【步步高】2014届高三数学大一轮复习讲义 第6章 数列的通项与求和学案 苏教版
步步高大一轮复习讲义

§2.9 函数的应用2014高考会这样考 1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值.复习备考要这样做 1.讨论函数的性质一定要先考虑定义域;2.充分搜集、应用题目信息,正确建立函数模型;3.注重函数与不等式、数列、导数等知识的综合.1. 几类函数模型及其增长差异(1)几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a 、b 为常数,a ≠0) 反比例函数模型f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型f (x )=ax 2+bx +c(a ,b ,c 为常数,a ≠0)指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)函数性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0)在(0,+∞)上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图像的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n<a x(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:[难点正本疑点清源]1.要注意实际问题的自变量的取值范围,合理确定函数的定义域.2.解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图像的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.1.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午3时的温度为________.答案78℃解析T(3)=33-3×3+60=78(℃).2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.答案 2 500解析L(Q)=40Q-120Q2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500当Q=300时,L(Q)的最大值为2 500万元.3. (2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M02-t30,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率...是-10ln 2(太贝克/年),则M(60)等于( ) A.5太贝克B.75ln 2太贝克C.150ln 2太贝克D.150太贝克答案D解析∵M′(t)=-130M02-t30·ln 2,∴M′(30)=-130×12M0ln 2=-10ln 2,∴M0=600.∴M(t)=600×2-t30,∴M(60)=600×2-2=150(太贝克).4.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是( ) A.x>22%B.x<22%C.x=22%D.x的大小由第一年的产量确定答案B解析设第一年的产量为a,则a(1+x)2=a(1+44%),∴x=20%.5.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( ) A.5千米处B.4千米处C.3千米处D.2千米处答案 A解析 由题意得,y 1=k 1x,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x=45x ,即x =5时取等号,故选A.题型一 二次函数模型例1 某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?思维启迪:(1)根据函数模型,建立函数解析式.(2)求函数最值. 解 (1)每吨平均成本为y x(万元).则y x =x 5+8 000x -48≥2x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低,最低为32万元. (2)设可获得总利润为R (x )万元, 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680 (0≤x ≤210).∵R (x )在[0,210]上是增函数,∴x =210时,R (x )有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.探究提高二次函数是常用的函数模型,建立二次函数模型可以求出函数的值域或最值.解决实际中的优化问题时,一定要分析自变量的取值范围.利用配方法求最值时,一定要注意对称轴与给定区间的关系:若对称轴在给定的区间内,可在对称轴处取最值,在离对称轴较远的端点处取另一最值;若对称轴不在给定的区间内,最值都在区间的端点处取得.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A .100台B .120台C .150台D .180台答案 C解析 设利润为f (x )万元,则f (x )=25x -(3 000+20x -0.1x 2)=0.1x 2+5x -3 000 (0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,∴生产者不亏本时的最低产量是150台. 题型二 指数函数模型例2 诺贝尔奖发放方式为每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资料显示:1999年诺贝尔奖金发放后基金总额约为19 800万美元.设f (x )表示第x (x ∈N *)年诺贝尔奖发放后的基金总额(1999年记为f (1),2000年记为f (2),…,依次类推).(1)用f (1)表示f (2)与f (3),并根据所求结果归纳出函数f (x )的表达式;(2)试根据f (x )的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)思维启迪:从所给信息中找出关键词,增长率问题可以建立指数函数模型. 解 (1)由题意知,f (2)=f (1)(1+6.24%)-12f (1)·6.24%=f (1)(1+3.12%),f (3)=f (2)(1+6.24%)-12f (2)·6.24%=f (2)(1+3.12%)=f (1)(1+3.12%)2, ∴f (x )=19 800(1+3.12%)x -1(x ∈N *).(2)2008年诺贝尔奖发放后基金总额为f (10)=19 800(1+3.12%)9=26 136,故2009年度诺贝尔奖各项奖金为16·12f (10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.探究提高 此类增长率问题,在实际问题中常可以用指数函数模型y =N (1+p )x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a (1+x )n(其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t+21-t(t ≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解 (1)若m =2,则θ=2·2t+21-t=2⎝⎛⎭⎪⎫2t +12t ,当θ=5时,2t +12t =52,令2t=x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦m ·2t+22t ≥2恒成立,亦即m ≥2⎝ ⎛⎭⎪⎫12t -122t 恒成立.