由题意得:d (O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),第15 页共34 页云中默·默学森故答案为:3,(1,2); (2)假设函数的图象上存在点C (x ,y )使d (O ,C )=3,根据题意,得,∵x >0, ∴,,∴,∴x 2+4=3x , ∴x 2﹣3x +4=0, ∴△=b 2﹣4ac =﹣7<0, ∴方程x 2﹣3x +4=0没有实数根,∴该函数的图象上不存在点C ,使d (O ,C )=3. (3)设D (x ,y ),根据题意得,d (O ,D )=|x ﹣0|+|x 2﹣5x +7﹣0|=|x |+|x 2﹣5x +7|, ∵,又x ≥0,∴d (O ,D )=|x |+|x 2﹣5x +7|=x +x 2﹣5x +7=x 2﹣4x +7=(x ﹣2)2+3, ∴当x =2时,d (O ,D )有最小值3,此时点D 的坐标是(2,1).(4)如图,以M 为原点,MN 所在的直线为x 轴建立平面直角坐标系xOy ,将函数y =﹣x 的图象沿y 轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E ,过点E 作EH ⊥MN ,垂足为H ,修建方案是:先沿MN 方向修建到H 处,再沿HE 方向修建到E 处.理由:设过点E 的直线l 1与x 轴相交于点F .在景观湖边界所在曲线上任取一点P ,过点P作直线l2∥l1,l2与x轴相交于点G .∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.五.全等三角形的判定与性质(共1小题)5.(2014•南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.第17 页共34 页云中默·默学森【深入探究】第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E =90°,根据 HL ,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角,求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,请你用尺规在图③中作出△DEF ,使△DEF 和△ABC 不全等.(不写作法,保留作图痕迹) (4)∠B 还要满足什么条件,就可以使△ABC ≌△DEF ?请直接写出结论:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,若 ∠B ≥∠A 或∠B +∠C =90° ,则△ABC ≌△DEF .【考点】全等三角形的判定与性质;作图—应用与设计作图.【专题】压轴题;探究型. 【解答】(1)解:HL ;(2)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,∵∠ABC =∠DEF ,且∠ABC 、∠DEF 都是钝角, ∴180°﹣∠ABC =180°﹣∠DEF ,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A或∠B+∠C=90°,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A或∠B+∠C=90°.六.勾股定理(共1小题)6.(2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、第19 页共34 页云中默·默学森我们称∠APB 是⊙O 上关于点A 、B 的滑动角. (1)已知∠APB 是⊙O 上关于点A 、B 的滑动角, ①若AB 是⊙O 的直径,则∠APB = 90 °; ②若⊙O 的半径是1,AB =,求∠APB 的度数;(2)已知O 2是⊙O 1外一点,以O 2为圆心作一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于点A 、B 的滑动角,直线P A 、PB 分别交⊙O 2于M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.【考点】勾股定理;垂径定理;圆周角定理;点与圆的位置关系;圆与圆的位置关系.【专题】几何综合题;压轴题.【解答】解:(1)①若AB 是⊙O 的直径,则∠APB =90. ②如图,连接AB 、OA 、OB . 在△AOB 中, ∵OA =OB =1.AB =,∴OA 2+OB 2=AB 2. ∴∠AOB =90°. 当点P 在优弧上时,∠APB =∠AOB =45°;当点P 在劣弧上时,∠AP ′B =(360°﹣∠AOB )=135°(2)根据点P 在⊙O 1上的位置分为以下四种情况.第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图①∵∠MAN=∠APB+∠ANB,∴∠APB=∠MAN﹣∠ANB;第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图②.∵∠MAN=∠APB+∠ANP=∠APB+(180°﹣∠ANB),∴∠APB=∠MAN+∠ANB﹣180°;第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图③.∵∠APB+∠ANB+∠MAN=180°,∴∠APB=180°﹣∠MAN﹣∠ANB,第四种情况:点P在⊙O2内,如图④,∠APB=∠MAN+∠ANB.七.正方形的性质(共1小题)第21 页共34 页云中默·默学森7.(2010•南京)如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止,连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连接EG 、FG .(1)设AE =x 时,△EGF 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)P 是MG 的中点,请直接写出点P 的运动路线的长.【考点】根据实际问题列二次函数关系式;全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【专题】压轴题.【解答】解:(1)当点E 与点A 重合时,x =0,y =×2×2=2 当点E 与点A 不重合时,0<x ≤2 在正方形ABCD 中,∠A =∠ADC =90° ∴∠MDF =90°,∴∠A =∠MDF 在△AME 和△DMF 中,∴△AME ≌△DMF (ASA ) ∴ME =MF在Rt △AME 中,AE =x ,AM =1,ME =∴EF =2ME =2过M 作MN ⊥BC ,垂足为N (如图)则∠MNG =90°,∠AMN =90°,MN =AB =AD =2AM ∴∠AME +∠EMN =90°∵∠EMG=90°∴∠GMN+∠EMN=90°∴∠AME=∠GMN∴Rt△AME∽Rt△NMG∴=,即=∴MG=2ME=2∴y =EF×MG =×2×2=2x2+2∴y=2x2+2,其中0≤x≤2;(2)如图,PP′即为P点运动的距离;在Rt△BMG′中,MG⊥BG′;∴∠MBG=∠G′MG=90°﹣∠BMG;∴tan∠MBG ==2,∴tan∠GMG′=tan∠MBG ==2;∴GG′=2MG=4;△MGG′中,P、P′分别是MG、MG′的中点,∴PP′是△MGG′的中位线;∴PP ′=GG′=2;即:点P运动路线的长为2.第23 页共34 页云中默·默学森八.四边形综合题(共1小题)8.(2020•南京)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A 、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A 关于l 的对称点A ',线段A 'B 与直线l 的交点C 的位置即为所求,即在点C 处建燃气站,所得路线ACB 是最短的.为了证明点C 的位置即为所求,不妨在直线l 上另外任取一点C ',连接AC '、BC ',证明AC +CB <AC ′+C 'B .请完成这个证明.(2)如果在A 、B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由). ①生态保护区是正方形区域,位置如图③所示; ②生态保护区是圆形区域,位置如图④所示.【考点】四边形综合题.【专题】矩形 菱形 正方形;平移、旋转与对称;圆的有关概念及性质;推理能力. 【解答】证明:(1)如图②,连接A 'C ', ∵点A ,点A '关于l 对称,点C 在l 上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C处建燃气站,铺设管道的最短路线是AC+CD+DB;(其中点D是正方形的顶点);如图④,在点C处建燃气站,铺设管道的最短路线是AC+CD ++EB,(其中CD,BE都与圆相切)九.圆的综合题(共1小题)9.(2018•南京)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.第25 页共34 页云中默·默学森所以S △ABC =AC •BC =(x +3)(x +4) =(x 2+7x +12) =×(12+12) =12.小颖发现12恰好就是3×4,即△ABC 的面积等于AD 与BD 的积.这仅仅是巧合吗? 请你帮她完成下面的探索.已知:△ABC 的内切圆与AB 相切于点D ,AD =m ,BD =n . 可以一般化吗?(1)若∠C =90°,求证:△ABC 的面积等于mn . 倒过来思考呢?(2)若AC •BC =2mn ,求证∠C =90°. 改变一下条件……(3)若∠C =60°,用m 、n 表示△ABC 的面积.【考点】圆的综合题.【专题】综合题;与圆有关的位置关系.【解答】解:设△ABC 的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x , 根据切线长定理,得:AE =AD =m 、BF =BD =n 、CF =CE =x , (1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC =AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn,(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,第27 页共34 页云中默·默学森在Rt △ACG 中,AG =AC •sin60°=(x +m ),CG =AC •cos60°=(x +m ),∴BG =BC ﹣CG =(x +n )﹣(x +m ), 在Rt △ABG 中,根据勾股定理可得:[(x +m )]2+[(x +n )﹣(x +m )]2=(m +n )2,整理,得:x 2+(m +n )x =3mn , ∴S △ABC =BC •AG =×(x +n )•(x +m )=[x 2+(m +n )x +mn ] =×(3mn +mn ) =mn .一十.几何变换综合题(共1小题) 10.(2017•南京)折纸的思考. 【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD (AB >BC )(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出PB 、PC ,得到△PBC . (1)说明△PBC 是等边三角形. 【数学思考】(2)如图④,小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为acm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.【解答】(1)证明:由折叠的性质得:EF是BC的垂直平分线,BG是PC的垂直平分线,∴PB=PC,PB=CB,∴PB=PC=CB,∴△PBC是等边三角形.(2)解:以点B为中心,在矩形ABCD中把△PBC逆时针方向旋转适当的角度,得到△P1BC1;再以点B为位似中心,将△P1BC1放大,使点C1的对应点C2落在CD上,得到△P2BC2;如图⑤所示;(3)解:本题答案不唯一,举例如图6所示,第29 页共34 页云中默·默学森(4)解:如图7所示:△CEF 是直角三角形,∠CEF =90°,CE =4,EF =1, ∴∠AEF +∠CED =90°, ∵四边形ABCD 是正方形, ∴∠A =∠D =90°,AD =CD , ∴∠DCE +∠CED =90°, ∴∠AEF =∠DCE , ∴△AEF ∽△DCE , ∴=,设AE =x ,则AD =CD =4x , ∴DE =AD ﹣AE =3x ,在Rt △CDE 中,由勾股定理得:(3x )2+(4x )2=42, 解得:x =, ∴AD =4×=.故答案为:.一十一.相似三角形的判定与性质(共1小题)11.(2011•南京)如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E.试说明E是△ABC的自相似点;(2)在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.【考点】直角三角形斜边上的中线;三角形的内切圆与内心;作图—复杂作图;相似三角形的判定与性质.【专题】作图题;几何综合题;压轴题.【解答】解:(1)在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴CD =AB,∴CD=BD,∴∠BCE=∠ABC,∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB,∴△BCE∽△ABC,∴E是△ABC的自相似点;(2)①如图所示,作法:①在∠ABC内,作∠CBD=∠A,②在∠ACB内,作∠BCE=∠ABC,BD交CE于点P,则P为△ABC的自相似点;②∵P是△ABC的内心,∴∠PBC =∠ABC,∠PCB =∠ACB,∵△ABC的内心P是该三角形的自相似点,∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,第31 页共34 页云中默·默学森∴∠A +2∠A +4∠A =180°, ∴∠A =,∴该三角形三个内角度数为:,,.一十二.相似形综合题(共1小题)12.(2013•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC ∽△A ′B ′C ′,且沿周界ABCA 与A ′B ′C ′A ′环绕的方向相同,因此△ACB 和△A ′B ′C ′互为顺相似;如图②,△ABC ∽△A ′B ′C ′,且沿周界ABCA 与A ′B ′C ′A ′环绕的方向相反,因此△ACB 和△A ′B ′C ′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE 与△ABC ;②△GHO 与△KFO ;③△NQP 与△NMQ ;其中,互为顺相似的是 ①② ;互为逆相似的是 ③ .(填写所有符合要求的序号).。