令12t =x ,则0<x ≤1,∴m ≥2(x -x 2), 由于x -x 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.题型三 分段函数模型例3 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5 040x ,x ∈[120,144,12x 2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?思维启迪:题目中月处理成本与月处理量的关系为分段函数关系,项目获利和月处理量的关系也是分段函数关系.解(1)当x∈[200,300]时,设该项目获利为S,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000 =-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损. (2)由题意,可知二氧化碳的每吨处理成本为 y x =⎩⎪⎨⎪⎧13x 2-80x +5 040,x ∈[120,144.12x +80 000x -200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240, 所以当x =120时,y x取得最小值240. ②当x ∈[144,500]时,y x =12x +80 000x -200≥212x ×80 000x-200=200, 当且仅当12x =80 000x ,即x =400时,yx取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低. 探究提高 本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16答案D解析由函数解析式可以看出,组装第A件产品所需时间为cA=15,故组装第4件产品所需时间为c4=30,解得c=60,将c=60代入cA=15,得A=16.函数建模问题典例:(12分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?审题视角 (1)认真阅读题干内容,理清数量关系.(2)分析图形提供的信息,从图形可看出函数是分段的.(3)建立函数模型,确定解决模型的方法. 规范解答解 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎪⎨⎪⎧-2P +50 14≤P ≤20,-32P +40 20<P ≤26,[2分]代入①式得L =⎩⎪⎨⎪⎧-2P +50P -14×100-5 600 14≤P ≤20,⎝ ⎛⎭⎪⎫-32P +40P -14×100-5 600 20<P ≤26,[4分](1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元.故当P =19.5元时,月利润余额最大,为450元.[8分] (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫.[12分]解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量 关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义.第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.温馨提醒(1)本题经过了三次建模:①根据月销量图建立Q与P的函数关系;②建立利润余额函数;③建立脱贫不等式.(2)本题的函数模型是分段的一次函数和二次函数,在实际问题中,由于在不同的背景下解决的问题发生了变化,因此在不同范围中,建立函数模型也不一样,所以现实生活中分段函数的应用非常广泛.(3)在构造分段函数时,分段不合理、不准确,是易出现的错误.方法与技巧1.认真分析题意,合理选择数学模型是解决应用问题的基础;2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.失误与防范1.函数模型应用不当是常见的解题错误.所以,正确理解题意,选择适当的函数模型是正确解决这类问题的前提和基础.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 有一批材料可以围成200 m长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为 ( )A .1 000 m 2B .2 000 m 2C .2 500 m 2D .3 000 m 2答案 C解析 设围成的场地宽为x m ,面积为y m 2, 则y =3x (200-4x )×13=-4x 2+200x (0<x <50). 当x =25时,y max =25×100=2 500. ∴围成的矩形场地的最大面积为2 500 m 2.2. (2011·湖北改编)里氏震级M 的计算公式:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.( )A .6 1 000B .4 1 000C .6 10 000D .4 10 000答案 C解析 由M =lg A -lg A 0知,M =lg 1 000-lg 0.001=3-(-3)=6,∴此次地震的震级为6级.设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=(lg A 1-lg A 0)-(lg A 2-lg A 0)=9-5=4.∴A 1A 2=104=10 000,∴9级地震的最大振幅是5级地震最大振幅的10 000倍.3. 将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt ,假设5分钟后甲桶和乙桶的水量相等,若再过m 分钟后甲桶中的水只有a8升,则m的值为( )A .8B .10C .12D .15答案 B解析 由已知条件可得a e 5n=a 2,e 5n =12.由a e nt =a 8,得e nt=18,所以t =15,m =15-5=10.4. 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如右图所示),则每辆客车营运多少年时,其营运的平均利润最大( ) A .3 B .4C .5D .6答案 C解析 由题图可得营运总利润y =-(x -6)2+11,则营运的年平均利润y x=-x -25x+12,∵x ∈N *,∴y x≤-2x ·25x+12=2,当且仅当x =25x,即x =5时取“=”.∴x =5时营运的平均利润最大. 二、填空题(每小题5分,共15分)5. 某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt(其中k 为常数,t表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=e 12k ,∴k =2ln 2,∴y =e2t ln 2,当t =5时,∴y =e10ln 2=210=1 024.6. 某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 答案 9解析 设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤38+2.15x -3+1,3<x ≤88+2.15×5+2.85x -8+1,x >8由y =22.6,解得x =9.7. 