精选南京市数学初中九年级平行四边形选择题易错题压轴难题综合训练

精选南京市数学初中九年级平行四边形选择题易错题压轴难题综合训练

精选南京市数学初中九年级平行四边形选择题易错题压轴难题综合训练一、易错压轴选择题精选:平行四边形选择题1.如图,点P ,Q 分别是菱形ABCD 的边AD ,BC 上的两个动点,若线段PQ 长的最大值为85 ,最小值为8,则菱形ABCD 的边长为( )A .4 6B .10C .12D .162.如图,BD 为平行四边形ABCD 的对角线,45DBC ∠=︒,DE BC ⊥于E ,BF CD ⊥于F ,DE 、BF 相交于H ,直线BF 交线段AD 的延长线于G ,下面结论:①2BD BE =;②A BHE =∠∠;③AB BH =;④BHD BDG ∠=∠其中正确的个数是( )A .1B .2C .3D .43.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .184.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;②EOB CMB △≌△;③四边形EBFD 是菱形;④23MB =( )A .1个B .2个C .3个D .4个5.如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且12BD CD =.点E ,F 分别在边,AB AC 上,且90,EDF M ︒∠=为边EF 的中点,连接CM 交DF 于点N .若//DF AB ,则CM 的长为( )A .233B .334C .536D .3 6.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论:①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个7.已知菱形ABCD 的面积为83,对角线AC 的长为43,∠BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )A 3B .2C .3D .48.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.59.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC=EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中:①OH ∥BF ,②GH=14BC ,③BF=2OD ,④∠CHF=45°.正确结论的个数为( )A .4个B .3个C .2个D .1个10.在菱形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的一点(不与端点重合),对于任意的菱形ABCD ,下面四个结论中:①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形正确的结论的个数是( )A .1个B .2个C .3个D .4个11.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定12.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,则t 的值为( )A .34B .43C .32D .5313.如图,四边形ABCD 为平行四边形,D ∠为锐角,BAD ∠的平分线AE 交CD 于点F ,交BC 的延长线于点E ,且AF FE =.若25AB =,ABCD 面积为300,则AF 的长度为( )A .30B .15C .40D .2014.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将ADE 沿AE 对折至AFE ,延长交BC 于点G ,连接AG.则BG 的长( )A .1B .2C .3D .315.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.516.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( )A .1B .2C .3D .417.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有( )个.A .1B .2C .3D .418.如图,矩形ABCD 中,4AB =,3AD =,折叠纸片使点D 落在AC 边上的D 处,折痕为AH ,则CH 的长为( )A .52B .2C .32D .119.如图,在ABC 中,AB =AC =6,∠B =45°,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰ADE ,其中AD =AE ,∠ADE =45°,连接CE .在点D 从点B 向点C 运动过程中,CDE △周长的最小值是( )A .62B .626C .92D .92620.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;②∠GDH =∠GHD ;③图中有8个等腰三角形;④CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .4【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:平行四边形选择题1.B【分析】当点P 和点A 重合时,当点C 和点Q 重合时,PQ 的值最大,当PQ ⊥BC 时,PQ 的值最小,利用这两组数据,在Rt△ABQ 中,可求得答案.【详解】当点P 和点A 重合时,当点C 和点Q 重合时,PQ 的值最大,85PQ =当PQ ⊥BC 时,PQ 的值最小,∴PQ=8,∠Q=90°,在Rt △ACQ 中, ()2285816.CQ =-=在Rt △ABQ 中,设AB=BC=x ,则BQ=16-x ,∴AQ 2+BQ 2=AB 2即82+(16-x )2=x 2解之:x=10.故答案为:B .【点睛】本题考查菱形的性质和勾股定理的运用,解题关键是根据菱形的性质,判断出PQ 最大和最小的情况.2.B通过判断△BDE 为等腰直角三角形,根据等腰直角三角形的性质和勾股定理可对①进行判断;根据等角的余角相等得到∠BHE=∠C ,再根据平行四边形的性质得到∠A=∠C ,则∠A=∠BHE ,于是可对②进行判断;证明△BEH ≌△DEC ,得到BH=CD ,接着由平行四边形的性质得AB=CD ,则AB=BH ,可对③进行判断;因为∠BHD=90°+∠EBH ,∠BDG=90°+∠BDE ,由∠BDE >∠EBH ,推出∠BDG >∠BHD ,可判断④.【详解】解:∵∠DBC=45°,DE ⊥BC ,∴△BDE 为等腰直角三角形,,BE DE BD ∴====,所以①错误;∵BF ⊥CD ,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C ,∵四边形ABCD 为平行四边形,∴∠A=∠C ,∴∠A=∠BHE ,所以②正确;在△BEH 和△DEC 中BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,所以③正确;∵∠BHD=90°+∠EBH ,∠BDG=90°+∠BDE ,∵∠BDE=∠DBE >∠EBH ,∴∠BDG >∠BHD ,所以④错误;故选:B .【点睛】本题考查平行四边形的性质,全等三角形的性质和判定,等腰直角三角形的判定和性质,三角形外角的性质.熟练掌握平行四边形的性质并能灵活运用是解题关键,本题中主要用到平行四边形对边相等,对角相等.3.C【分析】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算总结规律,根据规律解答.根据三角形中位线定理求出△A1B1C1的周长,根据计算结果总结规律,根据规律解答.解:∵A1、C1分别为AB、AC的中点,∴A1C1=BC=13,同理,A1B1=12AC=7,B1C1=12AB=12,∴△A1B1C1的周长=7+12+13=32,∴△A1B1C1的周长=△ABC的周长×12,则△A2B2C2的周长=△A1B1C1的周长×12=△ABC的周长×(12)2,……∴△A8B8C8的周长=△ABC的周长×(12)8=64×1256=14,故选:C.【点睛】本题考查三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.B【分析】连接BD,先证明△BOC是等边三角形,得出BO=BC,又FO=FC,从而可得出FB⊥OC,故①正确;因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM,故②错误;再证明四边形EBFD是平行四边形,由OB⊥EF推出四边形EBFD是菱形,故③正确;先在Rt△BCF 中,可求出BC的长,再在Rt△BCM中求出BM的长,从而可知④错误,最后可得到答案.【详解】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,又FO=FC,BF=BF,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,∴①正确;∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∵OB=OD,∴四边形EBFD是平行四边形.又∠EBO=∠OBF,OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确;∵由①②知△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误,∴②错误;∵FC=2,∠OBC=60°,∠OBF=∠CBF,∴∠CBF=30°,∴BF=2CF=4,∴3,∴CM=123BM=3,故④错误.综上可知其中正确结论的个数是2个.故选:B.【点睛】本题考查矩形的性质、菱形的判定、等边三角形的判定和性质、全等三角形的判定和性质、含30°的直角三角形的性质以及勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.5.C【分析】根据等边三角形边长为2,在Rt BDE∆中求得DE的长,再根据CM垂直平分DF,在Rt CDN∆中求得CN,利用三角形中位线求得MN的长,最后根据线段和可得CM的长.【详解】解:等边三角形边长为2,12BD CD=,∴23BD=,43CD=,等边三角形ABC中,//DF AB,60FDC B∴∠=∠=︒,90EDF ∠=︒,30BDE ∴∠=︒,DE BE ∴⊥, 1123BE BD ∴==,2222213()33DE BD BE ⎛⎫=-=-= ⎪⎝⎭, 如图,连接DM ,则Rt DEF ∆中,12DM EF FM ==,60FDC FCD ∠=∠=︒,CDF ∴∆是等边三角形,43CD CF ∴==, CM ∴垂直平分DF ,30DCN ∴∠=︒,Rt CDN ∴∆中,43DF =,32DN =,23CN =, ∵EM =FM ,DN =FN ,∴132MN ED =, 23353CM CN MN ∴=+. 故选:C .【点睛】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、勾股定理、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键. 6.D【分析】通过判断△AND ≌△CMB 即可证明①,再判断出△ANE ≌△CMF 证明出③,再证明出△NFM ≌△MEN ,得到∠FNM=∠EMN ,进而判断出②,通过 DF 与EB 先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE ,即可知四边形为菱形.【详解】∵BF ⊥AC∴∠BMC=90°又∵//DE BF∴∠EDO=∠MBO ,DE ⊥AC∴∠DNA=∠BMC=90°∵四边形ABCD 为矩形∴AD=BC ,AD ∥BC ,DC ∥AB∴∠ADB=∠CBD∴∠ADB-∠EDO=∠CBD-∠MBO 即∠AND=∠CBM在△AND 与△CMB∵90DNA BMC AND CBM AD BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AND ≌△CMB(AAS)∴AN=CM ,DN=BM ,故①正确.∵AB ∥CD∴∠NAE=∠MCF又∵∠DNA=∠BMC=90°∴∠ANE=∠CMF=90°在△ANE 与△CMF 中∵90ANE CMF AN CM NAE MCF ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ANE ≌△CMF (ASA )∴NE=FM ,AE=CF ,故③正确.在△NFM 与△MEN 中∵90FM NE FMN ENM MN MN =⎧⎪∠=∠=︒⎨⎪=⎩∴△NFM ≌△MEN (SAS )∴∠FNM=∠EMN∴NF ∥EM ,故②正确.∵AE=CF∴DC-FC=AB-AE ,即DF=EB又根据矩形性质可知DF ∥EB∴四边形DEBF 为平行四边根据矩形性质可知OD=AO ,当AO=AD 时,即三角形DAO 为等边三角形∴∠ADO=60°又∵DN ⊥AC根据三线合一可知∠NDO=30°又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°故DE=EB∴四边形DEBF为菱形,故④正确.故①②③④正确故选D.【点睛】本题矩形性质、全等三角形的性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.7.C【分析】作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;由菱形的面积可求出BD=4,由题意可证△BCD是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD是等边三角形,∴BD=BC=4,∵M是BC的中点,∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴2216423-CD CM-=故选:C.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的关键.8.B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,2222=+=+=GH GE HE2222故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.9.B①只要证明OH是△DBF的中位线即可得出结论;②根据OH是△BFD的中位线,得出GH=12CF,由GH<14BC,可得出结论;③易证得△ODH是等腰三角形,继而证得OD=12 BF;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论.【详解】解:∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF,∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF,∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;∴OH=12BF,∠DOH=∠CBD=45°,∵OH是△BFD的中位线,∴DG=CG=12BC,GH=12CF,∵CE=CF,∴GH=12CF=12CE∵CE<CG=12 BC,∴GH<14BC,故②错误.∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故④正确;∴∠ODH=∠BDC+∠CDF=67.5°,∴∠OHD=180°-∠ODH-∠DOH=67.5°,∴∠ODH=∠OHD,∴OD=OH=12BF;故③正确.故选:B.【点睛】此题考查了全等三角形的判定和性质、等腰三角形的判定与性质以及正方形的性质.解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.10.D【分析】根据菱形的判定和性质,矩形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【详解】①如图,连接AC,BD交于O,四边形ABCD是菱形,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④如图,当四边形ABCD为正方形时,四边形MNPQ是正方形,故至少存在一个四边形MNPQ是正方形;故④正确;综上,①②③④4个均正确,故选:D.【点睛】本题考查了平行四边形的判定和性质,菱形的判定,正方形的判定,矩形的判定,熟记各定理是解题的关键.11.B【分析】连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.【详解】解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,∠ACB=90°∴∠CEH=∠ECK=90° ,CE=BC∵∠BKH=90°,∴四边形CEHK是矩形,∴ CE=HK又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°∴∠HBK=∠BAC∴△BHK≌△ABC(AAS)∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°∴∠CBJ=∠KHL∴△BCJ≌△HKL(ASA)∴S△BCJ=S△HKL,∴S1=S△BHK=S△ABC,∵四边形ACFG是正方形,四边形ABHI是正方形,∴AB=AI,AC=AG,∠G=∠ACB=90°∴△ABC≌△AIG(SAS)∴S△ABC=S△AIG=S2,即S1=S2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.12.D【分析】连接BD,证出△ADE≌△BDF,得到AE=BF,再利用AE=t,CF=2t,则BF=BC-CF=5-2t求出时间t的值.【详解】解:连接BD,∵四边形ABCD是菱形,∠ADC=120°,∴AB=AD,∠ADB=12∠ADC=60°,∴△ABD是等边三角形,∴AD=BD,又∵△DEF是等边三角形,∴∠EDF =∠DEF =60°,又∵∠ADB =60°,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,AD BD A DBC ADE BDF =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ADE ≌△BDF (ASA ),∴AE =BF ,∵AE =t ,CF =2t ,∴BF =BC −CF =5−2t ,∴t =5−2t∴t =53, 故选:D.【点睛】 本题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键.13.B【分析】由题意先根据ASA 证明△ADF ≌△ECF ,推出300ABE ABCD S S ==,再证明BE=AB=25,根据等腰三角形三线合一的性质得出BF ⊥AE .设AF=x ,BF=y ,由∠ABF <∠BAF 可得x <y ,进而根据勾股定理以及△ABE 的面积为300列出方程组并解出即可.【详解】解:∵四边形ABCD 为平行四边形,∴AD//BC 即AD//BE ,AB//CD ,∴∠DAF=∠E .在△ADF 与△ECF 中,DAF E AF EFAFD EFC ⎧⎪⎨⎪∠∠∠⎩∠===, ∴△ADF ≌△ECF (ASA ),∴ADF ECF S S =△△,∴300ABE ABCD S S ==.∵AE 平分∠BAD ,∴∠BAE=∠DAF ,∵∠DAF=∠E ,∴∠BAE=∠E ,∴BE=AB=25,∴BF ⊥AE .设AF=x ,BF=y ,∵∠D 为锐角,∴∠DAB=180°-∠D 是钝角,∴∠D <∠DAB , ∴12∠ABC <12∠DAB , ∴∠ABF <∠BAF ,∴AF <BF ,x <y . 则有22222520013x y x y ⎧+⎪⎨⎪⎩==,解得:1520x y ⎧⎨⎩==或2015x y ==(舍去), 即AF=15.故选:B .【点睛】本题考查平行四边形的性质以及全等三角形的判定与性质和等腰三角形的性质和勾股定理等知识.由题意证明出300ABE ABCD SS ==以及BF ⊥AE 是解题的关键.14.B【分析】首先证明AB=AF=AD ,然后再证明∠AFG=90°,接下来,依据HL 可证明△ABG ≌△AFG ,得到BG=FG ,再利用勾股定理得出GE 2=CG 2+CE 2,进而求出BG 即可.【详解】解:在正方形ABCD 中,AD=AB=BC=CD ,∠D=∠B=∠BCD=90°,∵将△ADE 沿AE 对折至△AFE ,∴AD=AF ,DE=EF ,∠D=∠AFE=90°,∴AB=AF ,∠B=∠AFG=90°,又∵AG=AG ,在Rt △ABG 和Rt △AFG 中, AG AG AB AF ⎧⎨⎩== ∴△ABG ≌△AFG (HL );∴BG=FG (全等三角形对应边相等),设BG=FG=x ,则GC=6-x ,∵E 为CD 的中点,∴CE=EF=DE=3,∴EG=3+x ,∴在Rt △CEG 中,32+(6-x )2=(3+x )2(勾股定理),解得x=2,故选B.【点睛】此题主要考查了勾股定理的综合应用、三角形全的判定和性质以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.15.C【分析】首先证明四边形AEPF为矩形,可得AM=12AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.【详解】在△ABC中,因为AB2+AC2=BC2,所以△ABC为直角三角形,∠A=90°,又因为PE⊥AB,PF⊥AC,故四边形AEPF为矩形,因为M 为 EF 中点,所以M 也是 AP中点,即AM=12 AP,故当AP⊥BC时,AP有最小值,此时AM最小,由1122ABCS AB AC BC AP=⨯⨯=⨯⨯,可得AP=125,AM=12AP=61.25=故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键. 16.C【解析】连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中,FO FC BF BF OB BC⎧⎪⎨⎪⎩===,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴∵OE=OF,∴MB:OE=3:2,∴④正确;故选C.点睛:本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识,会综合运用这些知识点解决问题是解题的关键. 17.C【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出最大值BF=4,然后写出BF的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【详解】解:①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);②∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);③点H与点A重合时,此时BF最小,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,点G与点D重合时,此时BF最大,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得,2242+=5+22MF ME综上所述,结论正确的有①③④共3个,故选C.【点睛】本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.18.A【分析】先利用勾股定理求出AC=5,再令CH x =,则4DH x =-,利用勾股定理求出答案.【详解】∵四边形ABCD 为矩形,∴4AB DC ==,∵3AD =,在Rt ADC 中,由勾股定理得:222AD DC AC +=,得:5AC =,令CH x =,则4DH x =-,由折叠性质可知:4DH HD x '==-,3AD AD '==,故532D C AC AD ''=-=-=,在Rt HD C '△中,由勾股定理得:222HD D C HC ''+=,∴()22242x x -+=, ∴52x =. 故52CH =. 故选:A .【点睛】 此题考查矩形的性质,勾股定理,折叠的性质,涉及直角三角形的边长的计算题时可多次进行勾股定理的计算.19.B【分析】 如图(见解析),先根据等腰直角三角形的判定与性质可得90,62,2BAC DAE BC DE AD ∠=∠=︒==,再根据三角形全等的判定定理与性质可得BD CE =,从而可得CDE △周长为2BC AD +,然后根据垂线段最短可求出AD 的最小值,由此即可得.【详解】在ABC 中,6,45AB AC B ==∠=︒,ABC ∴是等腰直角三角形,2290,62BAC BC AB AC ∠=︒=+=,在ADE 中,,45AD AE ADE =∠=︒,ADE ∴是等腰直角三角形,2290,2DAE DE AD AE AD ∠=︒=+=, 90BAD CAD CAE CAD ∴∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,BD CE ∴=,CDE ∴周长为622CD CE DE CD BD DE BC DE AD ++=++=+=+, 则当AD 取得最小值时,CDE △的周长最小,由垂线段最短可知,当AD BC ⊥时,AD 取得最小值,AD ∴是BC 边上的中线(等腰三角形的三线合一),1322AD BC ∴==(直角三角形斜边上的中线等于斜边的一半), CDE ∴周长的最小值为62232626+⨯=+,故选:B .【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、垂线段最短等知识点,正确找出两个全等三角形是解题关键. 20.B【分析】关键结合图形证明△CHG ≌△EGD ,即可逐项判断求解【详解】解:∵DF=BD ,∴∠DFB=∠DBF ,∵AD ∥BC ,DE=BC ,∴四边形DBCE 是平行四边形,∠DFB=∠GBC ,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB ,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE ,∵DE=DC ,∴∠DEG=∠DCE ,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°-(∠BGD+∠EGF ),=180°-(∠BGD+∠BGC ),=180°-(180°-∠DCG )÷2,=180°-(180°-45°)÷2,=112.5°,∴∠GHC=∠DGE ,∴△CHG ≌△EGD ,∴∠EDG=∠CGB=∠CBF ,∴∠GDH=90°-∠EDG ,∠GHD=∠BHC=90°-∠CGB ,∴∠GDH=∠GHD故②正确;∴∠GDH=∠GHD又∠EFB=22.5°,∴∠DHG=∠GDH=67.5°∴∠GDF=90°-∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF∴HF=2HG,显然CE≠HF=2HG,故①正确;∵△CHG ≌△EGD ,∴CHG EGD S S ∆∆=∴CHG DHG EGD DHG S S S S ∆∆∆∆+=+,即CDG DHGE S S △四边形=而=EFG DHGE DHF S S S ∆+四边形△,故CDG DHF S S ≠△△故④不正确;结合前面条件易知等腰三角形有△ABD ,△CDB ,△BDF ,△CDE ,△BCG ,△DGH ,△EGF ,△CDG ,△DGF 共9个,∴③错误;故正确的有①②,有2个,故选:B【点睛】本题主要考查对三角形的内角和定理,全等三角形的判定和性质,等腰三角形的性质和判定,正方形的性质,等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.。