2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1) 答案 2037解析 由已知条件:14(1+1.25%)x -2 008>20,x - 2 008>lg107lg 8180=1-lg 74lg 3-3lg 2-1=28.7,则x >2 036.7,即x =2 037. 三、解答题(共22分)8. (10分)某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:p =2(1-kt )(x -b )2,其中k ,b 均为常数.当关税税率t =75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件. (1)试确定k ,b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:q =2-x,当p =q 时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.解 (1)由已知⎩⎪⎨⎪⎧1=21-0.75k 5-b 22=21-0.75k7-b 2,⇒⎩⎪⎨⎪⎧1-0.75k 5-b 2=01-0.75k7-b2=1.解得b =5,k =1.(2)当p =q 时,2(1-t )(x -5)2=2-x, ∴(1-t )(x -5)2=-x ⇒t =1+x x -52=1+1x +25x-10而f (x )=x +25x在(0,4]上单调递减,∴当x =4时,f (x )有最小值414,故当x =4时,关税税率的最大值为500%.9.(12分)如图所示,在矩形ABCD 中,已知AB =a ,BC =b (a >b ).在AB 、AD 、CD 、CB 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形EFGH 的面积最大?求出这个最大面积. 解 设四边形EFGH 的面积为S , 由题意得S △AEH =S △CFG =12x 2,S △BEF =S △DHG =12(a -x )·(b -x ).由此得S =ab -2⎣⎢⎡⎦⎥⎤12x 2+12a -xb -x=-2x 2+(a +b )x =-2⎝⎛⎭⎪⎫x -a +b 42+a +b28.函数的定义域为{x |0<x ≤b }, 因为a >b >0,所以0<b <a +b2.若a +b4≤b ,即a ≤3b ,x =a +b4时面积S 取得最大值a +b28;若a +b4>b ,即a >3b 时,函数S =-2⎝ ⎛⎭⎪⎫x -a +b 42+a +b 28在(0,b ]上是增函数,因此,当x =b 时,面积S 取得最大值ab -b 2. 综上可知,若a ≤3b ,当x =a +b4时,四边形EFGH 的面积取得最大值a +b28;若a >3b ,当x =b 时,四边形EFGH 的面积取得最大值ab -b 2.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共20分)1. 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元答案 B解析 依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30 (x ≥0).∴当x =10时,S max =45.6(万元).2. 某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( ) A .x =15,y =12 B .x =12,y =15 C .x =14,y =10 D .x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.3. 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )答案 A解析 汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图像上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的.二、填空题(每小题5分,共15分)4. 如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为____________. 答案 30 cm 、20 cm解析 设长为a cm ,宽为b cm ,则ab =600, 则中间文字部分的面积S =(a -2-1)(b -2) =606-(2a +3b )≤606-26×600=486, 当且仅当2a =3b ,即a =30,b =20时,S 最大=486.5. 某商人购货,进价已按原价a 扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式为______________. 答案 y =a4x (x ∈N *)解析 设新价为b ,依题意,有b (1-20%)-a (1-25%)=b (1-20%)·25%,化简得b = 54a .∴y =b ·20%·x =54a ·20%·x ,即y =a4x (x ∈N *). 6. 某医院为了提高服务质量,对挂号处的排队人数进行了调查,发现:当还未开始挂号时,有N 个人已经在排队等候挂号;开始挂号后排队的人数平均每分钟增加M 人.假定挂号的速度是每个窗口每分钟K 个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有________个.答案 4解析 设要同时开放x 个窗口才能满足要求,则⎩⎪⎨⎪⎧ N +40M =40K , ①N +15M =15K ×2, ②N +8M ≤8Kx . ③由①②,得⎩⎪⎨⎪⎧ K =2.5M ,N =60M ,代入③,得60M +8M ≤8×2.5Mx ,解得x ≥3.4.故至少同时开放4个窗口才能满足要求.三、解答题7. (13分)(2011·湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时)解 (1)由题意,当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧ 200a +b =0,20a +b =60, 解得⎩⎪⎨⎪⎧ a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧ 60, 0≤x ≤20,13200-x , 20<x ≤200. (2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x ≤20,13x 200-x , 20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x ) ≤13⎣⎢⎡⎦⎥⎤x +200-x 22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.(注:本资料素材和资料部分来自网络,仅供参考。
2014届高三数学一轮复习:数列求和

2.一些常见数列的前n项和公式:
(1)1+2+3+4+…+n=
nn+1 2
;
(2)1+3+5+7+…+2n-1= n2 ;
(3)2+4+6+8+…+2n= n2+n .
(2)通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列 {bn},{cn}是等比数列或等差数列,可采用分组求和法求和.
1.已知函数 f(x)=2x-3x-1,点(n,an)在 f(x)的图像上,an 的前 n 项和为 Sn. (1)求使 an<0 的 n 的最大值. (2)求 Sn. 解:(1)∵点(n,an)在函数 f(x)=2x-3x-1 的图像上, ∴an=2n-3n-1. ∵an<0,∴2n-3n-1<0. 即 2n<3n+1. 又∵n∈N+,∴n≤3,即 n 的最大值为 3.