南京市南京市第九中学中考数学期末几何综合压轴题模拟汇编

南京市南京市第九中学中考数学期末几何综合压轴题模拟汇编

南京市南京市第九中学中考数学期末几何综合压轴题模拟汇编一、中考几何压轴题1.(问题情境)(1)如图1,四边形ABCD 是正方形,点E 是AD 边上的一个动点,以CE 为边在CE 的右侧作正方形CEFG ,连接DG 、BE ,则DG 与BE 的数量关系是 ; (类比探究)(2)如图2,四边形ABCD 是矩形,AB=2,BC=4,点E 是AD 边上的一个动点,以CE 为边在CE 的右侧作矩形CEFG ,且CG :CE=1:2,连接DG 、BE .判断线段DG 与BE 有怎样的数量关系和位置关系,并说明理由;(拓展提升)(3)如图3,在(2)的条件下,连接BG ,则2BG+BE 的最小值为 .2.在ABC 中,AB AC =,点D 、E 分别是BC AC 、的中点,将CDE △绕点C 按顺时针方向旋转一定的角度,连接BD AE 、.观察猜想(1)如图①,当60BAC ∠=︒时,填空:①AE BD=______________; ②直线BD AE 、所夹锐角为____________;类比探究(2)如图②,当90BAC ∠=︒时,试判断AE BD 的值及直线BD AE 、所夹锐角的度数,并说明理由;拓展应用(3)在(2)的条件下,若2DE =CDE △绕着点C 在平面内旋转,当点D 落在射线AC 上时,请直接写出2AE 的值.3.(发现问题)(1)如图1, 已知CAB ∆和CDE ∆均为等边三角形,D 在AC 上,E 在CB 上, 易得线段AD 和BE 的数量关系是 .(2)将图1中的CDE ∆绕点C 旋转到图2的位置, 直线AD 和直线BE 交于点F ①判断线段AD 和BE 的数量关系,并证明你的结论.②图2中AFB ∠的度数是 .(3)(探究拓展)如图3,若CAB ∆和CDE ∆均为等腰直角三角形,90ABC DEC ∠=∠=,AB BC =,DE EC =, 直线AD 和直线BE 交于点F , 分别写出AFB ∠的度数, 线段AD 、BE 之间的数量关系 .4.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法.如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B '落在MN 上,折痕为EC ,连接DB ',如图2.①点B '在以点E 为圆心,_________的长为半径的圆上;②B M '=_________;③DB C '为_______三角形,请证明你的结论.拓展延伸(2)当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点B )折叠后,点B 的对应点B '落在正方形ABCD 内部或边上.①ABB '面积的最大值为____________;②连接AB ',点P 为AE 的中点,点Q 在AB '上,连接,PQ AQP AB E '∠=∠,则2B C PQ '+的最小值为____________.5.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.6.综合与实践背景阅读:“旋转”即物体绕一个点或一个轴做圆周运动.在中国古典专著《百喻经·口诵乘船法而不解用喻》中记载:“船盘回旋转,不能前进.”而图形旋转即:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,这个定点叫做旋转中心,转动的角叫做旋转角.综合实践课上,“睿智”小组专门探究了正方形的旋转,情况如下:在正方形ABCD 中,点O 是线段BC 上的一个动点,将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).设旋转角为α(0180α<<︒).操作猜想:(1)如图1,若点O 是BC 中点,在正方形ABCD 绕点旋转过程中,连接AA ',BB ',DD ',则线段AA '与DD '的数量关系是_______;线段AA '与BB '的数量关系是________. 探究验证:(2)如图2,在(1)的条件下,在正方形ABCD 绕点O 旋转过程中,顺次连接点B ,B ',C ,C ',B .判断四边形''BB CC 的形状,并说明理由.拓展延伸:(3)如图3,若2BO CO =,在正方形ABCD 绕点O 顺时针旋转的过程中,设直线BB '交线段AA '于点P .连接OP ,并过点O 作OQ BB '⊥于点Q .请你补全图形,并直接写出OP OQ的值. 7.综合与实践动手实践:一次数学兴趣活动,张老师将等腰Rt AEF 的直角顶点A 与正方形ABCD 的顶点A 重合(AE AD >),按如图(1)所示重叠在一起,使点E 在CD 边上,连接BF .则可证:ADE ≌△△______,______三点共线;发现问题:(1)如图(2),已知正方形ABCD ,E 为DC 边上一动点,DC nDE =,AF AE ⊥交CB 的延长线于F ,连结EF 交AB 于点G .若2n =,则AG BG=______,AGE BGF S S =△△______; 尝试探究:(2)如图(3),在(1)的条件下若3n =,求证:5AG GB =;拓展延伸:(3)如图(4),在(1)的条件下,当n =______时,AG 为GB 的6倍(直接写结果,不要求证明).8.综合与实践:利用矩形的折叠开展数学活动,探究体会图形在轴对称,旋转等变换过程中的变化,及其蕴含的数学思想和方法.动手操作:如图①,矩形纸片ABCD 的边AB =23,将矩形纸片ABCD 对折,使点A 与点D 重合,点B 与点C 重合,折痕为EF ,然后展开,EF 与AC 交于点H ;如图②,将矩形ABCD 沿过点A 的直线折叠,使点B 落在对角线AC 上,且点B 与点H 重合,展开图形,折痕为AG ,连接GH ;若在图①中连接BH ,得到如图③,点M 是线段BH 上的动点,点N 是线段AH 上的动点,连接AM ,MN ,且∠AMN =∠ABH ;若在图②中连接BH ,交折痕AG 于点Q ,隐去其它线段,得到如图④.解决问题:(1)在图②中,∠ACB = ,BC = ,AG GF= ,与△ABG 相似的三角形有 个; (2)在图②中,AH 2=AE ·(从图②中选择一条线段填在空白处),并证明你的结论; (3)在图③中,△ABH 为 三角形,设BM 为x ,则NH = (用含x 的式子表示); 拓展延伸:(4)在图④中,将△ABQ 绕点B 按顺时针方向旋转α(0°≤α≤180°),得到△A ′BQ ′,连接DQ ′,则DQ ′的最小值为 ,当tan ∠CBQ ′= 时,△DBQ ′的面积最大值为 . 9.如图1,在Rt ABC 中,90ACB ∠=︒,点P 在斜边AB 上,点D 、E 、F 分别是线段PA 、PB 、PC 的中点,易知DEF 是直角三角形.现把DEF 以点P 为中心,顺时针旋转α,其中0360α︒<<︒.连接AD 、BE 、CF .(1)操作发现如图2,若点P 是AB 的中点,连接PF ,可以发现=AD CF ______CF BE=______; (2)类比探究如图3,Rt ABC 中,CP AB ⊥于点P ,请判断AD CF 与CF BE 的大小,结合图2说明理由; (3)拓展提高在(2)的条件下,如果30CAB ∠=︒,且4AB =,在DEF 旋转的过程中,当以点C 、D 、F 、P 四点为顶点的四边形与以点B 、E 、F 、P 四点为顶点的四边形都是平行四边形时,直接写出线段AD 、CF 、BE 的长.10.等腰△ABC ,AB =AC ,∠BAC =120°,AF ⊥BC 于F ,将腰AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过C 作CE 垂直于直线BB ′,垂足为E ,连接CB ′.(1)问题发现:如图1,当40α=︒时,CB E ∠'的度数为_______;连接EF ,则EF AB '的值为________.(2)拓展探究:当0360α︒<<︒,且120α≠︒时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②解决问题:当A ,E ,F 三点共线时,请直接写出BB BE '的值. 11.(1)尝试探究:如图①,在ABC ∆中,90ACB ∠=︒,30A ∠=︒,点E 、F 分别是边BC 、AC 上的点,且EF ∥AB .①AFBE 的值为_________;②直线AF 与直线BE 的位置关系为__________;(2)类比延伸:如图②,若将图①中的CEF ∆绕点C 顺时针旋转,连接AF ,BE ,则在旋转的过程中,请判断AFBE 的值及直线AF 与直线BE 的位置关系,并说明理由;(3)拓展运用:若3BC =,2CE =,在旋转过程中,当,,B E F 三点在同一直线上时,请直接写出此时线段AF 的长.12.△ABC 中,∠BAC=α°,AB=AC ,D 是BC 上一点,将AD 绕点A 顺时针旋转α°,得到线段AE ,连接BE .(1)(特例感知)如图1,若α=90,则BD+BE 与AB 的数量关系是 .(2)(类比探究)如图2,若α=120,试探究BD+BE 与AB 的数量关系,并证明.(3)(拓展延伸)如图3,若α=120,AB=AC=4,BD=33,Q 为BA 延长线上的一点,将QD 绕点Q 顺时针旋转120°,得到线段QE ,DE ⊥BC ,求AQ 的长.13.(1)问题探究:如图1所示,有公共顶点A 的两个正方形ABCD 和正方形AEFG .AE <AB ,连接BE 与DG ,请判断线段BE 与线段DG 之间有怎样的数量关系和位置关系.并请说明理由.(2)理解应用:如图2所示,有公共顶点A 的两个正方形ABCD 和正方形AEFG ,AE <AB ,AB =10,将正方形AEFG 绕点A 在平面内任意旋转,当∠ABE =15°,且点D 、E 、G 三点在同一条直线上时,请直接写出AE 的长 ;(3)拓展应用:如图3所示,有公共顶点A 的两个矩形ABCD 和矩形AEFG ,AD =13AB =39,AG =4,AE =3AEFG 绕点A 在平面内任意旋转,连接BD ,DE ,点M ,N 分别是BD ,DE 的中点,连接MN ,当点D 、E 、G 三点在同一条直线上时,请直接写出MN 的长14.如图(1),已知点G 在正方形ABCD 的对角线AC 上,,GE BC ⊥垂足为点,E GF CD ⊥,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形;②推断:AG BE 的值为_ _; (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转a 角)045(a ︒<<︒,如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:若24AB EC ==,正方形CEGF 在绕点C 旋转过程中,当A E G 、、三点在一条直线上时,则BE = .15.问题发现:(1)如图1,ABC 与DCE 同为等边三角形,连接,BD AE 则BD 与AE 的数量关系为________;直线BD 与AE 所夹的锐角为_________;类比探究:(2)BC A △与DCE 同为等腰直角三角形,其他条件同(1),请问(1)中的结论还成立吗?请说明理由;拓展延伸:(3)ABC 中90,30BAC C ∠=︒∠=︒,DE 为ABC ∆的中位线,将CDE △绕点C 逆时针自由旋转,已知2AB =,在自由旋转过程中,当ADE 、、在一条直线上时,请直接写出AD 的值.16.(1)问题发现如图1,ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,若∠ADE =60°,则AB ,CE ,BD ,DC 之间的数量关系是 .(2)拓展探究如图2,ABC 是等腰三角形,AB =AC ,∠B =α,点D ,E 分别在边BC ,AC 上.若∠ADE =α,则(1)中的结论是否仍然成立?请说明理由.(3)解决问题如图3,在ABC 中,∠B =30°,AB =AC =4cm ,点P 从点A 出发,以1cm/s 的速度沿A→B 方向勾速运动,同时点M 从点B 出发,以3cm/s 的速度沿B→C 方向匀速运动,当其中一个点运动至终点时,另一个点随之停止运动,连接PM ,在PM 右侧作∠PMG =30°,该角的另一边交射线CA 于点G ,连接PC .设运动时间为t (s ),当△APG 为等腰三角形时,直接写出t 的值.17.如图1,已知ABC EBD △≌△,90ACB EDB ∠=∠=︒,点D 在AB 上,连接CD 并延长交AE 于点F ,(1)猜想:线段AF 与EF 的数量关系为_____;(2)探究:若将图1的EBD △绕点B 顺时针方向旋转,当CBE ∠小于180︒时,得到图2,连接CD 并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E 作EG CB ⊥,垂足为点G .当ABC ∠的大小发生变化,其它条件不变时,若EBG BAE ∠=∠,6BC =,直接写出AB 的长.18.综合与实践:问题情境:在数学课上,以“等腰直角三角形为主体,以点的对称为基础,探究线段间的变化关系”.如图1,在ABC 中,90ACB ∠=︒,AC BC =,点E 为ACB ∠的角平分线CD 上一动点但不与点C 重合,作点E 关于直线BC 的对称点为F ,连接AE 并延长交CB 延长线于点H ,连接FB 并延长交直线AH 于点G .探究实践:(1)勤奋小组的同学发现AE BF =,请写出证明;探究发现:(2)智慧小组在勤奋小组的基础上继续探究,发现线段FG ,EG 与CE 存在数量关系,请写出他们的发现并证明;探究拓展:(3)如图2,奇异小组的同学在前两个小组探究的基础上,连接GC ,得到三条线段GE ,GC 与GF 存在一定的数量关系,请直接写出.19.问题情境:两张直角三角形纸片中,90BAC DAE ∠=∠=︒.连接BD ,CE ,过点A 作BD 的垂线,分别交线段BD ,CE 于点M ,N (ABC ∆与ADE ∆在直线MN 异侧).特例分析:(1)如图1,当AB AC AD AE ===时,求证:2BD AN =;拓展探究:(2)当12AB AD AC AE ==,探究下列问题: ①如图2,当AB AD =时,直接写出线段BD 与AN 之间的数量关系: ;②如图3,当AB AD ≠时,猜想BD 与AN 之间的数量关系,并说明理由;推广应用:(3)若图3中,AB AD k AC AE ==,设ABD ∆的面积为S ,则ACE ∆的面积为 .(用含k ,s 的式子表示)20.已知:60AOC BOC ∠=∠=︒,过平面内一点P 分别向OA 、OB 、OC 画垂线,垂足分别为D 、E 、F .(问题引入)如图①,当点P 在射线OC 上时,求证:OD OE =.(类比探究)(1)如图②,当点P 在AOC ∠内部,点E 在射线OB 上时,求证:OD OE OF +=.(2)当点P 在AOC ∠内部,点E 在射线OB 的反向延长线上时,在图③中画出示意图,并直接写出线段OD 、OE 、OF 之间的数量关系.(知识拓展)如图④,AB 、CD 、EF 是O 的三条弦,都经过圆内一点P ,且60FPD BPD ∠=∠=︒.判断PA PD PE ++与PB PC PF ++的数量关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.(1)DG=BE ;(2),DG ⊥BE ;(3)4.【分析】(1)通过证明△DCG 和△BCE (SAS )全等,得到DG=BE .(2)通过证明△DCG ∽△BCE 得到,所以.∠BEC=∠DGC .延长BE解析:(1)DG=BE ;(2)12DG BE =,DG ⊥BE ;(3). 【分析】(1)通过证明△DCG 和△BCE (SAS )全等,得到DG=BE .(2)通过证明△DCG ∽△BCE 得到12DG CG BE CE ==,所以12DG BE =.∠BEC=∠DGC .延长BE 、GD 相交于点H .因为矩形ECGF ,所以∠FEC=∠FGC=90°,所以∠HEF+∠BEC=180°-∠FEC=90°,∠FGH+∠DGC=90°,所以∠H=∠F=90°,所以DG ⊥BE .(3)作EN ⊥BC 于N ,GM ⊥BC 交BC 的延长线于M .首先证明点G 的运动轨迹是线段GM ,将2BG+BE 的最小值转化为求2(BG+DG )的最小值.【详解】(1)DG=BE理由:∵正方形ABCD ,∴CD=CB ,∠BCD=90°∵正方形ECGF ,∴CG=CE ,∠ECG=90°∴∠ECG=∠BCD=90°∴∠DCG=∠BCE在△DCG 和△BCE 中CD CB DCG BCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴△DCG ≌△BCE (SAS )∴DG=BE(2)12DG BE =,DG ⊥BE . 理由如下:延长BE 、GD 相交于点H .∵矩形ECGF 、矩形ABCD ,∴∠ECG=∠BCD=90°,∴∠DCG=∠BCE ,∵CD :CB=2:4=1:2,CG :CE=1:2,∴CD :CB=CG :CE ,∵∠DCG=∠BCE ,∴△DCG ∽△BCE , ∴12DG CG BE CE ==,∠BEC=∠DGC , ∴12DG BE = ∵矩形ECGF∴∠FEC=∠FGC=∠F=90°∴∠HEF+∠BEC=180°-∠FEC=90°,∠FGH+∠DGC=90°,∴∠H=∠F=90°∴DG ⊥BE(3)作EN ⊥BC 于N ,GM ⊥BC 交BC 的延长线于M .易证△ECN ∽△CGM ,∴2EC EN CG CM==, ∵EN=AB=2,∴CM=1,∴点G 的运动轨迹是直线MG ,作点D 关于直线GM 的对称点G′,连接BG′交GM 于G ,此时BG+GD 的值最小,最小值=BG′由(2)知,12DG BE = ∴BE=2DG ∴2BG+BE=2BG+2DG=2(BG+DG )∴2BG+BE 的最小值就是2(BG+DG )的最小值.∵BG′=2226210+=,∴2BG+BE 的最小值为410故答案为410.【点睛】本题考查了正方形的性质、矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质.在判断全等和相似时出现“手拉手”模型证角相等.这里注意利用三边关系来转化线段的数量关系求出最小值.2.(1)①1,②;(2)直线所夹锐角为,见解析;(3)满足条件的的值为【分析】(1)①②延长BD 交AE 的延长线于T ,BT 交AC 于O .证明即可解决问题. (2)如图②中,设AC 交BD 于O ,AE 交BD解析:(1)①1,②60︒;(2)直线BD AE 、所夹锐角为45︒,见解析;(3)满足条件的2AE 的值为1042±【分析】(1)①②延长BD 交AE 的延长线于T ,BT 交AC 于O .证明()BCD ACE SAS ≌即可解决问题.(2)如图②中,设AC 交BD 于O ,AE 交BD 于T .证明BCD ACE ∽△△,推出22AE AC BE BC ==,CBD CAE ∠=∠可得结论. (3)分两种情形:①如图③-1中,当点D 落在线段AC 上时,作EH AC ⊥于H .②如图③-2中,当点D 在AC 的延长线上时,分别利用勾股定理求解即可.【详解】解:(1)如图①中,延长BD 交AE 的延长线于T ,BT 交AC 于O .,60AB AC BAC =∠=︒,ACB ∴是等边三角形,,60CA CB ACB ∴=∠=︒,11,,60?22CD BC CE AC ECD ACB -=∠=∠=, ,CD CE BCD ACE ∴=∠=∠,()BCD ACE SAS ∴≌,,BD AE CBD CAE ∴=∠=∠,1AE BD∴=, BOC AOT ∠=∠,60ATB ACB ∴∠=∠=︒,∴直线BD AE 、所夹锐角为60︒,故答案为1,60︒.(2)如图②中,设AC 交BD 于O ,AE 交BD 于T .,90AB AC BAC ∠==︒,ACB ∴是等腰直角三角形,245CB AC ACB ︒∴=∠=,,11,,4522CD BC CE AC ECD ACB ︒==∠=∠=, 2CD CE BCD ACE ∴=∠=∠,,2BC CD AC CE∴==, BCD ACE ∴∽, 2AE AC CBD CAE BE BC ∴==∠=∠,, BOC AOT ∠=∠,45ATB ACB ∴∠=∠=︒,∴直线BD AE 、所夹锐角为45︒.(3)①如图③-1中,当点D 落在线段AC 上时,作EH AC ⊥于H .由题意,222DE EC CD DE ===,,,90EH CD CED ⊥∠=︒,112222EH DH HC CD AC EC ∴======,, 221AH AC CH ∴=-=-,在Rt AEH 中,22222(221)11042AE AH EH =+=-+=- ②如图③-2中,当点D 在AC 的延长线上时,同法可得222(221)11042AE =++=+,综上所述,满足条件的2AE 的值为1042±【点睛】本题考查几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(1);(2)①,证明见解析;②;(3),【分析】(1)由等腰三角形的性质,结合等量代换即可求解;(2)①根据SAS 证明,然后根据全等三角形的性质即可证明;②由全等三角形的性质得,然后利用等解析:(1)AD BE =;(2)①AD BE =,证明见解析;②60;(3)45AFB ∠=︒,2AD BE =【分析】(1)由等腰三角形的性质,结合等量代换即可求解;(2)①根据SAS 证明ACD BCE ≅∆∆,然后根据全等三角形的性质即可证明;②由全等三角形的性质得ACD CBF ∠=∠,然后利用等量代换即可求解;(3)首先证明ACD BCE ∆∆,然后根据相似三角形的性质得到AD AC BE BC=,和CBF CAF ∠=∠,即可求解.【详解】(1)∵CAB ∆和CDE ∆均为等边三角形∴CA=CB ,CD=CE∴AC-CD=BC-CE ,即AD=BE∴AD=BE ;(2)①AD=BE证明:∵CAB ∆和CDE ∆均为等边三角形∴CA=CB ,CD=CE ,60ACB DCE ∠=∠=︒∴ACD BCE ∠=∠∴ACD BCE ≅∆∆∴AD=BE②∵ACD BCE ≅∆∆∴ACD CBF ∠=∠设BC 和AF 交于点O ,如图2∵AOC BOF ∠=∠∴60BFO ACO ∠=∠=︒,即60AFB ∠=︒∴60AFB ∠=︒;(3)结论45AFB ∠=︒,2AD BE =证明:∵90ABC DEC ∠=∠=,AB=BC ,DE=EC∴45ACD BCD BCE ∠=︒+∠=∠,2AC DC BC EC =∴ACD BCE ∆∆ ∴2AD AC BE BC ==CBF CAF ∠=∠ ∴2AD BE =∵AFB CBF ACB CAF ∠+∠=∠+∠∴45AFB ACB ∠=∠=︒【点睛】本题考查了几何变换综合,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,关键证明全等和相似,并且分类讨论.4.(1)①;②;③等边,证明见解析;(2)①3;②.【分析】(1)①利用圆的基本性质,即可求解;②根据折叠的性质,利用勾股定理,即可求解;③利用勾股定理,求得B′D=,即可求解;(2)①由题解析:(1)①BE ;②333;③等边,证明见解析;(2)①3;13 【分析】(1)①利用圆的基本性质,即可求解;②根据折叠的性质,利用勾股定理,即可求解;③利用勾股定理,求得B′D=BC CD =,即可求解;(2)①由题意知点B'在以点E 为圆心,半径长为2的圆上,△ABB'的面积要最大,只要以AB 为底的高最长即可,此时当B'E ⊥AB 时,△ABB'的面积最大;②当E 、B′、C 三点共线时,B'C+ EB'取得最小值,即B'C+2PQ 取得最小值,且最小值为EC 的长,利用勾股定理即可求解.【详解】解:(1)根据折叠的性质知:BE=B′E ,BC=B′C=3,MA=MB=NC=ND=32, ∠B=∠EB′C=90︒,①点B′在以点E 为圆心,BE 的长为半径的圆上;②B′M=MN - B′N=22MN B C NC '--=223332⎛⎫-- ⎪⎝⎭ =333-; ③B′D=222222B N ND B C NC ND BC BC CD +=-+==='',∴△DB'C 为等边三角形;故答案为:①BE ,②333-,③等边; (2)①∵AB=3=3AE ,∴AE=1,BE=2,故点B'在以点E 为圆心,半径长为2的圆上,∴△ABB'的面积要最大,只要以AB 为底的高最长即可,∴当B'E ⊥AB 时,△ABB'的面积最大,如图:△ABB'的面积最大值1132322AB E B =⨯=⨯⨯='; ②∵∠AQP=∠AB'E ,∴PQ ∥B'E ,∵P 为AE 的中点,∴Q 为AB'的中点, ∴PQ 为△AEB'的中位线,∴PQ=12EB',即12EB'=2PQ , ∴B'C+2PQ= B'C+ EB', 当E 、B′、C 三点共线时,B'C+ EB'取得最小值,即B'C+2PQ 取得最小值,且最小值为EC 的长,∴22223213BC BE ++=∴B'C+2PQ 13故答案为:①3;13【点睛】本题考查了圆的性质,矩形的性质、图形的折叠、等腰三角形的性质等,有一定的综合性,难度适中,其中(2)①当B'E ⊥AB 时,△ABB'的面积最大;②当E 、B′、C 三点共线时,B'C+2PQ 取得最小值,是解本题的关键.5.(1);(2),理由见解析;(3)CE 的长为2或4,理由见解析.【分析】(1)证明,得出CE =BD ,,即可得出结论;(2)证明,得出,,即可得出结论;(3)先判断出,再求出:①当点E 在点D解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为22【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论;(2)证明ACE ABD ∽,得出AEC ADB ∠=∠,2BD CE =,即可得出结论; (3)先判断出2BD CE =,再求出210AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论.【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形,同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEBCEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;. (2)45CEB BD ∠︒=,,理由如下: 在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==, ∴AE AC AD AB =,DAE CAB ∠∠=,EAC DAB ∴∠∠=,ACE ABD ∴∽ ,∴BD AD CE AE =∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽,BD ∴,在Rt ABC中,AC =AB ∴=,①当点E 在点D 上方时,如图③, 过点A 作AP BD ⊥交BD 的延长线于P , DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==,4BD BP AP ∴-==,222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,22CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.6.(1);;(2)矩形,见解析;(3)见解析,.【分析】 (1)如图,连接OA 、OA′、OD 、OD′,根据旋转的性质可得OA=OA′、OD=OD′,∠AOA′=∠DOD′=,根据勾股定理可得OA=O解析:(1)AA DD ''=;5AA BB ''=;(2)矩形,见解析;(3)见解析,13OP OQ 【分析】(1)如图,连接OA 、OA ′、OD 、OD ′,根据旋转的性质可得OA =OA ′、OD =OD ′,∠AOA ′=∠DOD ′=α,根据勾股定理可得OA =OD ,利用SAS 可证明△AOA ′≌△DO D′,根据全等三角形的性质可得AA ′=DD ′,根据旋转的性质可得∠BOB ′=α,根据5OB OB OA OA'='△OAA ′∽△OBB ′,根据相似三角形的性质即可得答案;(2)根据旋转的性质可得BC B C ''=,OB OB '=,OC OC '=,根据点O 是BC 中点即可得出OB OC OB OC ''===,根据对角线相等且互相平分的四边形是矩形即可证明四边形''BB CC 是矩形;(3)根据题意,补全图形,连接OA 、OA ′,作AM ⊥BP 于M ,A ′N ⊥BP 于N ,根据勾股定理可得13OA OA OB ''==,根据平角的定义及直角三角形两锐角互余的性质可得''ABM A B N ∠=∠,利用AAS 可证明△ABM ≌△A ′B ′N ,可得AM =A ′N ,利用AAS 可证明△APM ≌△A ′PN ,可得AP A P '=,根据等腰三角形“三线合一”的性质可得∠A ′OP =12∠AOA ′=12α,∠QOB ′=1122BOB α'∠=,根据角的和差关系可得∠POQ =∠A ′OB ′,即可证明△OQP ∽△OB ′A ′,根据相似三角形的性质即可得答案.【详解】(1)如图,连接OA 、OA ′、OD 、OD ′,∵将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',旋转角为α,∴OA =OA ′、OD =OD ′,∠AOA ′=∠DOD ′=α,∴△AOA ′≌△DO D′,∴AA ′=DD ′,∵点O 是BC 中点,∴OB =1122BC AB =, ∴OA =225OB AB OB +=,∵将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',旋转角为α,∴∠BOB ′=∠AOA ′=α,∵5OB OB OA OA'==', ∴△OAA ′∽△OBB ′,∴''AA OA BB OB==5, ∴5AA BB ''=,故答案为:AA DD ''=;5AA BB ''=(2)四边形''BB CC 是矩形;理由如下:∵正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',∴BC B C ''=,OB OB '=,OC OC '=,∵点O 是BC 中点,∴OB OC OB OC ''===四边形''BB CC 是平行四边形,∵BC B C ''=,∴四边形''BB CC 是矩形.(3)如图,补全图形如下:连接OA 、OA ′,作AM ⊥BP 于M ,A ′N ⊥BP 于N , ∵2BO CO =,∴AB =BC =32OB , ∴OA ′=OA 2213AB OB +'13, ∵∠OB ′A ′=90°, ∴'''90A B N OB B ∠+∠=︒,∵'OB OB =,∴''OB B OBB ∠=∠,∵'90ABM OBB ∠+∠=︒,∴ABM A B N ''∠=∠,∵''AB A B =,''AMB A NB ∠=∠,∴△ABM ≌△A ′B ′N ,∴AM =A ′N (AAS ),∵''AMB A NB ∠=∠,'APM A PN ∠=∠,∴△APM ≌△A ′PN ,∴AP=A′P ,∵OA =OA ′,∴∠A ′OP =12∠AOA ′=12α, ∵OB =OB ′,OQ ⊥BB ′,∴∠QOB ′='1122BOB α∠=, ∴∠QOB ′+∠B ′OP =∠A ′OP +∠B ′OP ,即∠POQ =∠A ′OB ′,∵∠OQP =∠OB ′A ′=90°,∴△OQP ∽△OB ′A ′, ∴''13OP OA OQ OB =.【点睛】本题考查旋转的性质、矩形的判定、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握全等三角形及相似三角形的判定定理并正确作出辅助线构造全等三角形及相似三角形是解题关键.7.动手实践:,、、;(1)5,10;(2)见解析;(3)【分析】动手实践:由等腰Rt△AEF与正方形ABCD可得AF=AE,AB=AD,∠ABC=∠BAD=90°,可得出∠BAF=∠DAE,即可得解析:动手实践:ABF,F、B、C;(1)5,10;(2)见解析;(3)32【分析】动手实践:由等腰Rt△AEF与正方形ABCD可得AF=AE,AB=AD,∠ABC=∠BAD=90°,可得出∠BAF=∠DAE,即可得△ADE≌△ABF,根据全等三角形的性质可得∠ABF=∠D=90°,则∠ABF+∠ABC=180°,即F、B、C三点共线;(1)若n=2,则DC=2DE,即点E是CD的中点,可证出△ADE≌△ABF,根据全等三角形的性质可得FB=DE=12CD=12AB,再证出△FBG∽△FCE,可得13BG FBCE FC==,可得BG=13CE=16AB,即可得出=5AGBG,根据三角形的面积公式分别表示S△AGE和S△BGF,即可得出S△AGE和S△BGF的比值;(2)若n=3,则DC=3DE,由(1)得△ADE≌△ABF,根据全等三角形的性质可得FB=DE=13CD=13AB,再证出△FBG∽△FCE,可得4CE FCBG FB==,可得4BG=CE=23AB,可得出BG==16AB,即可得出结论;(3)根据AG为GB的6倍得AG=6GB,则AG=67AB=67CD,BG=17CD,由(1)得△FBG∽△FCE,则BG ECFB FC=,可得出BG•FC=EC•FB,即17CD(BF+BC)=(DC-DE)BF,设CD=x,DE=a,由DE=BF,BC=CD可得x2-6ax+7a2=0,解得:x=(2a,或x=(2)a,即CD=(2DE,或CD=(2DE,n2或2【详解】解:动手实践:∵等腰Rt△AEF与正方形ABCD,∴AF =AE ,AB =AD ,∠ABC =∠BAD =90°,∴∠BAF =∠DAE ,∴△ADE ≌△ABF ,∴∠ABF =∠D =90°,∴∠ABF +∠ABC =180°,即F 、B 、C 三点共线,故答案为:ABF ,F 、B 、C ;(1)若n =2,则DC =2DE ,即点E 是CD 的中点,:∵等腰Rt △AEF 与正方形ABCD ,∴AF =AE ,AB =AD ,∠ABC =∠BAD =90°,∴∠BAF =∠DAE ,∴△ADE ≌△ABF ,∴FB =DE =12CD =12AB ,∵四边形ABCD 是正方形,∴AB ∥CD ,∴△FBG ∽△FCE , ∴13BG FB CE FC ==, ∴BG =13CE =16AB , ∴AG =AB -BG =56AB , ∴=5AG BG, ∵S △AGE =12AG •BC =12×56AB ×AB =512AB 2, S △BGF =12BG •BF =12×16AB ×12AB =124AB 2, ∴10AGE BGFS S ∆∆=, 故答案为:5,10;(2)证明:若n =3,则DC =3DE ,由(1)得△ADE ≌△ABF ,∴FB =DE =13CD =13AB , 由(1)得△FBG ∽△FCE , ∴4CE FC BG FB==, ∴4BG =CE =23AB , ∴BG =16AB ,∴AG=AB-BG=56AB,∴AG=5GB;(3)∵AG为GB的6倍,∴AG=6GB,∴AG=67AB=67CD,BG=17CD,由(1)得△FBG∽△FCE,∴BG ECFB FC=,∴BG•FC=EC•FB,即17CD(BF+BC)=(DC-DE)BF,设CD=x,DE=a,∵DE=BF,BC=CD,∴17x(a+x)=(x-a)a,整理得:x2-6ax+7a2=0,解得:x=()a,或x=(a,即CD=(DE,或CD=(DE,∴n故答案为:【点睛】本题主要考查了等腰直角三角形的性质,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题.8.(1)30°,6,4,7;(2)AG;(3)等边,;(4)3,,6【分析】(1)由点H为AC中点,可得AC=2AH,由折叠,点B与点H重合,与四边形ABCD为矩形,可证GH为AC的垂直平分线,可解析:(1)30°,6,4,7;(2)AG;(3)等边,2+x x;(4)6【分析】(1)由点H为AC中点,可得AC=2AH,由折叠,点B与点H重合,与四边形ABCD为矩形,可证GH为AC的垂直平分线,可得AG=CG,∠GCH=∠GAH,可求∠ACB =30°,利用三角函数可求BC=6,AG=4,BF=FC=3,可求4==41AGGF,与△ABG相似的三角形由7个;(2)由EF为折痕,可证△AEH∽△AHG,可得2=AH AE AG⋅即可;(3)由四边形ABCD为矩形,点H为对角线AC中点,可证△ABH为等边三角形,再证△ABM∽△MHN,可得xHN=即可;(4)连结BD ,当点Q′在BD 上时,Q′D 最小,先求BC =Q′D 最小=BD BQ '-BQ′⊥BD 时,△BDQ′面积最大∠CBQ′=60°,S △BDQ′最大=162BD Q B '⋅=. 【详解】解(1)∵点H 为AC 中点,∴AC =2AH ,∵折叠,点B 与点H 重合,∴AB =AH BG =HG ,∠BAG =∠HAG =12BAC ∠,∠B =∠AHG , ∵四边形ABCD 为矩形,∴∠B =90°,∴∠AHG =∠B =90°,∴GH 为AC 的垂直平分线,∴AG =CG ,∠GCH =∠GAH ,∴∠BAG =∠HAG =∠GCH ,∵∠BAH +∠BCH =180°-∠B =90°,∴3∠ACB =90°∴∠ACB =30°,∴∠BAG =∠HAG =∠GCH =30°,∴tan30°=AB BC =AB ∴BC =6,∵tan ∠BAG =tan30°=BG AB =∴BGAB , ∴AG =2BG =4,BF =FC =116322BC =⨯=, ∴GF =BF -BG =3-2=1, ∴4==41AG GF , ∵AD ∥BC ,∴∠DAC =∠ACB =30°,∴∠BAG =∠HAG =∠GHF =∠HCF =∠GCH =∠EAH =∠DAC =∠BCA =30°,∵∠B =∠AHG =∠HFG =∠HFC =∠AEH =∠D =∠GHC =∠CBA =90°,∴△ABG ∽△AHG ∽△HFG ∽△CFH ∽△CHG ∽△AEH ∽△ADC ∽△CBA ,∴与△ABG 相似的三角形由7个,故答案为:30°;6;4;7;(2)∵EF 为折痕,∴EH ⊥AD ,∵∠EAH =∠HAG =30°∠AHG =∠AEH =90°∴△AEH ∽△AHG , ∴AE AH AH AG=, ∴2=AH AE AG ⋅故答案为AG ;(3)∵四边形ABCD 为矩形,点H 为对角线AC 中点,∴AH =CH =BH ,由图2知AB =AH ,∴AH =BH =AB ,∴△ABH 为等边三角形,∴∠ABH =∠AHB =60°,∵∠AMN =∠ABH ;∴∠AMN =∠ABH =∠AHB =60°,∴∠BAM +∠AMB =180°-∠ABH =120°,∠AMB +∠NMH =180°-∠AMN =120°,即∠BAM +∠AMB =∠AMB +∠NMH ,∴∠BAM =∠NMH ,∴△ABM ∽△MHN , ∴AB BM MH HN=, ∵AB =3MH =23x , ∴2323x HN x=-, ∴23323x xHN x x , 故答案为:等边;23x x , (4)连结BD ,当点Q′在BD 上时,Q′D 最小 ∵AB 3AD =BC =6,∴BC =()2222+=23+6=43AD AB ∵AQ′=Q′H=132AB =∴Q′D 最小=43333BD BQ '-=-=当BQ′⊥BD 时,△BDQ ′面积最大∵tan ∠DAC =233CD BC ==, ∴∠DAC =30°,∴∠CBQ′=90°-∠DBC =90°-30°=60°∴tan ∠CBQ'=3S △BDQ′最大=11433622BD Q B '⋅=⨯=; 故答案为3336.【点睛】本题考查折叠性质,矩形性质,线段垂直平分线,锐角三角函数,三角形相似判定与性质,等边三角形判定与性质,两图形的最小距离,最大面积,掌握查折叠性质,矩形性质,线段垂直平分线,锐角三角函数,三角形相似判定与性质,等边三角形判定与性质,两图形的最小距离,最大面积求法是解题关键.9.(1)1,1;(2)结论:,理由见解析;(3),,.【分析】(1)利用直角三角形斜边中线的性质以及全等三角形的性质解决问题即可. (2)结论:.如图3中,连接.利用相似三角形的性质解决问题即可. 解析:(1)1,1;(2)结论:AD CF CF BE =,理由见解析;(3)3BE =,32CF =,33AD =. 【分析】(1)利用直角三角形斜边中线的性质以及全等三角形的性质解决问题即可.(2)结论:AD CF CF BE=.如图3中,连接PF .利用相似三角形的性质解决问题即可.(3)分两种情形:如图41-中,当//PC DF 时,满足条件,如图42-中,当点D 落在AC 上时,四边形CDPF 是矩形,四边形PEBF 是矩形,分别求解即可.【详解】解:(1)如图2中,连接PF ,BE .90ACB ∠=︒,AP PB =, PC PA PB ∴==,90DFE ∠=︒,PD PE =, PF PD PE ∴==,APC DPF ∠=∠,APD CPF ∴∠=∠,()APD CPF SAS ∴△≌△,AD CF ∴=, ∴1AD CF =, 同法可证,BPE CPF △≌△, CF BE ∴=,∴1CF BE=. 故答案为1,1. (2)结论:AD CF CF BE =. 理由:如图3中,连接PF .PC AB ⊥,PF DE ⊥,90APC DPF ∴∠=∠=︒,。