则 Sn=141-12+12-13+…+n1-n+1 1 =141-n+1 1=4nn+1. 答案:4nn+1
5.(2013·宁波模拟)数列{an},{bn}满足 anbn=1,an=n2+ 3n+2,则{bn}的前 10 项和为_____ห้องสมุดไป่ตู้__. 解析:an=n2+3n+2,bn=a1n=n2+31n+2=n+11n+2 =n+1 1-n+1 2, 则{bn}的前 10 项之和为12-13+13-14+…+111-112=152. 答案:152
bn=Sn+1 n=n2+1 n=nn1+1=n1-n+1 1,
Tn=11-12+12-13+13-14+…+n1-n+1 1=1-
【苏教版】【步步高】2014届高三数学(理)大一轮复习学案第6章学案28等差数列及其前n项和

学案28 等差数列及其前n 项和导学目标: 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.了解等差数列与一次函数的关系.4.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.自主梳理1.等差数列的有关定义(1)一般地,如果一个数列从第____项起,每一项与它的前一项的____等于同一个常数,那么这个数列就叫做等差数列.符号表示为____________ (n ∈N *,d 为常数).(2)数列a ,A ,b 成等差数列的充要条件是____________,其中A 叫做a ,b 的____________.2.等差数列的有关公式(1)通项公式:a n =____________,a n =a m +__________ (m ,n ∈N *). (2)前n 项和公式:S n =______________=________________. 3.等差数列的前n 项和公式与函数的关系S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列的充要条件是其前n 项和公式S n =____________. 4.等差数列的性质(1)若m +n =p +q (m ,n ,p ,q ∈N *),则有________________,特别地,当m +n =2p 时,________________.(2)等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)等差数列的单调性:若公差d >0,则数列为________;若d <0,则数列为__________;若d =0,则数列为____________.自我检测 1.(2010·北京海淀模拟)已知等差数列{a n }中,a 5+a 9-a 7=10,记S n =a 1+a 2+…+a n ,则S 13的值为________.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d =________. 3.设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=________. 4.(2010·湖南师大附中)若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=________.5.(2010·泰安一模)设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=________.探究点一 等差数列的基本量运算例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50, (1)求通项a n ;(2)若S n =242,求n .变式迁移1 设等差数列{a n }的公差为d (d ≠0),它的前10项和S 10=110,且a 1,a 2,a 4成等比数列,求公差d 和通项公式a n .探究点二 等差数列的判定例2 已知数列{a n }中,a 1=35,a n =2-1a n -1 (n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大值和最小值,并说明理由.变式迁移2 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *). (1)求a 2,a 3的值.(2)是否存在实数λ,使得数列{a n +λ2n }为等差数列?若存在,求出λ的值;若不存在,说明理由.探究点三 等差数列性质的应用例3 若一个等差数列的前5项之和为34,最后5项之和为146,且所有项的和为360,求这个数列的项数.变式迁移3 已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且前n 项和为286,求n ; (2)若S n =20,S 2n =38,求S 3n ;(3)若项数为奇数,且奇数项和为44,偶数项和为33,求数列的中间项和项数.探究点四 等差数列的综合应用例4 已知数列{a n }满足2a n +1=a n +a n +2 (n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72.若b n =12a n -30,求数列{b n }的前n 项和的最小值.变式迁移4 在等差数列{a n }中,a 16+a 17+a 18=a 9=-36,其前n 项和为S n . (1)求S n 的最小值,并求出S n 取最小值时n 的值. (2)求T n =|a 1|+|a 2|+…+|a n |.1.等差数列的判断方法有:(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)中项公式:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.2.对于等差数列有关计算问题主要围绕着通项公式和前n 项和公式,在两个公式中共五个量a 1、d 、n 、a n 、S n ,已知其中三个量可求出剩余的量,而a 与d 是最基本的,它可以确定等差数列的通项公式和前n 项和公式.3.要注意等差数列通项公式和前n 项和公式的灵活应用,如a n =a m +(n -m )d ,S 2n -1=(2n -1)a n 等.4.在遇到三个数成等差数列问题时,可设三个数为①a ,a +d ,a +2d ;②a -d ,a ,a +d ;③a -d ,a +d ,a +3d 等可视具体情况而定.(满分:90分)一、填空题(每小题6分,共48分)1.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=______. 2.(2010·全国Ⅱ改编)如果等差数列{}a n 中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=________.3.(2010·潍坊五校联合高三期中)已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是________.4.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为________.5.等差数列{a n }的前n 项和满足S 20=S 40,下列结论中正确的序号是________. ①S 30是S n 中的最大值; ②S 30是S n 中的最小值; ③S 30=0; ④S 60=0. 6.(2010·辽宁)设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________. 7.(2009·海南、宁夏)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.8.