【备考期末】南京市中考数学期末几何综合压轴题易错汇编

【备考期末】南京市中考数学期末几何综合压轴题易错汇编

【备考期末】南京市中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.如图1,在ABC 中,2AB AC ==,120BAC ∠=︒,点,D E 分别是,AC BC 的中点,连接DE .(1)探索发现:图1 图2图3图1中,AB BC 的值为_____________;AD BE 的值为_________; (2)拓展探究 若将CDE △绕点C 逆时针方向旋转一周,在旋转过程中AD BE 的大小有无变化,请仅就图2的情形给出证明;(3)问题解决当CDE △旋转至,,A D E 三点在同一直线时,直接写出线段BE 的长.解析:(1)33;33 (2)见解析 (3)3932+或3932- 【分析】(1)先判断出∠AEB=90°,再判断出∠B=30°,进而的粗AE ,再用勾股定理求出BE ,即可得出结论;(2)先判断出,进而得出△ACD ∽△BCE ,即可得出结论;(3)分点D 在线段AE 上和AE 的延长线上,利用含30度角的直角三角形的性质和勾股定理,最后用线段的和差求出AD ,即可得出结论.【详解】解:解: (1)如图1,连接AE,∵AB=AC=2,点E 分别是BC 的中点,∴AE ⊥ BC,∴∠AEC=90° ,∵AB=AC=2,∠BAC=120° ,∴∠B=∠C=30°,在Rt △ABE 中,AE=12AB=1,根据勾股定理得,BE =3∵点E 是BC 的中点,∴BC=2BE =23 ∴23323AB BC == ∵点D 是AC 的中点, ∴AD=CD=12AC=1,∴AD 13BE 33== 故答案为:33,33; (2)无变化,理由:由(1)知,CD=1,3CE BE ==∴3CD CE =3AC BC =∴3CD AC CE BC == 由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD ∽△BCE,∴3AD AC BE BC == (3)线段BE 393+393- 当点D 在线段AE 上时,如图2,过点C 作CF ⊥AE 于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴1122DF CD ==,∴332CF DF ==, 在Rt △AFC 中,AC=2,根据勾股定理得,22132AF AC CF =-=, ∴AD=AF+DF=1312+, 由(2)知,33AD BE =, ∴39332BE AD +==当点D 在线段AE 的延长线上时,如图3,过点C 作CG ⊥AD 交AD 的延长线于G,∵∠CDG=60°,∴∠DCG=30°, ∴1122DG CD ==, ∴33CG DG ==, 在Rt △ACG 中,根据勾股定理得,13AG =, ∴131AD AG DG -=-=, 由(2)知,3AD BE = ∴3933BE -==即:线段BE 393+393-【点睛】此题是相似形综合题,主要考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,相似三角形的判定和性质,构造出直角三角形是解本题的关键.2.(了解概念)定义:在平面直角坐标系xOy 中,组成图形的各点中,与点Р所连线段最短的点叫做点Р关于这个图形的短距点,这条最短线段的长度叫做点Р到这个图形的短距.(理解运用)(1)已知点()3,0P -,以原点为圆心,l 为半径作O ,则点Р关于O 的短距点的坐标是 ;(2)如图,点(3P ,等边三角形OAB 的顶点A 的坐标为()6,0,顶点B 在第一象限,判断点Р关于OAB 的短距点的个数,并说明理由;(拓展提升)(3)已知(),6P p p -+,()6,0A ,()0,6B ,点C 在第一象限内,且75CBO ∠=︒,90ACB ∠=︒,若点Р到四边形OACB 的短距大于2,请直接写出p 的取值范围. 解析:(1)(-1,0);(2)点Р关于OAB 的短距点的个数有3个;(3)当p <22p <4或p >2Р到四边形OACB 的短距大于2.【分析】(1)连接PO ,交O 于点M ,点M 即是点Р关于O 的短距点,进而即可求解; (2)根据题意得点P 是三角形OAB 的中心,进而即可求解;(3)由题意得点P ,A ,B 在直线y =-x +6上,以点P 为圆心,半径长为2画圆,分3种情况:①当点P 在AB 的延长线上,圆P 过点B 时,②当点P 在线段AB 上,圆P 与BC 相切于点N ,过点P 作PM ⊥y 轴,③当点P 在BA 的延长线上,圆P 过点A 时,过点P 作PM ⊥y 轴,分别求解,即可得到答案.【详解】解:(1)连接PO ,交O 于点M ,点M 即是点Р关于O 的短距点,∵()3,0P -,、O 的半径为1,∴M (-1,0),故答案是:(-1,0);(2)∵点(3P ,等边三角形OAB 的顶点A 的坐标为()6,0,∴点P 是三角形OAB 的中心,∴点P 到OA ,OB ,OC 3∴点Р关于OAB 的短距点的个数有3个;(3)∵(),6P p p -+,()6,0A ,()0,6B ,∴点P ,A ,B 在直线y =-x +6上,∴∠ABO =∠BAO =45°,∵点C 在第一象限内,且75CBO ∠=︒,90ACB ∠=︒,∴∠ABC =75°-45°=30°,以点P 为圆心,半径长为2画圆,如图所示:当点P 在AB 的延长线上,圆P 过点B 时,过点P 作PM ⊥y 轴,∵PB=2,∠PBM=45°,∴PM=2×22=2,∴p<-2时,点Р到四边形OACB的短距大于2;①当点P在线段AB上,圆P与BC相切于点N,过点P作PM⊥y轴,则BP=2PN=2×2=4,PM=BP×22=22,②当点P在线段AB上,圆P与OA相切于点N,过点P作PM⊥y轴,则AP=2PN=22,BP=AB-AP=62-22=42,PM= BP×22=42×22=4,∴22<p<4时,点Р到四边形OACB的短距大于2;③当点P在BA的延长线上,圆P过点A时,过点P作PM⊥y轴,则PM=(2)22∴p >6+2时,点Р到四边形OACB 的短距大于2;综上所述:当p <-2或22<p <4或p >6+2时,点Р到四边形OACB 的短距大于2.【点睛】本题主要考查图形与坐标以及圆的综合题,根据题意画出图形,掌握圆与直线相切的性质是解题的关键. 3.在ABC 中,点D ,E 分别是AB AC ,边上的点,//DE BC .基础理解:(1)如图1,若43AD BD ==,,求AE AC 的值; 证明与拓展:(2)如图2,将ADE 绕点A 逆时针旋转a 度,得到11AD E △,连接11,BD CE ; ①求证:11BD AD CE AE=; ②如图3,若90,6,BAC AB AC AD ADE ∠=︒<=,在旋转的过程中,点1D 恰好落在DE 上时,连接1113,4BD EE CE =,则11E D E 的面积为________. 解析:(1)47;(2)①见详解;②13.44 【分析】(1)利用平行线分线段定理,直接求解即可;、(2)①先推出11AD AB AE AC =,从而得11ABD ACE ∽,进而即可得到结论;②先推出AE =AE 1 =8,DE =D 1E 1=10,过点A 作AM ⊥DE 于点M ,则DM = 3.6,D 1E =2.8,再证明∠D 1EE 1=90°,进而即可求解.【详解】解:(1)∵//DE BC ,43AD BD ==,,∴AE AC =44437AD AB ==+; (2)①∵将ADE 绕点A 逆时针旋转a 度,得到11AD E △,∴1AD =AD ,1AE =AE ,∠BAD 1=∠CAE 1,∵//DE BC ,∴AD AE AB AC =,即AD AB AE AC=, ∴11AD AB AE AC=, ∴11ABD ACE ∽, ∴1111BD AD AD CE AE AE==; ②由①可知11ABD ACE ∽, ∴111134BD AD CE AE ==, ∵将ADE 绕点A 逆时针旋转,得到11AD E △,点1D 恰好落在DE 上,∴AD 1=AD =6,∠D 1AE 1=∠DAE =90°,∴AE =AE 1=43AD 1=8,DE =D 1E 1=226810+=, 过点A 作AM ⊥DE 于点M ,则DM =D 1M =AD ×cos ∠ADE = AD ×AD DE =6×610=3.6,∴D 1E =10-3.6 ×2=2.8,∵∠D 1AE 1=∠DAE =90°,∴∠DAD 1=∠EAE 1,又∵AD 1=AD ,AE =AE 1,∴∠ADE =11118018022DAD EAE AEE ︒-∠︒-∠==∠,∴∠AED +1AEE ∠=∠AED +∠ADE =90°,即:∠D 1EE 1=90°, ∴22110 2.89.6EE =-=,∴11E D E 的面积=12D 1E ∙EE 1=12×2.8×9.6=13.44. 故答案是:13.44. 【点睛】本题主要考查相似三角形的判定和性质,解直角三角形,勾股定理,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定和性质,是解题的关键.4.(了解概念)在凸四边形中,若一边与它的两条邻边组成的两个内角相等,则称该四边形为邻等四边形,这条边叫做这个四边形的邻等边.(理解运用)(1)在邻等四边形ABCD 中,40A ∠=︒,60B ∠=︒,若CD 是这个邻等四边形的邻等边,则C ∠的度数为__________;(2)如图,凸四边形ABCD 中,P 为AB 边的中点,ADP PDC ∽,判断四边形ABCD 是否为邻等四边形,并证明你的结论;(拓展提升)(3)在平面直角坐标系中,AB 为邻等四边形ABCD 的邻等边,且AB 边与x 轴重合,已知(2,0)A -,(,3)C m ,(2,4)D ,若在边AB 上使DPC BAD ∠=∠的点P 有且仅有1个,则m 的值是__________.解析:(1)130°;(2)四边形ABCD 是邻等四边形,理由见解析;(3)﹣6【分析】(1)根据邻等四边形的定义即可求解;(2)由△ADP ∽△PDC ,可得AP AD PC PD =,∠DAP =∠DPC ,∠APD =∠PCD ,由P 为AB 的中点,可得AP =BP ,则PB AD PC PD=,可证△BPC ∽△ADP ,由相似三角形的性质得出∠A =∠B 即可;(3)①若点B 在点A 右侧,如图,由AB 为邻等边,则有∠DAB =∠ABC =∠DPC ,可证△ADP ∽△BPC ,可得AP BC =AD BP ,设点P (n ,0),由等腰直角三角形可求∠BAD =45°,可求B 、C 横坐标之差为3,B (m +3,0),将AP ,BP ,AD ,BC ,代入得:242332n m n +=+-,整理可得:﹣n 2+(m +1)n +2m ﹣18=0,由题意可知n 只有一个解,可求得m =﹣5+46;②若点B 在点A 左侧,可求得∠BAD =135°,可证△ADP ∽△BPC ,可得AP BC =AD BP ,可求得B 、C 横坐标之差为3,242332n m n+=+-,可求得m =﹣5﹣46. 【详解】解:(1)∵CD 为邻等边,∴∠C =∠D ,又∵40A ∠=︒,60B ∠=︒,∴∠C =∠D =(360°﹣∠A ﹣∠B )÷2=130°,∴∠C =130°.故答案为:130°;(2)四边形ABCD 是邻等四边形,理由如下:∵△ADP ∽△PDC ,∴AP AD PC PD=,∠DAP =∠DPC ,∠APD =∠PCD ,∠ADP =∠PDC , 又∵P 为AB 的中点,∴AP =BP ,∴PB AD PC PD =, ∴PB PC AD PD=, ∵∠APD +∠BPC =180°﹣∠DPC ,∠PCD +∠PDC =180°﹣∠DPC ,且∠APD =∠PCD ,∴∠BPC =∠PDC ,∵∠ADP =∠PDC ,∴∠ADP =∠BPC ,∴△BPC ∽△ADP ,∴∠B =∠A ,∴四边形ABCD 为邻等四边形;(3)若点B 在点A 右侧,如图,∵AB 为邻等边,则有∠DAB =∠ABC =∠DPC ,又∵∠ADP +∠DPA =180°﹣∠DAB ,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴APBC =ADBP,设点P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,过点C作CE⊥x轴于点E,则∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵点C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD22(22)4++2BC2233+32代入APBC=ADBP得:4232整理可得:﹣n2+(m+1)n+2m﹣18=0,由题意可知n只有一个解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣6又∵点C在点D右侧,∴m=﹣6;②若点B在点A左侧,如图,此时,∵A (﹣2,0),D (2,4),∴∠OAD =45°,∴∠BAD =∠ABC =∠DPC =135°,∵∠ADP +∠DPA =180°﹣∠DAB ,∠BPC +∠DPA =180°﹣∠DPC ,∴ADP =∠BPC ,∴△ADP ∽△BPC , ∴AP BC =AD BP, 由①得:B (m +3,0),C (m ,3),P (n ,0),AP =﹣2﹣n ,BP =n ﹣m ﹣3,AD =42BC =32 ∴42332n m =--, 解得:m =﹣6又∵点C 在点D 左侧,∴m =﹣5﹣6;综上所述:m =﹣6.【点睛】本题是相似综合题,考查新定义图形,仔细阅读题目,抓住定义中的性质,会验证新定义图形,相似三角形的判定与性质,一元二次方程根的判别式,利用相似三角形的性质构造关于n 的一元二次方程是解题关键.5.如图,E F ,分别为ABC 中AC AB ,上的动点(点、、A B C 除外),连接EB FC ,交于点P ,6BC =.我们约定:线段BC 所对的CPB ∠,称为线段BC 的张角.情景发现(1)已知三角形ABC 是等边三角形,AE BF =,①求线段BC 的张角CPB ∠的度数;②求点P 到BC 的最大距离;③若点P 的运动路线的长度称为点P 的路径长,求点P 的路径长.拓展探究(2)在(1)中,已知A BC '是圆P 的外切三角形,若点A '的运动路线的长度称为点A '的路径长,试探究点A '的路径长与点P 的路径长之间有何关系?请通过计算说明.解析:(1)①BPC ∠=120°,②点P 到BC 的最大距离3PN =433π;(2)点A '的路径长与点P 的路径长的比值是2:1(或点A '的路径长是点P 的路径长的2倍).【分析】(1)①利用等边三角形的性质证△AEB 与△BCF 全等,得到∠EBA =∠BCF ,利用三角形的内角和定理即可求出∠CPB 的度数;②由题意可知当PO ⊥BC 于点N 时,点P 到BC 的距离最大,根据垂径定理及三角函数即可求出点P 到BC 的最大距离;③由题意知点P 的路径长为弧BC 的长,在②的基础上直接利用公式即可求出结果; (2)由题意可知张角∠CPB 的度数始终为120°,可得∠CBP +∠BCP =60°,因为圆P 是△A'BC 的内切圆,由此可推出A'是等边三角形ABC 外接圆上优弧BAC 上的一动点,其半径为3240°,根据弧长公式可直接求出其长度,并计算出点A'的路径长是点P 的路径长的2倍.【详解】解:(1)①∵ABC 是等边三角形, ∴60CBAA AB BC ∠∠︒===,, ∵AE BF =,∴AEB BCF △≌△,∴EBABCF ∠∠=. ∵60180EBA EBC EBC BCF BPC ∠+∠︒∠+∠+∠︒=,=, ∴180180BPC EBC BCF EBC EBA ∠︒-∠-∠=︒-∠-∠=, 180********ABC ︒-∠=︒-︒︒==. ②(2)如图所示,由于BPC ∠始终为120︒,故过点B C P 、、作圆O,∴120BOC ∠︒=. 当PO BC ⊥于点N 时,点P 到BC 的距离最大.∵OB OC =, ∴11 60,322BOP BOC NB BC ∠∠=︒===, ∴3,3ON OB ==∴点P 到BC 的最大距离2333PN =③由②可知点P 的路径为BC 的长度,即x(2)点A '的路径长与点P 的路径长的比值是2:1(或点A '的路径长是点P 的路径长的2倍),理由:由(1)中题意可知张角CPB ∠的度数始终为120︒,可得60CBP BCP ∠+∠=︒, 又因为圆P 是A BC '△的内切圆,所以120CBA BCA ''∠+∠=︒,所以 60CA B ∠'=︒,所以A '是等边三角形ABC 外接圆上优弧BAC 上的一动点,由题意可得等边三角形ABC 外接圆的半径为23,点A '的路径是优弧BAC 的长度,即以240︒的圆心角,半径为23的弧长,如图,所以点A '的路径长=24023831801803n r πππ⋅==, 点A '的路径长与点P 的路径长的比值是:843:32:133ππ=, 所以点A '的路径长与点P 的路径长的比值是2:1(或点A '的路径长是点P 的路径长的2倍).【点睛】本题考查了等边三角形的性质,圆的有关性质,弧长公式等,解题的关键是能够根据题意画出图形.6.(感知)如图1,在平面直角坐标系中,点C 的坐标为(0,0.5),点A 的坐标为(1,0),将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,过点B 作BM y ⊥轴,垂足为点M ,易知AOC CMB ∆∆≌,得到点B 的坐标为(0.5,1.5).(探究)如图2,在平面直角坐标系中,点A 的坐标为(1,0),点C 的坐标为(0,)(0)m m >,将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB .(1)求点B 的坐标.(用含m 的代数式表示)(2)求出BC 所在直线的函数表达式.(拓展)如图3,在平面直角坐标系中,点A 的坐标为(1,0),点C 在y 轴上,将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,连结BO 、BA ,则BO BA +的最小值为_______.解析:【探究】(1)点B 坐标为(,1)m m +;(2)1y x m m=+;【拓展】5. 【分析】探究:(1)证明△AOC ≌△CMB (AAS ),即可求解;(2)根据点B 的坐标为(m ,m+1),点C 坐标()0,m ,即可求解;拓展:BO+BA=2222(1)(1)(1)m m m m +++-++,BO+BA 的值,相当于求点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,即可求解.【详解】解:探究:(1)过点B 作BM y ⊥轴,垂足为点M .BMC 90∠∴=︒,MCB B 90∠∠∴+=︒.线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,BCA 90CB CA ∠∴=︒=,.MCB ACO 90∠∠∴+=︒.B ACO ∠∠∴=.ACO 90∠=︒,ΔAOC ΔCMB ∴≌,MC OA,MB OC ∴==.点C 坐标()0,m ,点A 坐标()1,0,∴点B 坐标为()m,m 1+(2)∵点B 的坐标为(m ,m+1),点C 为(0,m ),设直线BC 为:y=kx+b ,1b m km b m =⎧⎨+=+⎩,解得:1k m b m ⎧=⎪⎨⎪=⎩, ∴1y x m m=+; 则BC 所在的直线为:1y x m m=+; 拓展:如图作BH ⊥OH 于H .设点C 的坐标为(0,m ),由(1)知:OC=HB=m ,OA=HC=1,则点B (m ,1+m ),则:BO+BA=2222(1)(1)(1)m m m m +++-++,BO+BA 的值,相当于求点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,相当于在直线y=x 上寻找一点P (m ,m ),使得点P 到M (0,-1),到N (1,-1)的距离和最小,作M 关于直线y=x 的对称点M′(-1,0),易知PM+PN=PM′+PN≥NM′, M′N=22(11)(01)5--++=,故:BO+BA 的最小值为5,故答案为:5.【点睛】本题为一次函数综合题,主要考查的是三角形全等的思维拓展,其中拓展,将BO+BA 的值转化点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,是本题的新颖点 7.探究:如图1和2,四边形ABCD 中,已知AB AD =,90BAD ∠=︒,点E ,F 分别在BC 、CD 上,45EAF ∠=︒.(1)①如图 1,若B 、ADC ∠都是直角,把ABE △绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,则能证得EF BE DF =+,请写出推理过程;②如图 2,若B 、D ∠都不是直角,则当B 与D ∠满足数量关系_______时,仍有EF BE DF =+;(2)拓展:如图3,在ABC 中,90BAC ∠=︒,22AB AC ==,点D 、E 均在边BC 上,且45DAE ∠=︒.若1BD =,求DE 的长.解析:(1)①见解析;②180B D ∠+∠=︒,理由见解析;(2)5=3DE 【分析】(1)①根据旋转的性质得出AE =AG ,∠BAE =∠DAG ,BE =DG ,求出∠EAF =∠GAF =45°,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案; ②根据旋转的性质得出AE =AG ,∠B =∠ADG ,∠BAE =∠DAG ,求出C 、D 、G 在一条直线上,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案; (2)根据等腰直角三角形性质好勾股定理求出∠ABC =∠C =45°,BC =4,根据旋转的性质得出AF =AE ,∠FBA =∠C =45°,∠BAF =∠CAE ,求出∠FAD =∠DAE =45°,证△FAD ≌△EAD ,根据全等得出DF =DE ,设DE =x ,则DF =x ,BF =CE =3−x ,根据勾股定理得出方程,求出x 即可.【详解】(1)①如图1,∵把ABE △绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,∴AE AG =,BAE DAG ∠=∠,BE DG =∵90BAD ∠=︒,45EAF ∠=︒,∴45BAE DAF ∠+∠=︒,∴45DAG DAF ∠+∠=︒,即45EAF GAF ∠=∠=︒,在EAF △和GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴()EAF GAF SAS ≌,∴EF GF =,∵BE DG =,∴EF GF BE DF ==+;②180B D ∠+∠=︒,理由是:把ABE △绕A 点旋转到ADG ,使AB 和AD 重合,则AE AG =,B ADG ∠=∠,BAE DAG ∠=∠,∵180B ADC ︒∠+∠=,∴180ADC ADG ∠+∠=︒,∴C ,D ,G 在一条直线上,和①知求法类似,45EAF GAF ∠=∠=︒,在EAF △和GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴()EAF GAF SAS △≌△,∴EF GF =,∵BE DG =,∴EF GF BE DF ==+;故答案为:180B D ∠+∠=︒(2)∵ABC 中,22AB AC ==90BAC ∠=∴45ABC C ∠=∠=︒,由勾股定理得:2222(22)(22)4BC AB AC =++= ,把AEC 绕A 点旋转到AFB △,使AB 和AC 重合,连接DF .则AF AE =,45FBA C ∠=∠=︒,BAF CAE ∠=∠,∵45DAE ∠=︒,∴904545FAD FAB BAD CAE BAD BAC DAE ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒, ∴45FAD DAE ∠=∠=︒,在FAD △和EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴FAD EAD △≌△,∴DF DE =,设DE x =,则DF x =,∵1BC =,∴413BF CE x x ==--=-,∵45FBA ∠=︒,45ABC ∠=︒,∴90FBD ∠=︒,由勾股定理得:222DF BF BD =+,222(3)1x x =-+, 解得:5=3x , 即5=3DE . 【点睛】本题考查了旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.8.综合与实践(1)(探索发现)在ABC ∆中. AC BC =,ACB α∠=,点D 为直线BC 上一动点(点D 不与点B ,C 重合),过点D 作//DF AC 交直线AB 于点F ,将AD 绕点D 顺时针旋转α得到ED ,连接BE .如图(1),当点D 在线段BC 上,且90α=︒时,试猜想:①AF 与BE 之间的数量关系:______;②ABE ∠=______.(2)(拓展探究)如图(2),当点D 在线段BC 上,且090α︒<<︒时,判断AF 与BE 之间的数量关系及ABE ∠的度数,请说明理由.(3)(解决问题)如图(3),在ABC ∆中,AC BC =,4AB =,ACB α∠=,点D 在射线BC 上,将AD 绕点D 顺时针旋转α得到ED ,连接BE .当3BD CD =时,直接写出BE 的长.解析:(1)①AF BE =;②90︒;(2)AF BE =,ABE α∠=.理由见解析;(3)BE 的长为1或2.【分析】(1)由“SAS”△ADF ≌△EDB ,可得AF=BE ,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF ,∠ABE=a .由“SAS”△ADF ≌△EDB ,即可解决问题;(3)分当点D 在线段BC 上和当点D 在BC 的延长线上两种情形讨论,利用平行线分线段成比例可求解.【详解】解:(1)如图1中,设AB 交DE 于O .∵∠ACB=90°,AC=BC ,∴∠ABC=45°,∵DF ∥AC ,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB ,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB ,且DA=DE ,DF=DB∴△ADF ≌△EDB (SAS ),∴AF=BE ,∠DAF=∠E ,∵∠AOD=∠EOB ,∴∠ABE=∠ADO=90° 故答案为AF=BE ,90°. (2)AF BE =,ABE α∠=. 理由:∵//DF AC ,∴FDB ACB α∠=∠=,CAB DFB ∠=∠. ∵AC BC =,∴ABC CAB ∠=∠.∴ABC DFB ∠=∠. ∴DB DF =∵ADE FDB α∠==∠,ADF ADE FDE ∠=∠-∠,EDB FDB FDE ∠=∠-∠, ∴ADF EDB ∠=∠. 又∵AD DE =, ∴ADF EDB ∆≅∆.∴AF BE =,AFD EBD ∠=∠.∴AFD ABC FDB ∠=∠+∠,DBE ABD ABE ∠=∠+∠, ∴ABE FDB α∠=∠=. (3)1或2.解:当点D 在线段BC 上时,过点D 作//DF AC 交直线AB 于点F ,如图(1). ∵//DF AC ,∴3BF BDAF CD==. ∵4AB BF AF =+=,∴1AF =.∵//DF AC ,∴BDF C ADE α∠=∠=∠=,DFB CAB ∠=∠. ∵ADF ADE FDE ∠=∠-∠,EDB FDB FDE ∠=∠-∠, ∴ADF EDB ∠=∠.∵AC BC =,∴CAB CBA ∠=∠.∴DFB DBF ∠=∠.∴DF DB =. 又AD DE =,∴ADF EDB ∆≅∆,1BE AF ==.当点D 在线段BC 的延长线上时,过点D 作//DF AC '交BA 的延长线于点F ',如图(2). ∵//DF AC ', ∴2AB BCAF CD=='. ∴24AB AF '==. ∴2AF '=.同理可得2BE AF '==. 综上可得,BE 的长为1或2.【点睛】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题. 9.(基础巩固)(1)如图1,在ABC ∆中,90ACB ∠=︒,直线l 过点C ,分别过AB 、两点作,AE l BD l ⊥⊥,垂足分别为E D 、.求证:BDCCEA ∆∆.(尝试应用)(2)如图2,在ABC ∆中,90ACB ∠=︒,D 是BC 上一点,过D 作AD 的垂线交AB 于点E .若4,tan ,205BE DE BAD AC =∠==,求BD 的长.(拓展提高)(3)如图3,在ABCD 中,在BC 上取点E ,使得90AED ∠=︒,若4,,143BE AE AB CD EC ===,求ABCD 的面积.解析:(1)见解析;(2)32BD =;(3)710【分析】(1)由直角三角形的性质证得∠BDC =∠AEC ,由相似三角形的判定定理可得出结论; (2)过点E 作EF ⊥BC 于点F ,由相似三角形的性质得出DE DFDA AC=,由锐角三角函数的定义求出DF =16,则可求出答案;(3)过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥BC ,交BC 的延长线于点N ,证明△ABM ≌△DCN (AAS ),由全等三角形的性质得出BM =CN ,AM =DN ,设BE =4a ,EC =3a ,由(1)得△AEM ∽△EDN ,得出比例线段AM ENME DN=,求出a =1,b 10,由平行四边形的面积公式可得出答案. 【详解】解:(1)∵90ACB ∠=︒, ∴90BCD ACE ∠+∠=︒, ∵AE CE ⊥, ∴90AEC ∠=︒, ∴90ACE CAE ∠+∠=︒, ∴BCD CAE ∠=∠. ∵BD DE ⊥, ∴90BDC ∠=︒, ∴BDC AEC ∠=∠, ∴BDCCEA ∆∆(2)过点E 作EF BC ⊥于点F ,由(1)得EDF DAC ∆∆,∴DE DFDA AC= ∵AD DE ⊥,4tan ,205BAD AC ∠==,∴4520DF =, ∴16DF = ∵BE DE =, ∴BF DF = ∴32BD =(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥的延长线于点N ,∴090AMB DNC ∠=∠= ∵四边形ABCD 是平行四边形, ∴//,AB CD AB CD =, ∴B DCN ∠=∠, ∴ABM DCN ∆≅∆, ∴,BM CN AM DN ==,∵,AB AE AM BC =⊥, ∴BM ME = ∵43BE EC =,设4,3BE a EC a == ∴2,5BM ME CN a EN a ==== ∵90AED ∠=︒, 由(1)得AEM EDN ∆∆,∴AM ENME DN =, ∴25b a a b= ∴10b a = ∵14CD =, ∴()22214a b +=∴1,10a b == ∴ABCD 的面积177102BC DN a b =⨯⨯=⨯=【点睛】本题是相似形综合题,考查了相似三角形的判定与性质,全等三角形的判定与性质,平行四边形的性质,锐角三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键. 10.如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明:四边形CEGF 是正方形; (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由; (3)拓展与运用:正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图3所示,当B ,E ,F 三点在一条直线上时,延长CG 交AD 于点H ,若AG =6,GH =22,求BC 的长.解析:(1)证明见解析;(2)AG 2BE ,理由见解析;(3)5 【分析】(1)先说明GE ⊥BC 、GF ⊥CD ,再结合∠BCD=90°可证四边形CEGF 是矩形,再由∠ECG=45°即可证明;(2)连接CG ,证明△ACG ∽△BCE ,再应用相似三角形的性质解答即可; (3)先证△AHG ∽△CHA 可得AG GH AHAC AH CH==,设BC =CD =AD =a ,则AC =2a ,求出AH=23a ,DH=13a ,CH=103a ,最后代入AG AH AC CH =即可求得a 的值. 【详解】(1)∵四边形ABCD 是正方形, ∴∠BCD =90°,∠BCA =45°, ∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°, ∴EG =EC ,∴四边形CEGF 是正方形. (2)结论:AG =2BE ; 理由:连接CG ,由旋转性质知∠BCE =∠ACG =α, 在Rt △CEG 和Rt △CBA 中,CE CG =cos45°2,2cos 45CB CA ︒==, ∴2CE CA CG CB =, ∴△ACG ∽△BCE , ∴2AG CABE CB== ∴线段AG 与BE 之间的数量关系为AG 2; (3)∵∠CEF =45°,点B 、E 、F 三点共线, ∴∠BEC =135°, ∵△ACG ∽△BCE , ∴∠AGC =∠BEC =135°, ∴∠AGH =∠CAH =45°, ∵∠CHA =∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC =CD =AD =a ,则AC 2a ,则由AG GH AC AH =,得6222AHa =, ∴AH =23a ,则DH =AD ﹣AH =13a ,2210CH CD DH 3a =+=,∴AG AH AC CH=,得2632103aa = , 解得:a =35,即BC =35. 【点睛】本题属于四边形综合题,主要考查相似形的判定和性质、正方形的性质等知识点,解题的关键是正确寻找相似三角形解决问题并利用参数构建方程解决问题.11.某数学兴趣小组在数学课外活动中,对多边形内两要互相垂直的线段做了如下探究: (观察与猜想)(1)如图1,在正方形ABCD 中,点E ,F 分别是AB ,AD 上的两点,连接DE ,CF ,DE CF ⊥,则DECF的值为__________;(2)如图2,在矩形ABCD 中,7AD =,4CD =,点E 是AD 上的一点,连接CE ,BD ,且CE BD ⊥,则CEBD的值为__________;(类比探究)(3)如图3,在四边形ABCD 中,90A B ∠=∠=︒,点E 为AB 上一点,连接DE ,过点C 作DE 的垂线交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE AB CF AD ⋅=⋅;(拓展延伸)(4)如图4,在Rt ABD ∆中,90BAD ∠=︒,9AD =,1tan 3ADB ∠=,将ABD ∆沿BD 翻折,点A 落在点C 处得CBD ∆,点E ,F 分别在边AB ,AD 上,连接DE ,CF ,且DE CF ⊥.①求DECF的值; ②连接BF ,若1AE =,直接写出BF 的长度.解析:(1)1;(2)47;(3)证明见解析;(4)①53;②3295BF =【分析】(1)先根据正方形的性质可得,90AD DC A CDF =∠=∠=︒,再根据直角三角形的性质可得ADE DCF ∠=∠,然后根据三角形全等的判定定理与性质可得DE CF =,由此即可得出答案;(2)先根据矩形的性质可得90A CDE ∠=∠=︒,再根据直角三角形的性质可得ADB DCE ∠=∠,然后根据相似三角形的判定与性质即可得;(3)如图(见解析),先根据矩形的判定与性质可得,90A B CH G H A ∠=∠===∠︒,再根据直角三角形的性质、对顶角相等可得FCH EDA ∠=∠,然后根据相似三角形的判定可得DEA CFH ~,由此即可得证;(4)①如图(见解析),先证出DEA CFG ~,从而可得9DE AD CF CG CG==,再分别在Rt ABD △和Rt ADH中,解直角三角形可得AH =DH的性质可得,2DH AC AC AH ⊥=ADC 的面积公式求出CG 的长,由此即可得出答案;②先根据(4)①中,相似三角形的性质可得53DE A FG CF E ==,可求出35FG =,再根据翻折的性质可得9CD AD ==,然后在Rt CDG 中,利用勾股定理可得365DG =,从而可得65AF =,最后在Rt ABF 中,利用勾股定理即可得. 【详解】解:(1)四边形ABCD 是正方形, ,90AD DC A CDF ∴=∠=∠=︒,90ADE CDE ∴∠+∠=︒, DE CF ⊥,90DCF CDE ∴∠+∠=︒, ADE DCF ∴∠=∠,在ADE 和DCF 中,90A CDF AD DC ADE DCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()ADE DCF ASA ∴≅,DE CF ∴=,1DECF∴=; (2)四边形ABCD 是矩形,90A CDE ∴∠=∠=︒, 90ADB CDB ∴∠+∠=︒,CE BD ⊥,90DCE CDB ∴∠+∠=︒,ADB DCE ∴∠=∠,在ADB △和DCE 中,90A CDE ADB DCE ∠=∠=︒⎧⎨∠=∠⎩,ADB DCE ∴~,47CE CD BD AD =∴=; (3)如图,过点C 作CH AF ⊥交AF 的延长线于点H ,∵CG EG ⊥,90A B ∠=∠=︒, ∴90G H A B ∠=∠=∠=∠=︒, ∴四边形ABCH 为矩形,∴AB CH =,90FCH CFH DFG FDG ∠+∠=∠+∠=︒,CFH DFG ∠=∠, FCH FDG ∴∠=∠, EDA FDG ∠=∠, FCH EDA ∴∠=∠,在DEA △和CFH △中,90EDA FCHA H ∠=∠⎧⎨∠=∠=︒⎩,∴DEA CFH ~, ∴DE ADCF CH =, ∴DE ADCF AB=, ∴DE AB CF AD ⋅=⋅;(4)①过C 作CG AD ⊥于点G ,连接AC 交BD 于点H ,∵CF DE ⊥,90BAD ∠=︒,∴90FCG CFG CFG EDA ∠+∠=∠+∠=︒, ∴FCG EDA ∠=∠,在DEA △和CFG △中,90EDA FCGEAD FGC ∠=∠⎧⎨∠=∠=︒⎩,∴DEA CFG ~, ∴DE ADCF CG=,在Rt ABD △中,1tan 3AB ADB AD ∠==,9AD =, ∴3AB =,在Rt ADH 中,1tan 3AH ADH DH ∠==, 设AH a =,则3DH a =,∴222AH DH AD +=,即()22239a a +=,∴aa =∴AH =DH =由翻折的性质得:,2DH AC AC AH ⊥== 1122ADCSAC DH AD CG =⋅=⋅,∴11922CG =⨯, 解得275CG =, ∴952735DE AD CF CG ===;②由(4)①已证:DEA CFG ~,53DE CF =, 53DE C AE FG F ∴==, 1AE =, 513FG ∴=,解得35FG =, 由翻折的性质得:9CD AD ==,在Rt CDG中,365DG =, 33669555AF AD FG DG ∴=--==--,在Rt ABF中,BF ===【点睛】本题考查了正方形的性质、相似三角形的判定与性质、翻折的性质、解直角三角形等知识点,较难的是题(4)①,通过作辅助线,构造直角三角形和相似三角形是解题关键. 12.如图1,边长为4的正方形与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上. 问题发现(1)如图1,AE 与BF 的数量关系为______.类比探究(2)如图2,将正方形CFEG 绕点C 旋转m 度(030m ︒<<︒).请问(1)中的结论还成立吗?若不成立,请说明理由.拓展延伸(3)若F 为BC 的中点,在正方形CFEG 的旋转过程中,当点A ,F ,G 在一条直线上时,线段AG 的长度为______.解析:(1)2AE BF ;(2)成立,见解析;(3302302【分析】问题发现:证出AB ∥EF ,由平行线分线段成比例定理得出2AE CE BF CF =论;类比探究:证明△ACE ∽△BCF ,得出2AE AC BF CB== 拓展延伸:分两种情况,连接CE 交GF 于H ,由正方形的性质得出AB=BC=4,242AC ==2GF CE CF =,GH=HF=HE=HC ,得出122CF BC ==,22GF CE ==2HF HE HC ===2230AH AC HC -得出答案.【详解】[问题发现] 解:2AE BF =,理由如下:∵四边形ABCD 和四边形CFEG 是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,2CF ,CE ⊥GF ,∴AB ∥EF , ∴2AE CE BF CF∴== 2AE BF ∴=; 故答案为:2AE BF ∴=;[类比探究]解:上述结论还成立,理由如下:连接CE ,如图2所示:∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF ,在Rt △CEG 和Rt △CBA 中, 2,2CE CF CA CB ==, 2CE CA CF CB∴==, ∴△ACE ∽△BCF , 2AE AC BF CB ∴==, 2AE BF ∴=;[拓展延伸]解:分两种情况:①如图3所示:连接CE 交GF 于H ,∵四边形ABCD 和四边形CFEG 是正方形,∴AB=BC=4,AC=2AB=42,GF=CE=2CF ,HF=HE=HC ,∵点F 为BC 的中点,∴CF=12BC=2,GF=CE=22,GH=HF=HE=HC=2,∴2222(42)(2)30AH AC HC =-=-=,∴302AG AH HG =+=+;②如图4所示:连接CE 交GF 于H ,同①得:GH=HF=HE=HC=2, ∴2222(42)(2)30AH AC HC =-=-=, ∴302AG AH HG =-=-;故答案为:302+或302-.【点睛】本题是四边形综合题目,考查了正方形的性质、旋转的性质、平行线分线段成比例定理、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.13.如图1,在Rt ABC △中,90B ∠=︒,30C ∠=︒,4BC =,点D ,E 分别是边BC ,AC 的中点,连接DE .将EDC △绕点C 按逆时针方向旋转,记旋转角为α.(1)问题发现①当0α=︒时,BD AE =;②当180α=︒时,BD AE =; (2)拓展探究试判断:当0360α︒≤<︒时,BD AE的大小有无变化?请仅就图2的情形给出证明; (3)问题解决当EDC △旋转至//DE AC 时,请直接写出BD 的长.解析:(1)332)不变,证明见解析;(3)37【分析】(1)①当α=0°时,在Rt △ABC 中,由勾股定理,求出AC 的值是多少;然后根据点D 、E 分别是边BC 、AC 的中点,分别求出AE 、BD 的大小,即可求出BD 、AE 的比值; ②中,图形如下,与①有所变化,但求解方法完全相同;(2)证明△ECA ∽△DCB ,从而根据边长成比例得出比值;(3)存在2种情况,一种是当0180α︒<<︒时,//DE AC ;另一种是当180360α︒<<︒时,//DE AC ,分别利用勾股定理可求得. 【详解】(1)①∵在Rt ABC △中,90B ∠=︒,30C ∠=︒,4BC =,点D ,E 分别是边BC ,AC 的中点∴CD=BD=2,在Rt △ABC 中,4383 ∴43∴232433BD AE ==; ②图形如下:同理可知:BC=4,AC=833,DC=2,DE=233,CE=433∴BD=DC+CB=2+4=6,AE=EC+AC=438333+=1233 ∴6321233BD AE ==;(2)不变,理由如下∵∠ECD=∠ACB ,∴∠ECA=∠DCB ,又∵32DC CB EC CA ==, ∴△ECA ∽△DCB ,∴32BD DC AE EC ==; (3)情况一:当0180α︒<<︒时,//DE AC ,图形如下,过点D 作BC 的垂线,交BC 延长线于点F∵ED ∥AC ,∴∠ACD=∠EDC=90°∵∠ACB=∠ECD=30°∴∠ECF=30°,∴∠FCD=60°∵CD=2∴在Rt △DCF 中,CF=1,FD=3 ∴FB=FC=CB=1+4=5 ∴在Rt △FDB 中,DB=22DF FB +=27;情况二:当180360α︒<<︒时,//DE AC ,图形如下,过点D 作BC 的垂线,交BC 于点F∵DE ∥AC ,∴∠ACD=90°∵∠ACB=30°,∴∠DCF=60°∵CD=2,∴在Rt △CDF 中,CF=1,DF=3∴FB=CB -CF=4-1=3∴在Rt △FDB 中,DB=22DF FB +=23综上得:DB 的长为23或27.【点睛】此题属于旋转的综合题.考查了旋转的性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握分类讨论思想的应用是解此题的关键.14.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在BC 边上时,填空:线段DE 与AC 的位置关系是 ;②设△BDC 的面积为S 1,△AEC 的面积为S 2.则S 1与S 2的数量关系是 .(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想. (3)拓展探究已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=4,OE ∥AB 交BC 于点E (如图4),若在射线BA 上存在点F ,使S △DCF =S △BDC ,请直接写出相应的BF 的长解析:解:(1)①DE ∥AC .②12S S =.(2)12S S =仍然成立,证明见解析;(3)433或833. 【详解】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=60°.∴△ADC 是等边三角形.∴∠DCA=60°.∴∠DCA=∠CDE=60°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM .∴CF=EM .∵∠C=90°,∠B =30°∴AB=2AC .又∵AD=AC∴BD=AC .∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(2)如图,过点D 作DM ⊥BC 于M ,过点A 作AN ⊥CE 交EC 的延长线于N ,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC=CE ,AC=CD ,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM ,∵在△ACN 和△DCM 中,ACN DCM CMD N AC CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△ACN ≌△DCM (AAS ),∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(3)如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,所以BE=DF 1,且BE 、DF 1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 2⊥BD ,∵∠ABC=60°,F 1D ∥BE ,∴∠F 2F 1D=∠ABC=60°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 2DB=90°,∴∠F 1DF 2=∠ABC=60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2,过点D 作DG ⊥BC 于G ,∵BD=CD ,∠ABC=60°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°,∴∠CDF 1=180°-∠BCD=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中, 1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===, ∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC=∠BDE=∠ABD=12×60°=30°,又∵BD=4,∴BE=12×4÷cos30°, ∴BF 1BF 2=BF 1+F 1F 2,故BF的长为433或833.15.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.解析:(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,。