在数列{a n }中,若点(n ,a n )在经过点(5,3)的定直线l 上,则数列{a n }的前9项和S 9=________.二、解答题(共42分)9.(12分)设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110,且a 22=a 1a 4.(1)证明:a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.10.(14分)(2010·山东)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .11.(16分)(2010·广东湛师附中第六次月考)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2).(1)证明数列{1a n}是等差数列;(2)求数列{a n }的通项;(3)若λa n +1a n +1≥λ对任意n ≥2的整数恒成立,求实数λ的取值范围.答案 自主梳理1.(1)二 差 a n +1-a n =d (2)A =a +b2等差中项2.(1)a 1+(n -1)d (n -m )d (2)na 1+n (n -1)2d (a 1+a n )n23.An 2+Bn4.(1)a m +a n =a p +a q a m +a n =2a p (3)递增数列 递减数列 常数列自我检测 1.130 2.2解析 ∵S 3=3(a 1+a 3)2=6,a 3=4,∴a 1=0,a 3-a 1=2d .∴d =2. 3.24解析 ∵S 9=72=9(a 1+a 9)2,∴a 1+a 9=16.∵a 1+a 9=2a 5,∴a 5=8. ∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24. 4.13解析 由S 5=(a 2+a 4)·52⇒25=(3+a 4)·52⇒a 4=7,所以7=3+2d ⇒d =2,所以a 7=a 4+3d =7+3×2=13.5.1解析 S 9S 5=9(a 1+a 9)25(a 1+a 5)2=95·2a 52a 3=95·59=1.课堂活动区例1 解题导引 (1)等差数列{a n }中,a 1和d 是两个基本量,用它们可以表示数列中的任何一项,利用等差数列的通项公式与前n 项和公式,列方程组解a 1和d ,是解决等差数列问题的常用方法;(2)由a 1,d ,n ,a n ,S n 这五个量中的三个量可求出其余两个量,需选用恰当的公式,利用方程组观点求解.解 (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧ a 1+9d =30,a 1+19d =50, 解得⎩⎪⎨⎪⎧a 1=12,d =2.所以a n =2n +10.(2)由S n =na 1+n (n -1)2d ,S n =242.得12n +n (n -1)2×2=242.解得n =11或n =-22(舍去).变式迁移1 解 由题意,知 ⎩⎪⎨⎪⎧S 10=10a 1+10×92d =110,(a 1+d )2=a 1·(a 1+3d ),即⎩⎪⎨⎪⎧2a 1+9d =22,a 1d =d 2.∵d ≠0,∴a 1=d .解得a 1=d =2,∴a n =2n .例2 解题导引 1.等差数列的判定通常有两种方法:第一种是利用定义,即a n -a n -1=d (常数)(n ≥2),第二种是利用等差中项,即2a n =a n+1+a n -1 (n ≥2).2.解选择、填空题时,亦可用通项或前n 项和直接判断.(1)通项法:若数列{a n }的通项公式为n 的一次函数,即a n =An +B ,则{a n }是等差数列. (2)前n 项和法:若数列{a n }的前n 项和S n 是S n =An 2+Bn 的形式(A ,B 是常数),则{a n }为等差数列.3.若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可.解 (1)∵a n =2-1a n -1 (n ≥2,n ∈N *),b n =1a n -1,∴当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52.∴数列{b n }是以-52为首项,以1为公差的等差数列.(2)由(1)知,b n =n -72,则a n =1+1b n=1+22n -7,设函数f (x )=1+22x -7,易知f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞内为减函数. ∴当n =3时,a n 取得最小值-1; 当n =4时,a n 取得最大值3.变式迁移2 解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列{a n +λ2n }为等差数列.设b n =a n +λ2n ,由{b n }为等差数列,则有2b 2=b 1+b 3.∴2×a 2+λ22=a 1+λ2+a 3+λ23.∴13+λ2=5+λ2+33+λ8,解得λ=-1.此时,b 1=2.事实上,b n +1-b n =a n +1-12n +1-a n -12n=12n +1[(a n +1-2a n )+1]=12n +1[(2n +1-1)+1]=1. 综上可知,存在实数λ=-1,使得数列{a n +λ2n }为首项为2、公差为1的等差数列.例3 解题导引 本题可运用倒序求和的方法和等差数列的性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,从中我们可以体会运用性质解决问题的方便与简捷,应注意运用;也可用整体思想(把a 1+n -12d 看作整体).解 方法一 设此等差数列为{a n }共n 项, 依题意有a 1+a 2+a 3+a 4+a 5=34,① a n +a n -1+a n -2+a n -3+a n -4=146.② 根据等差数列性质,得a 5+a n -4=a 4+a n -3=a 3+a n -2=a 2+a n -1=a 1+a n .将①②两式相加,得(a 1+a n )+(a 2+a n -1)+(a 3+a n -2)+(a 4+a n -3)+(a 5+a n -4)=5(a 1+a n )=180,∴a 1+a n =36.由S n =n (a 1+a n )2=36n2=360,得n =20.所以该等差数列有20项.方法二 设此等差数列共有n 项,首项为a 1,公差为d , 则S 5=5a 1+5×42d =34,①S n -S n -5=[n (n -1)d 2+na 1]-[(n -5)a 1+(n -5)(n -6)2d ]=5a 1+(5n -15)d =146.②①②两式相加可得10a 1+5(n -1)d =180, ∴a 1+n -12d =18,代入S n =na 1+n (n -1)2d =n ⎝ ⎛⎭⎪⎫a 1+n -12d =360, 得18n =360,∴n =20.所以该数列的项数为20项. 变式迁移3 解 (1)依题意,知a 1+a 2+a 3+a 4=21, a n -3+a n -2+a n -1+a n =67,∴a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88. ∴a 1+a n =884=22.∵S n =n (a 1+a n )2=286,∴n =26.(2)∵S n ,S 2n -S n ,S 3n -S 2n 成等差数列,∴S 3n =3(S 2n -S n )=54.(3)设项数为2n -1 (n ∈N *),则奇数项有n 项,偶数项有n -1项,中间项为a n ,则S 奇=(a 1+a 2n -1)·n 2=n ·a n =44,S 偶=(a 2+a 2n -2)·(n -1)2=(n -1)·a n =33,∴n n -1=43.