2024届苏南京一中学中考数学押题卷含解析

2024届苏南京一中学中考数学押题卷含解析

2024学年苏南京一中学中考数学押题卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列长度的三条线段能组成三角形的是 A .2,3,5 B .7,4,2 C .3,4,8D .3,3,42.在平面直角坐标系xOy 中,函数31y x 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限3.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则sinA 的值为( ) A .B .C .D .4.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .42cmD .5cm5.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .146.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =7.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元8.已知a m =2,a n =3,则a 3m+2n 的值是( ) A .24 B .36C .72D .69.对于函数y=21x ,下列说法正确的是( ) A .y 是x 的反比例函数 B .它的图象过原点 C .它的图象不经过第三象限D .y 随x 的增大而减小10.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( ) A .y=(x ﹣2)2+1 B .y=(x+2)2+1 C .y=(x ﹣2)2﹣3 D .y=(x+2)2﹣311.已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定 12.,a b 是两个连续整数,若7a b <<,则,a b 分别是( ).A .2,3B .3,2C .3,4D .6,8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x ,则依题意所列的方程是_____________.14.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.15.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条. 16.一个正n 边形的中心角等于18°,那么n =_____. 17.按照一定规律排列依次为59111315,1,,,,410131619,…..按此规律,这列数中的第100个数是_____. 18.如图,随机闭合开关1K ,2K ,3K 中的两个,能让两盏灯泡1l 和2l 同时发光的概率为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,已知抛物线y=﹣33x2+233x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF 的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.20.(6分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.21.(6分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.22.(8分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.(1)求证:23 ECDF=;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.①如图2,若∠AFE=45°,求ECDF的值;②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.23.(8分)先化简,再求值:(1x﹣21x-)÷2212x xx x+-+,其中x的值从不等式组11022(1)xx x⎧+⎪⎨⎪-≤⎩>的整数解中选取.24.(10分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.25.(10分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.26.(12分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒乓球36排球足球12请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?27.(12分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.2、A【解题分析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.【题目详解】∵一次函数y=3x+1的k=3>0,b=1>0,∴图象过第一、二、三象限,故选A.【题目点拨】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.3、C【解题分析】先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.【题目详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C.【题目点拨】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.4、C【解题分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【题目详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴14cm2CE DE CD===,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴242cm OC CE==,故选:C.【题目点拨】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键. 5、B 【解题分析】试题分析:根据平行四边形的性质可知AB=CD ,AD ∥BC ,AD=BC ,然后根据平行线的性质和角平分线的性质可知AB=AF ,DE=CD ,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10. 故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解. 6、C 【解题分析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点. 7、A 【解题分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【题目详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【题目点拨】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 8、C 【解题分析】试题解析:∵a m =2,a n =3, ∴a 3m+2n =a 3m •a 2n =(a m )3•(a n )2 =23×32 =8×9=1. 故选C. 9、C 【解题分析】直接利用反比例函数的性质结合图象分布得出答案. 【题目详解】 对于函数y=21x,y 是x 2的反比例函数,故选项A 错误; 它的图象不经过原点,故选项B 错误;它的图象分布在第一、二象限,不经过第三象限,故选项C 正确; 第一象限,y 随x 的增大而减小,第二象限,y 随x 的增大而增大, 故选C . 【题目点拨】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键. 10、C 【解题分析】试题分析:根据顶点式,即A 、C 两个选项的对称轴都为,再将(0,1)代入,符合的式子为C 选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为11、C 【解题分析】首先求出方程的根,再利用半径长度,由点O 到直线a 的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与与圆相离. 【题目详解】 ∵x2-4x-12=0, (x+2)(x-6)=0,解得:x 1=-2(不合题意舍去),x 2=6,∵点O 到直线l 距离是方程x 2-4x-12=0的一个根,即为6, ∴点O 到直线l 的距离d=6,r=5, ∴d >r ,∴直线l 与圆相离.故选:C【题目点拨】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.12、A【解题分析】<<【题目详解】<<a=2,b=1.故选A.【题目点拨】<<二、填空题:(本大题共6个小题,每小题4分,共24分.)13、100(1+x)2=121【解题分析】根据题意给出的等量关系即可求出答案.【题目详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【题目点拨】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.14、15°、30°、60°、120°、150°、165°【解题分析】分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB时,∠ECB=∠B=60°.③如图2,DE∥AB时,延长CD交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.15、20000【解题分析】试题分析:1000÷10200=20000(条).考点:用样本估计总体.16、20【解题分析】由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.【题目详解】∵正n边形的中心角为18°,∴18n=360,∴n=20.故答案为20.【题目点拨】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.17、203 301【解题分析】根据按一定规律排列的一列数依次为579111315,,,,,4710131619…,可得第n个数为2331nn++,据此可得第100个数.【题目详解】由题意,数列可改写成579111315 ,,,,, 4710131619,…,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,∴第n个数为5(1)24(1)3nn+-⨯+-⨯=2331nn++,∴这列数中的第100个数为2100331001⨯+⨯+=203301;故答案为:203 301.【题目点拨】本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.18、1 3【解题分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.【题目详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,∴能让两盏灯泡同时发光的概率21 ==63,故答案为:13.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、3;(2)17312见解析.【解题分析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(43,找点C关于AE的对称点G(-2,3),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=33x-33;直线AE的解析式:y= -33x-33,过点M作y轴的平行线交FH于点Q,设点M(m,-33m²+233m+3),则Q(m,33m-33),根据S△MFP=S△MQF+S△MQP,得出S△MFP=-33m²+33m+433,根据解析式即可求得,△MPF面积的最大值;(3)由(2)可知C(0,3),F(0,33),P(2,33),求得CF=433,CP=433,进而得出△CFP为等边三角形,边长为433,翻折之后形成边长为433的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN 最小,直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F (0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当K F′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.20、2.【解题分析】将原式化简整理,整体代入即可解题.【题目详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【题目点拨】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.21、(1)详见解析;(2)详见解析.【解题分析】(1)根据平行线的性质结合角平分线的性质可得出∠BCA=∠BAC,进而可得出BA=BC,根据等角的余角相等结合等角对等边,即可得出AB=BE,进而可得出BE=BA=BC,此题得证;(2)根据AC2=DC•EC结合∠ACD=∠ECA可得出△ACD∽△ECA,根据相似三角形的性质可得出∠ADC=∠EAC=90°,进而可得出∠FDA=∠FAC=90°,结合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性质可证出AD:AF=AC:FC.【题目详解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E =90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中点;(2)∵AC2=DC•EC,∴AC DC EC AC.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【题目点拨】本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用等角对等边找出BA =BC 、BE =BA ;(2)利用相似三角形的判定定理找出△AFD ∽△CFA .22、(1)见解析;(2)①23EC DF =;②cos ∠AFE =25 【解题分析】(1)用特殊值法,设2BE EC ==,则4AB BC ==,证ABE ECF ∆∆∽,可求出CF ,DF 的长,即可求出结论; (2)①如图2,过F 作FG FD ⊥交AD 于点G ,证FGD ∆和AEF ∆是等腰直角三角形,证FCE AGF ∆∆∽,求出:CE GF 的值,即可写出:EC DF 的值;②如图3,作FT FD =交AD 于点T ,作FH AD ⊥于H ,证FCE ATF ∆∆∽,设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==,112DH DT x +==,分别用含x 的代数式表示出∠AFE 和∠D 的余弦值,列出方程,求出x 的值,即可求出结论.【题目详解】(1)设BE =EC =2,则AB =BC =4,∵90AEF ∠︒=,∴90AEB FEC ∠+∠︒=,∵90AEB EAB ∠+∠︒=,∴∠FEC =∠EAB ,又∴90B C ∠∠︒==,∴ABE ECF ∆∆∽, ∴BE AB CF EC=, 即242CF =, ∴CF =1,则3DF DC CF -==,∴23EC DF =; (2)①如图2,过F 作FG FD ⊥交AD 于点G ,∵45AFE ADC ∠∠︒==,∴FGD ∆和AEF ∆是等腰直角三角形,∴180135AGF DGF ∠︒-∠︒==,180135C D ∠︒-∠︒==,∴∠AGF =∠C ,又∵GAF D CFE AFE ∠+∠∠+∠=, ∴∠GAF =∠CFE ,∴FCE AGF ∆∆∽,∴2=2CE FE GF AF =, 又∵GF =DF , ∴22EC DF =;②如图3,作FT FD =交AD 于点T ,作FHAD ⊥于H ,则FTD FDT ∠∠=,∴180180FTD D ︒-∠︒-∠=,∴∠ATF =∠C , 又∵TAF D AFE CFE ∠+∠∠+∠=,且∠D =∠AFE ,∴∠TAF =∠CFE ,∴FCE ATF ∆∆∽,∴FE FC CE AF AT TF==, 设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==, ∴112DH DT x +==,且2FE FC AF AT x==, 由cos =cos AFE D ∠,得213x x x +=, 解得x =5,∴2cos 5EF AFE AF ∠==.【题目点拨】本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键. 23、-14【解题分析】先化简,再解不等式组确定x 的值,最后代入求值即可.【题目详解】 (1x ﹣21x -)÷2212x x x x+-+, =(1)(1)x x x -+-÷2212x x x x +-+, =21x x-, 解不等式组()110221x x x ⎧+>⎪⎨⎪-≤⎩,可得:﹣2<x ≤2,∴x =﹣1,0,1,2,∵x =﹣1,0,1时,分式无意义,∴x =2,∴原式=2122-=﹣14.24、(1)y =﹣8x +2560(30≤x ≤1);(2)把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口.【解题分析】试题分析:(1)设从甲仓库运x 吨往A 港口,根据题意得从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,再由等量关系:总运费=甲仓库运往A 港口的费用+甲仓库运往B 港口的费用+乙仓库运往A 港口的费用+乙仓库运往B 港口的费用列式并化简,即可得总运费y (元)与x (吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x 的取值;(2)因为所得的函数为一次函数,由增减性可知:y 随x 增大而减少,则当x=1时,y 最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x 吨往A 港口,则从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,所以y=14x+20+10(1﹣x )+8(x ﹣30)=﹣8x+2560,x 的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y 随x 增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920, 此时方案为:把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口. 考点:一次函数的应用.25、(1)2y x =;1522y x =-+;(2)点P 坐标为(114,98). 【解题分析】(1)将F (4,12)代入0n y x x=(>),即可求出反比例函数的解析式2y x =;再根据2y x =求出E 点坐标,将E 、F 两点坐标代入y kx b =+,即可求出一次函数解析式;(2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标.【题目详解】 解:(1)∵反比例函数0n y x x =(>)经过点142F (,),∴n=2, 反比例函数解析式为2y x =. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2). ∵直线y kx b =+ 过点12E (,),点142F (,), ∴2142k b k b +=⎧⎪⎨+=⎪⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数解析式为1522y x=+﹣;(2)∵点E坐标为(1,2),点F坐标为1 4 2(,),∴点B坐标为(4,2),∴BE=3,BF=32,∴1139•32224 EBFS BE BF∆==⨯⨯=,∴94POA EBFS S∆∆==.点P是线段EF上一点,可设点P坐标为1522 x x+(,﹣),∴115942224x⨯-+=(),解得114x=,∴点P坐标为119 48(,).【题目点拨】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.26、(1)24,1;(2) 54;(3)360.【解题分析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【题目详解】(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).27、(1)y=﹣x2+x+3;D(1,);(2)P(3,).【解题分析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.【题目详解】解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C(0,3)代入得:﹣8a=3,解得:a=﹣,y=﹣x2+x+3=﹣(x﹣1)2+,∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣x+3,∵D(1,),当x=1时,y=﹣+3=,∴E(1,),∴DE=-=,设P(m,﹣m2+m+3),则F(m,﹣m+3),∵四边形DEFP是平行四边形,且DE∥FP,∴DE=FP,即(﹣m2+m+3)﹣(﹣m+3)=,解得:m1=1(舍),m2=3,∴P(3,).【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.。

最新江苏省南京市中考数学十年真题汇编试卷附解析

最新江苏省南京市中考数学十年真题汇编试卷附解析

江苏省南京市中考数学十年真题汇编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,PB 为⊙O 的切线,B 为切点,连结 PO 交⊙O 于点 A ,PA =2,PO= 5,则 PB 的长为( )A .4B .10C .26D .432.右边物体的主视图是( )3.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( ) A .4.5m B .4.6m C .6m D .8m 4.圆锥的底面直径是8,母线长为12,则这个圆锥的侧面展开图的圆心角是( ) A . 60°B . 120°C . 150°D . 180°5.下列命题中,正确的是( ) A .凡是等腰三角形必相似 B .凡是直角三角形都相似 C .凡是等腰直角三角形必相似D .凡是钝角三角形都相似6.抛物线2255y x x =++与坐标轴...的交点个数是( ) A .O 个 B .1个C . 2个D .3 个7.某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百 分率为x ,则下列方程中正确的是( ) A .55 (1+x )2=35 B .35(1+x )2=55 C .55 (1-x )2=35 D .35(1-x )2=55 8.下列图形中,中心对称图形的是( )A .B .C .D .9.直线142y x =-与x 轴的交点坐标为( ) A .(0,一4) B .(一4,0) C .(0,8)D .(8,O )10.在△ABC 中,三个内角满足以下关系:∠A=12∠B=13∠C ,那么这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .任意三角形11.在下列方程中:①1383x +=;②2243x y -+=;③331x y +=;④251x y =+;⑤y x =;⑥2()3()2yx y x x y --+=+,是二元一次方程的有( ) A .2 个B . 3个C .4 个D .5 个12.下列说法正确的是( )A .无限小数是无理数B .不循环小数是无理数C .无理数的相反数还是无理数D .两个无理数的和还是无理数13.1134(1)324-⨯-⨯的结果是( ) A .112B .142C .748-D .748二、填空题14.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于 .15.已知⊙O 的半径为 4 cm ,直线l 与⊙O 相切,则圆心0到直线l 的距离为 cm . 16.如图,⊙O 的直径为 10,弦 AB 的长为8,M 是弦 AB 上的动点,则OM 的长的取值范围是 .17.如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt ABF △中,90AFB ∠=,3AF =,AB=5.四边形EFGH 的面积是.18.平行四边形ABCD 的两条对角线交于点O ,若△BOC 的面积为6,AB=3,则AB ,CD 间的距离为____________.19.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数 1 2 3 4 … n 正三角形个数471013…a n则n解答题 20.如果21(3)(4)34x A Bx x x x +=+-+-+,那么A= ,B= . 21.随机抽取某城市30天空气污染指数统计如下:污染指 数(W) 40 70 90 110 120 140 天数(f)4610 541(W ≤50,空气质量为优;若50<W ≤100,空气质量为良;若l00<W ≤150,空气质量为轻微污染)则该城市这30天中,污染指数为 的天数最多,空气质量为良的共有 天,空气质量为轻微污染的天数占 %. 22.把139500 四舍五人取近似数,保留 3 个有效数字是 .23.上海浦东磁悬浮铁路全长30 km ,单程运行时间约8 min ,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min .24.老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y=-x 的图象,请同学们观察.甲同学发现:两个图像有两个交点;乙同学发现:双曲线上任意一点到两坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的解析式: . 25.已知代数式 2m 的值是 4,则代数式231m m -+的值是 .三、解答题26.已知二次函数图象经过(23)-,,对称轴1x =,抛物线与x 轴两交点距离为4,求这个二次函数的解析式?27.已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,点E 、F 、G 分别在边AB 、BC 、CD•上,AE=GF=GC .(1)求证:四边形AEFG 是平行四边形;(2)当∠FGC=2∠EFB 时,求证:四边形AEFG 是矩形.28.为了解某初中学生的体能情况,•抽取若干名学生在单位时间内进行引体向上测试,将所得数据整理后,画出频数分布直方图(如图),•图中从左到右依次为第1,2,3,4,5组.(1)求抽取了多少名学生参加测试.(2)处于哪个次数段的学生数最多(答出是第几组即可)?(3)若次数在5次(含5次)以上为达标,求这次测试的达标率.29.解下列方程:(1)0.511 0.20.3x x+-=(2)0.40.950.030.020.520.03x x x+-+-=30.国家卫生部信息统计中心根据国务院新闻办公室授权发布的全国内地5月21日至5月25日非典型性肺炎发病情况,按年龄段进行统计分析中,各年龄段发病的总人数如图所示(发病的病人年龄在0~80岁之间),请你观察图形,回答下面的问题:(1)全国内地5月21日至5月25日平均每天有人患非典型性肺炎;(2)年龄在29.5~39.5这一组的频数是;频率是;(3)根据统计图,年龄在范围内的人发病最多.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.A4.B5.C6.B7.C8.B9.D10.A11.B12.C13.D二、填空题14.2415.416.3≤OM≤5 17.118.819.3n+120.-1,121.90,16,33.3 22.1.40×10523.3.75×10324.y=-5 x25.-1三、解答题26.∵抛物线与x轴两交点距离为4,且以1x 为对称轴.∴抛物线与x 轴两交点的坐标为(10)(30)-,,,.设抛物线的解析式(1)(3)y a x x =+-,将点(23)-,代入解得1a =. ∴二次函数的解析式为223y x x =--.27.证明:(1) ∵AE=GF=GC ,∴∠GFC=∠C=∠B ,∴AB ∥GF ,∴四边形AEFG 是平行四边形;(2)由条件∠GFC=EFB FGC ∠-=∠- 902180,∴∠EFB+∠GFC=90°,∴∠EFG=90°.∵四边形AEFG 是平行四边形,∴四边形AEFG 是矩形.28.(1)100名,(2)第3组,(3)达标率为65%29.(1)1310x =(2)9x = 30.⑴20; ⑵ 25,0.25; ⑶19.5~29.5.。