∴n =4,a n =11.∴数列的中间项为11,项数为7.例4 解题导引 若{a n }是等差数列,求前n 项和的最值时,(1)若a 1>0,d <0,且满足⎩⎨⎧ a n ≥0a n +1≤0,前n 项和S n 最大;(2)若a 1<0,d >0,且满足⎩⎨⎧a n ≤0a n +1≥0,前n 项和S n 最小;(3)除上面方法外,还可将{a n }的前n 项和的最值问题看作S n 关于n 的二次函数最值问题,利用二次函数的图象或配方法求解,注意n ∈N *.解 方法一 ∵2a n +1=a n +a n +2,∴{a n }是等差数列. 设{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72,得⎩⎪⎨⎪⎧ a 1+2d =106a 1+15d =72,∴⎩⎪⎨⎪⎧a 1=2d =4. ∴a n =4n -2.则b n =12a n -30=2n -31.解⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,得292≤n ≤312.∵n ∈N *,∴n =15.∴{b n }前15项为负值. ∴S 15最小. 可知b 1=-29,d =2,∴S 15=15×(-29+2×15-31)2=-225.方法二 同方法一求出b n =2n -31.∵S n =n (-29+2n -31)2=n 2-30n =(n -15)2-225,∴当n =15时,S n 有最小值,且最小值为-225.变式迁移4 解 (1)设等差数列{a n }的首项为a 1,公差为d , ∵a 16+a 17+a 18=3a 17=-36, ∴a 17=-12,∴d =a 17-a 917-9=3,∴a n =a 9+(n -9)·d =3n -63,a n +1=3n -60,令⎩⎪⎨⎪⎧a n =3n -63≤0a n +1=3n -60≥0,得20≤n ≤21, ∴S 20=S 21=-630,∴n =20或21时,S n 最小且最小值为-630.(2)由(1)知前20项小于零,第21项等于0,以后各项均为正数.当n ≤21时,T n =-S n =-32n 2+1232n .当n >21时,T n =S n -2S 21=32n 2-1232n +1 260.综上,T n =⎩⎨⎧-32n 2+1232n (n ≤21,n ∈N *)32n 2-1232n +1 260 (n >21,n ∈N *).课后练习区 1.15解析 在等差数列{a n }中,a 5+a 6=a 3+a 8=22,∴a 5=15. 2.28解析 ∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.3.5解析 由S 3=S 7得a 4+a 5+a 6+a 7=0, 即a 5+a 6=0,∴9d =-2a 1=18,d =2.∴S n =-9n +12n (n -1)×2=n 2-10n .∴当n =--102×1=5时,S n 最小.4.16解析 a 4+a 6+a 8+a 10+a 12=120.∴5a 8=120.∴a 8=24.∴a 9-13a 11=a 1+8d -13(a 1+10d )=23(a 1+7d )=23a 8=16. 5.④解析 方法一 由S 20=S 40,得a 1=-592d ,∴S 60=60a 1+60×592d =60×⎝⎛⎭⎫-592d +60×592d =0. 方法二 由S 20=S 40,得a 21+a 22+…+a 40=0,∴a 30+a 31=0.∴S 60=60(a 1+a 60)2=30(a 30+a 31)=0.6.15解析 设等差数列公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,①S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8.②联立①②两式得a 1=-1,d =2,故a 9=a 1+8d =-1+8×2=15. 7.10解析 由等差数列的性质可知a m -1+a m +1=2a m ,∴2a m -a 2m =0,∴a m =0或a m =2.又S 2m -1=(2m -1)a m ≠0, ∴a m =2,由2(2m -1)=38,得m =10. 8.27解析 ∵点(n ,a n )在定直线l 上,∴数列{a n }为等差数列.∴a n =a 1+(n -1)·d . 将(5,3)代入,得3=a 1+4d =a 5.∴S 9=92(a 1+a 9)=9a 5=3×9=27.9.(1)证明 ∵{a n }是等差数列,∴a 2=a 1+d ,a 4=a 1+3d ,又a 22=a 1a 4,于是(a 1+d )2=a 1(a 1+3d ),即a 21+2a 1d +d 2=a 21+3a 1d (d ≠0).化简得a 1=d .…………………………(6分) (2)解 由条件S 10=110和S 10=10a 1+10×92d ,得到10a 1+45d =110.由(1)知,a 1=d ,代入上式得55d =110,故d =2,a n =a 1+(n -1)d =2n .因此,数列{a n }的通项公式为a n =2n ,n ∈N *.…………………………………………(12分)10.解 (1)设等差数列{a n }的首项为a 1,公差为d ,由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2.…………………………………………………………………………(4分) 由于a n =a 1+(n -1)d ,S n =n (a 1+a n )2,所以a n =2n +1,S n =n (n +2).…………………………………………………………(7分) (2)因为a n =2n +1,所以a 2n -1=4n (n +1),因此b n =14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1.………………………………………………………(9分)故T n =b 1+b 2+…+b n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝ ⎛⎭⎪⎫1-1n +1=n 4(n +1). 所以数列{b n }的前n 项和T n =n4(n +1).…………………………………………………(14分)11.(1)证明 将3a n a n -1+a n -a n -1=0(n ≥2)整理得1a n -1a n -1=3(n ≥2).所以数列{1a n}为以1为首项,3为公差的等差数列.…………………………………(4分)(2)解 由(1)可得1a n =1+3(n -1)=3n -2,所以a n =13n -2.……………………………………………………………………………(8分)(3)解 若λa n +1a n +1≥λ对n ≥2的整数恒成立, 即λ3n -2+3n +1≥λ对n ≥2的整数恒成立. 整理得λ≤(3n +1)(3n -2)3(n -1)………………………………………………………………(10分)令c n =(3n +1)(3n -2)3(n -1)c n +1-c n =(3n +4)(3n +1)3n -(3n +1)(3n -2)3(n -1)=(3n +1)(3n -4)3n (n -1).………………………………………………………………………(14分)因为n ≥2,所以c n +1-c n >0,即数列{c n }为单调递增数列,所以c 2最小,c 2=283.所以λ的取值范围为(-∞,283].………………………………………………………(16分)。
【步步高】高三数学大一轮复习 6

nπ .
题型分类·深度剖析
题型二
由数列的递推关系求通项公式
【例 2】 (1)已知 a1=1,an+1=2an+ 1,求 an; (2)已知 a1=2,an+1=an+n,求 an.
思维启迪
解析
探究提高
题型分类·深度剖析
题型二
由数列的递推关系求通项公式
【例 2】 (1)已知 a1=1,an+1=2an+ 1,求 an; (2)已知 a1=2,an+1=an+n,求 an.
分类 原则
类型
满足条件
(2)数列的项与项数:数列 的项与项数是两个不同的
按项数 有穷数列 项数 有限
概念,数列的项是指数列中 某一确定的数,而项数是指
分类 无穷数列 项数 无限
数列的项对应的位置序号.
基础知识·自主学习
要点梳理
难点正本 疑点清源
按项与 递增数列 项间的 递减数列 大小关
常数列 系分类
由于 a1 也适合此等式,∴an=4n-5.
(2)a1=S1=3+b,
当 n≥2 时,an=Sn-Sn-1
=(3n+b)-(3n-1+b)=2·3n-1.
题型分类·深度剖析
题型三
由数列的前n项和求通项公式
思维启迪 解析
探究提高
【例 3】 已知下面数列{an}的前 n 项和 Sn,求{an}的通项公式: (1)Sn=2n2-3n;(2)Sn=3n+b.
题型分类·深度剖析
题型一
由数列的前几项求数列的通项
【例 1】写出下面各数列的一个通
思维启迪 解析
项公式:
(1)3,5,7,9,…; (2)12,34,78,1156,3312,…; (3)-1,32,-13,34,-15,36,…;
高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案

第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。
2014《步步高》高考数学第一轮复习06 数列求和

§6.4 数列求和2014高考会这样考 1.考查等差、等比数列的求和;2.以数列求和为载体,考查数列求和的各种方法和技巧;3.综合考查数列和集合、函数、不等式、解析几何、概率等知识的综合问题.复习备考要这样做 1.灵活掌握数列由递推式求通项公式的几种方法;2.掌握必要的化归方法与求和技巧,根据数列通项的结构特点,巧妙解决数列求和的问题.1. 等差数列前n 项和S n =n (a 1+a n )2=na 1+n (n -1)2d ,推导方法:倒序相加法;等比数列前n 项和S n =⎩⎪⎨⎪⎧na 1, q =1,a 1(1-q n )1-q =a 1-a n q 1-q , q ≠1.推导方法:乘公比,错位相减法. 2. 数列求和的常用方法(1)分组求和:把一个数列分成几个可以直接求和的数列.(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (4)倒序相加:例如,等差数列前n 项和公式的推导.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 3. 常见的拆项公式(1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .[难点正本 疑点清源]1. 解决非等差、等比数列的求和,主要有两种思路(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2. 等价转化思想是解决数列问题的基本思想方法,它可将复杂的数列转化为等差、等比数列问题来解决.1. 在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________.答案 54解析 由等差数列的性质,a 2+a 8=18-a 5, 即2a 5=18-a 5,∴a 5=6, ∴S 9=(a 1+a 9)×92=9a 5=54.2. 等比数列{a n }的公比q =12,a 8=1,则S 8=________.答案 255解析 由a 8=1,q =12得a 1=27,∴S 8=a 1(1-q 8)1-q=27[1-(12)8]1-12=28-1=255.3. 若S n =1-2+3-4+…+(-1)n -1·n ,则S 50=________.答案 -25解析 S 50=1-2+3-4+…+49-50=(-1)×25=-25.4. (2011·天津)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为 ( )A .-110B .-90C .90D .110答案 D解析 ∵a 3=a 1+2d =a 1-4,a 7=a 1+6d =a 1-12,a 9=a 1+8d =a 1-16,又∵a 7是a 3与a 9的等比中项,∴(a 1-12)2=(a 1-4)·(a 1-16),解得a 1=20. ∴S 10=10×20+12×10×9×(-2)=110.5. (2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为 ( )A.100101B.99101C.99100D.101100答案 A解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.题型一 分组转化求和例1 已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求: (1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.思维启迪:第(1)问由已知条件列出关于p 、q 的方程组求解;第(2)问分组后用等差、等比数列的求和公式求解.解 (1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q , 解得p =1,q =1. (2)由(1),知x n =2n +n ,所以S n =(2+22+…+2n )+(1+2+…+n ) =2n +1-2+n (n +1)2.探究提高 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. 解 和式中第k 项为a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)n 个-(12+122+…+12n )] =2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n1-12=12n -1+2n -2.题型二 错位相减法求和例2 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,n ∈N *.(1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法.解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n 3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,② ①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ),即2S n =n ·3n +1-3(1-3n )1-3,∴S n =(2n -1)3n +14+34.探究提高 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养.(2011·辽宁)已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪:第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)又b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n2n +1. 探究提高 使用裂项相消法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N *,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1 得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .审题路线图等差数列{a n }中,特定项的值 ↓(a 3,a 5,a 7即为特定项) a 3=7,a 5+a 7=26↓(从特定项,考虑基本量a 1,d )列方程组⎩⎪⎨⎪⎧a 1+2d =72a 1+10d =26↓(根据条件的结构特征,确定了方程的方法) 用公式:a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d .↓(将a n 代入化简求b n ) b n =14n (n +1)↓(根据b n 的结构特征,确定裂项相消) b n =14⎝⎛⎭⎫1n -1n +1↓T n =14⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n4(n +1). 规范解答解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.[4分]所以a n =3+2(n -1)=2n +1, S n =3n +n (n -1)2×2=n 2+2n .