押江苏南京卷第22-23题(三角形全等、三角函数的应用)(解析版)-备战2024年中考数学临考题押题

押江苏南京卷第22-23题(三角形全等、三角函数的应用)(解析版)-备战2024年中考数学临考题押题

押江苏南京卷第22-23题押题方向一:三角形全等3年江苏南京卷真题考点命题趋势2023年江苏南京卷第19题三角形全等从近年江苏南京中考来看,三角形全等考查,比较简单;预计2024年江苏南京卷还将继续重视对三角形全等的考查。

2022年江苏南京卷第22题三角形全等2021年江苏南京卷第20题三角形全等1.(2023·江苏南京·中考真题)如图,在ABCD 中,点M ,N 分别在边BC ,AD 上,且//AM CN ,对角线BD 分别交AM ,CN 于点E ,F .求证BE DF =.【分析】连接AC 交BD 于O ,根据平行四边形的性质得到AO OC =,BO DO =,根据全等三角形的性质得到OE OF =,于是得到结论.【解答】证明:连接AC 交BD 于O ,四边形ABCD 是平行四边形,AO OC ∴=,BO DO =,//AM CN ,EAC FCA ∴∠=∠,在AEO ∆与CFO ∆中,EAC FCO AO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOE COF ASA ∴∆≅∆,OE OF ∴=,BO OE OD OF ∴-=-,BE DF ∴=.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,正确地找出辅助线是解题的关键.3.(2022·江苏南京·中考真题)如图,AM BN ∥,AC平分BAM ∠,交BN 于点C ,过点B 作BD AC ⊥,交AM 于点D ,垂足为O ,连接CD ,求证:四边形ABCD 是菱形.【点睛】本题主要考查了菱形的判定,涉及平行四边形的判定和性质,全等三角形的判定和性质,角平分线的性质,平行线的性质等知识,熟练掌握菱形的判定方法是解题的关键.3.(2021·江苏南京·中考真题)如图,AC 与BD 交于点O ,,OA OD ABO DCO =∠=∠,E 为BC 延长线上一点,过点E 作//EF CD ,交BD 的延长线于点F .(1)求证AOB DOC △≌△;(2)若2,3,1AB BC CE ===,求EF 的长.1.平行四边形的性质,全等三角形的判定和性质,正确地找出辅助线是解题的关键.2.菱形的判定,涉及平行四边形的判定和性质,全等三角形的判定和性质,角平分线的性质,平行线的性质等知识,熟练掌握菱形的判定方法是解题的关键.3.全等三角形的判定与性质、平行线分线段成比例的推论、相似三角形的判定与性质等,解决本题的关键是牢记相关概念与公式,能结合图形建立线段之间的关联等,本题较基础,考查了学生的几何语言表达和对基础知识的掌握与应用等.1.如图,ABCD Y 中,点E 、F 在AC 上,BE AB ⊥,DF CD ⊥.(1)求证:ABE CDF △≌△;(2)求证:BE DF ∥.AEB CFD ∴∠=∠,∴BE DF ∥.2.如图,在ABD △中,DAB DBA ∠=∠,AC BD ⊥交BD 的延长线于点C ,BEAD ⊥交AD 的延长线于点E .(1)求证:BDE ADC ≌.(2)运用无刻度的直尺和圆规画出ABC 的外接圆,且当3AD =,2DE =时,ABC 的外接圆半径为________.∵2DE =,3BD AD ==,的延长线交BA 的延长线于点F ,连接DF .(1)求证:AB AF =;(2)当ABC 满足_____时,四边形ACDF 为正方形.又∥ AB CD ,AF CD ∴∥,∴四边形ACDF 是平行四边形,由(1)知,AB AF =,AB AC = ,AF AC ∴=,∴四边形ACDF 是菱形,90BAC ∠=︒ ,90CAE ∴∠=︒,∴四边形ACDF 是正方形.故答案为:AB AC =,90BAC ∠=︒.【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质、正方形的判定方法,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.4.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D .E 是CB 上一点,且CE CD =,过点E 作EF AB ∥,与CA 交于点F .(1)证明ADC FCE △△≌;(2)若E 是BC 的中点,6CD =,则ABC 的面积为______.E 是BC 的中点,6DE CE ∴==,212BC CE ==,CDE ∴ 是等边三角形,60ECD ∴∠=︒,60CFE ∴∠=︒,30ACD ∴∠=︒,43AC ∴=,ABC ∴ 的面积114322AC BC =⋅=⨯5.如图,在ABCD Y 中,点E 、F (1)求证:ABF CDE ≌△△;(2)若2AFC D ∠=∠,求证:四边形AFCE 是菱形.【答案】(1)见详解(2)见详解【分析】(1)可证BF DE =,即可求证;是平行四边形,从而可证CF.(1)求证:四边形AECF 是平行四边形;(2)若EF 平分AEC ∠,求证:AB AC ⊥.90BAC EOC ∴∠=∠=︒,AB AC ∴⊥.【点睛】本题考查了平行四边形的判定和性质,菱形的判定和性质,全等三角形的判定和性质,熟练掌握这些知识是解题的关键.7.如图,在平行四边形ABCD 中,E 、F 是对角线BD 上的点,且BE DF =,连接AE CF 、.(1)求证:ADE CBF ≌;(2)连接AF CE 、,若AB AD =,求证:四边形AFCE 是菱形.∵AB AD =,四边形ABCD ∴ABCD 是菱形,∴AC BD AO CO ⊥=,,∵BE DF =,∴OE OF =,∴四边形AFCE 是平行四边形,又∵AC BD⊥,∴四边形AFCE是菱形.【点睛】本题考查菱形的判定和性质,平行四边形的性质,全等三角形的判定,灵活运用这些性质解决问题的关键.8.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD AC BC、、于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若4AB=,8BC=,求菱形AECF的周长.EF 是AC 的垂直平分线,AF CF x ∴==,8BF x =-,在Rt ABF 中,由勾股定理得:222AB BF AF +=,∴()22248x x +-=,解得5x =.5AF ∴=,∴菱形AECF 的周长为20.【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.9.如图,点E 在正方形ABCD 的边AD 上,点F 在AD 的延长线上,且DF AE =.(1)求证:ABE DCF △≌△;(2)若15DE CF ==,,求正方形ABCD 的边长.∴在Rt DFC △中,222CF DF CD =+,∴()22251x x =-+,解得4x =(负值已舍去),∴正方形ABCD 的边长为4.押题方向二:三角函数的应用3年江苏南京卷真题考点命题趋势2023年江苏南京卷第19题三角形全等从近年江苏南京中考来看,三角形全等考查,比较简单;预计2024年江苏南京卷还将继续重视对三角形全等的考查。

2023年江苏省南京市中考数学真题汇编试卷附解析

2023年江苏省南京市中考数学真题汇编试卷附解析

2023年江苏省南京市中考数学真题汇编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.将抛物线21(1)22y x =-+先向右平移2个单位,再向上平移 3个单位得到的抛物线是( )A .21(1)52y x =++ B .21(2)42y x =++ C .21(3)52y x =-+ D .21(3)12y x =-- 2.已知O 为□ABCD 对角线的交点,且△AOB 的面积为1,则□ABCD 的面积为( ) A .1 B .2 C .3 D .4 3.在□ABCD 中∠A=50°,则∠A 的邻角∠D 的度数为( ) A .40° B .50° C .130° D .不能确定4.为了要了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各个小组里的数据个数叫做( ) A .频数 B .频率 C .样本容量 D .频数累计 5.在菱形ABCD 中,∠ABC=60°,AC=4,则BD 的长为 ( )A .83B .8.C .43D .236.=⋅-n m a a 5)(( ) A .ma+-5B .ma+5C . nm a+5D .nm a+-57.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针指向的可能性最大的区域是( ) A .1B .2C .3D .48.下列关于作图的语句中正确的是( ) A .画直线AB =10厘米 B .画射线OB =10厘米C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一条直线和直线AB 平行9.如图,P 是线段MN 的中点,Q 是MN 上的点,判断下列说法中:①PQ=12PN ;②(图(图AB C PQ=MP-QN ;③PQ=MQ-PN ;④PQ=12MN-QN ,其中正确的有( )A .1个B .2个C .3个D .4个 10.已知||2(3)18m m x --=是关于x 的一元一次方程,则( )A .2m =B .3m =-C .3m =±D .1m =二、填空题11.太阳光线可以看成是 ,像这样的光线所形成的投影称为 .12.图1是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形(图2),那么在Rt △ABC 中,sin B ∠的值是 .13.设将一张正方形纸片沿图中虚线剪开后,能拼成右边四个图形,则其中是中心对称图形的是 (填序号).14.从某厂生产的各种规格的电阻中,抽取l00 只进行测量,得到一组数据,其中最大值为 11.58Ω,最小值为10.72Ω,对这组数据进行整理时,确定它的组距为0.10Ω,则应分成 组.15.已知关于x 的不等式50x m -<只有两个正整数解,则m 的取值范围是 . 16.在航天知识竞赛中包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为 分.17.如图,AB ∥CD ,若∠ABE=120°,∠DCE=35°,则∠BEC= .18.如图 ,在△ABC 中,∠ACB=90°,角平分线 AD 、BE 交于点F ,则∠AFB= .19.△ABC 经平移变换后,点A 平移了5 cm ,则点B 平移了 cm .20.把一个 化成几个 的的形式,这种变形叫做把这个多项式分解因式.21.如图所示,△ABC 中,∠B=∠C ,FD ⊥BC 于D ,DE ⊥AB 于E ,∠AFD=155°,则∠EDF= .22.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球.三、解答题23.如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点36B OA OP ==,,,求BAP ∠的度数.24.已知等腰△ABC 的周长为50 cm,底边BC 长为y(cm),腰AB 长为x(cm).求: (1)y 与x 之间的函数解析式及自变量x 的取值范围; (2)求当x=15时的函数值.25.如图26-1,△ABC 的边BC 在直线l 上,AC ⊥BC ,且AC=BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF=FP .(1)在图26-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将△EFP 沿直线l 向左平移到图26-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP 沿直线l 向左平移到图26-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?(只要写出结论,不必证明).26.先化简,再求值: (1)21()a a a a-÷-,其中a = (2)22142244a a a a a --⨯--+,其中1a =-.27.先化筒,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.28.计算:(1))()b b -;(2)1111()()3232a b a b -+--;(3)(53)(35)ab x x ab ---;(4)111(2)(2)(8)224x x x x -+-+29.计算:(1) (-100)×(-20)-(-7); (2)11522[1(4)]3223---+;A (E ) BC (F ) P lllA图26-1图26-2图26-3E(3)313[1()24]5864-+-⨯÷;(4)22221140.25()|416|(1)4327-+----+÷30.小林用七巧板拼一只飞翔的鸽子,现在还剩一块有一个锐角是45°的直角三角形ABC (左下角)应该放在黑色的三角形这个位置上.你能帮助小林通过变换直角三角形ABC 放到黑色的三角形这个位置上吗?请说明你是通过怎样的变换实现你的目标的.B AC BA B【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.C4.A5.C6.D7.C8.D9.C10.B二、填空题11.平行光线,平行投影12.13. ②14.915.10<m ≤1516.7117.95°18.135°19.520.多项式, 整式,乘积21.65°22.48三、解答题 23. 解:PA 为⊙O 的切线,A 为切点,90OA PA OAP ∴∠=⊥,∴.在OAP Rt △中,31sin 3062OA OPA OPA OP ∠===∴∠=, 90903060AOP OPA ∴∠=-∠=-=.在OAB △中6060AOP OA OB OAB ∠==∴∠=,,.906030BAP OAP OAB ∴∠=∠-∠=-=.24.(1)y=50-2x(12.5<x<25);(2)2025.(1)AB=AP ;AB ⊥AP . (2)BQ=AP ;BQ ⊥AP .证明:①由已知,得EF=FP ,EF ⊥FP ,∴∠EPF=45°. 又∵AC ⊥BC ,∴∠CQP=∠CPQ=45°,∴CQ=CP . 在Rt △BCQ 和Rt △ACP 中,BC=AC ,∠BCQ=∠ACP=90°,CQ=CP , ∴Rt △BCQ ≌Rt △ACP ,∴BQ=AP . ②如图3,延长BQ 交AP 于点M . ∵Rt △BCQ ≌Rt △ACP ,∴∠1=∠2. 在Rt △BCQ 中,∠1+∠3=90°,又∠3=∠4, ∴∠2+∠4=∠1+∠3=90°. ∴∠QMA=90°,∴BQ ⊥AP . (3)成立26.(1)21a ,13;(2)22(2)a a +-,16-27.95x -,-828.(1)223a b -;(2)221194a b -;(3)222925x a b -;(4)24x --29.(1)2007 (2)11 (3)65(4)-2030.向右平移10个单位,再向上平移7个单位,最后绕着点A 逆时针方向旋转45度得到黑色的三角形.lA B FC Q 图3M 1234 EP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市近年中考压轴题汇编
一、选择 1、(2009年)下面是按一定规律排列的一列数: 第1个数:
11122-⎛⎫
-+ ⎪⎝⎭
; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫
---⎛⎫-++
+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭
; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫
-----⎛⎫-++
+++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
; ……
第n 个数:2321
11(1)(1)(1)
111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭
. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )
A .第10个数
B .第11个数
C .第12个数
D .第13个数 2、(2010年)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致为
3、(2011年)如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数
y =x 的图象被⊙P 的弦AB 的长为23,则a 的值是 A .23 B .222+ C .23 D .23+
4、(2012年)如图,菱形纸片ABCD 中,60A ︒
∠=,将纸片折叠,点A 、D 分别落在A’、D’处,且A’D’经过B ,EF 为折痕,当D’F ⊥CD 时,CF
FD
的值为
(第3题)
A B
B
P
x
y
y=x
F
E
D'
A'
D
C
B A
A.
31
2
- B.
36
C.
231
6
- D.
31
8
+
二、填空题 1、(2009年)已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).
2、(2009年)如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为2
4cm ,则梯形
ABCD 的面积为 cm 2.
3、(2010年)如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点,若两圆的半径分别为3cm 和5cm ,则AB 的长为 cm 。

4、(2010年) 如图,点C 在⊙O 上,将圆心角∠AOB 绕点O 按逆时针方向旋转到∠A O B ''',旋转角为(0180)αα︒<<︒。

若∠AOB=30°,∠BCA ’=40°,则∠α= °。

5、(2010年) 如图,AB ⊥BC ,AB=BC=2cm ,弧OA 与弧OC 关于点O 中心对称,则AB 、BC 、
弧CO 、弧OA 所围成的面积是 cm 2。

6、(2011年)如图,海边有两座灯塔A 、B ,暗礁分布在经过A 、B 两点的弓形(弓形的弧
是⊙O 的一部分)区域内,∠AOB =80°,为了避免触礁,轮船P 与A 、B 的张角∠APB 的最大值为______°. 7.(2011年)如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF ,
将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则∠a =______.
A B
O
P
(第6题
)
O
B A
C
D A D
E B C
F (第1题) (第2题)
(第7题)
A
B
C
D
F E
8.(2011年)设函数2y x =
与1y x =-的图象的交点坐标为(a ,b ),则11
a b
-的值为__________.
9、(2011年)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:
①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________. 10、(2012年)在平面直角坐标系中,规定把一个三角形先沿x 轴翻折,再向右平移两个单位称为一次变换,如图,
已知等边三角形ABC 的顶点B 、C 的坐标分别是,(-1,-1),(-3,-1),把三角形ABC 经过连续9次这样的变换得到
三角形A’B’C’,则点A 的对应点A’的坐标是
三、解答题
1、(2009年)如图,已知二次函数2
21y x x =--的图象的顶点为A .二次函数2
y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数2
21y x x =--的图象的对称轴上.
(1)求点A 与点C 的坐标;
(2)当四边形AOBC 为菱形时,求函数2
y ax bx =+的关系式.
2、(2009年)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,
和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.
(1)请用含t 的代数式分别表示出点C 与点P 的坐标;
(2)以点C 为圆心、12
t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .
①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.
-3-2-1
-1
-2-3A C B x
y O 1 2 3 2 1
1- 1- 2
-221
y x x =--A
O
x
y
E
P
D A B M
C
3、(2010年)如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止,连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG 、FG 。

(1)设AE=x 时,△EGF 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;
(2)P 是MG 的中点,请直接写出点P 的运动路线的长。

4、(2011年)如图,在Rt △ABC 中,∠ACB =90°,AC =6㎝,BC =8㎝,P 为BC 的中点.动点Q 从点P 出发,沿射线PC 方向以2㎝/s 的速度运动,以P 为圆心,PQ 长为半径作圆.设点Q 运动的时间为t s .
⑴当t =1.2时,判断直线AB 与⊙P 的位置关系,并说明理由; ⑵已知⊙O 为△ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值.
A
B C P Q O
(第4题)
5.(2011年)如图①,P 为△ABC 内一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,
如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.
⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.
⑵在△ABC 中,∠A <∠B <∠C .
①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.
6.(2011年)
问题情境
已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x
=+>.
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数1
(0)y x x x
=+
>的图象性质. ① 填写下表,画出函数的图象: ②
x …… 14 13 12
1 2 3 4 ……
y ……
……
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y =ax 2+bx +c (a ≠0)的最大(小)值时,除了通过观察图象,还
B
B
B C
C C
A
A
A
D
P
E



(第27题)
1 x y
O 1 3 4 5 2
2 3 5 4 (第28题) -1 -1
可以通过配方得到.请你通过配方求函数1
y x x
=+
(x >0)的最小值. 解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
7、(2012年)某玩具由一个圆形区域和一个扇形区域组成,如图,在1O 和扇形2O CD 中,
1O 与2O C 、2O D 分别相切于A 、B ,260CO D ∠=︒,E 、F 事直线12O O 与1O 、扇形2O CD
的两个交点,EF=24cm ,设1O 的半径为x cm , ① 用含x 的代数式表示扇形2O CD 的半径;
② 若1O 和扇形2O CD 两个区域的制作成本分别为0.45元2
/cm 和0.06元2
/cm ,当1O 的半径为多少时,该玩具成本最小?
O 1
O 2
A
B
F
D
E
C。

相关文档
最新文档