[6分](2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1) =14·⎝⎛⎭⎫1n -1n +1,[8分] 所以T n =14·(1-12+12-13+…+1n -1n +1)[10分]=14·(1-1n +1)=n4(n +1), 即数列{b n }的前n 项和T n =n4(n +1).[12分]温馨提醒 本题审题的关键有两个环节.一是根据a 3=7,a 5+a 7=26的特征,确定列方程组求解.二是根据数列{b n }的通项b n =14n (n +1)的特征,确定用裂项相消法求和.所以,在审题时,要根据数式的结构特征确定解题方案.方法与技巧 数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 失误与防范1.通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,或拆为基本数列求和,或转化为基本数列求和.求和过程中同时要对项数作出准确判断.2.含有字母的数列求和,常伴随着分类讨论.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100答案 C解析 ∵S n n =n +2,∴⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.2. 已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于 ( )A .20B .17C .19D .21 答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0,所以S 19=19(a 1+a 19)2=19a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0.3. 若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n -2答案 C解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4. 数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 二、填空题(每小题5分,共15分)5. 数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.答案 2 600解析 由a n +2-a n =1+(-1)n 知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k . ∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100) =50+(2+4+6+…+100)=50+(100+2)×502=2 600.6. 数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|=________.答案 66解析 当n =1时,a 1=S 1=-1. 当n ≥2时,a n =S n -S n -1=2n -5.∴a n =⎩⎪⎨⎪⎧-1 (n =1)2n -5 (n ≥2).令2n -5≤0,得n ≤52,∴当n ≤2时,a n <0,当n ≥3时,a n >0,∴|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+(a 3+a 4+…+a 10)=S 10-2S 2=66.7. (2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解. ∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234 =15×(10+234)2=1 830.三、解答题(共22分)8. (10分)求和:(1)S n =32+94+258+6516+…+n ·2n +12n;(2)S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2. 解 (1)由于a n =n ·2n +12n=n +12n , ∴S n =⎝⎛⎭⎫1+121+⎝⎛⎭⎫2+122+⎝⎛⎭⎫3+123+…+⎝⎛⎭⎫n +12n =(1+2+3+…+n )+⎝⎛⎭⎫12+122+123+…+12n=n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2-12n +1.(2)当x =±1时,S n =4n .当x ≠±1时, S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2 =⎝⎛⎫x 2+2+1x 2+⎝⎛⎫x 4+2+1x 4+…+⎝⎛⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n =x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n =(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n .∴S n =⎩⎪⎨⎪⎧4n (x =±1),(x 2n-1)(x 2n +2+1)x 2n (x 2-1)+2n (x ≠±1).9. (12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n =n1+n .(1)解 由已知得⎩⎨⎧a n +1=12S n ,a n=12Sn -1(n ≥2),得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×⎝⎛⎭⎫32n -2 =12⎝⎛⎭⎫32n -2(n ≥2). ∴a n =⎩⎪⎨⎪⎧1, n =1,12⎝⎛⎭⎫32n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32⎣⎡⎦⎤32·⎝⎛⎭⎫32n -1=n .∴1b n b n +1=1n (1+n )=1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -11+n =1-11+n =n 1+n.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于( )A .126B .130C .132D .134答案 C解析 b n +1-b n =lg a n +1-lg a n =lga n +1a n=lg q (常数), ∴{b n }为等差数列.∴⎩⎪⎨⎪⎧ b 1+2d =18,b 1+5d =12,∴⎩⎪⎨⎪⎧d =-2,b 1=22.由b n =-2n +24≥0,得n ≤12,∴{b n }的前11项为正,第12项为零,从第13项起为负,∴S 11、S 12最大且S 11=S 12=132.2. 数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0. 令x =0,得y =-9,∴在y 轴上的截距为-9.3. 已知数列2 008,2 009,1,-2 008,-2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 013项之和S 2 013等于( )A .1B .2 010C .4 018D .0答案 C解析 由已知得a n =a n -1+a n +1 (n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 013=6×335+3,∴S 2 013=S 3=4 018. 二、填空题(每小题5分,共15分)4. 等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.答案 13(4n -1)解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1. ∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.∴a 21+a 22+…+a 2n =1·(1-4n )1-4=13(4n -1).5. 若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=__________. 答案 2n 2+6n解析 令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2,当n =1时,也适合上式,所以a n =4(n +1)2 (n ∈N *).于是a nn +1=4(n +1),故a 12+a 23+…+a nn +1=2n 2+6n .6. 已知数列{a n }中,a 1=-60,a n +1=a n +3,则这个数列前30项的绝对值的和是________.答案 765解析 由题意知{a n }是等差数列,a n =-60+3(n -1)=3n -63,令a n ≥0,解得n ≥21. ∴|a 1|+|a 2|+|a 3|+…+|a 30|=-(a 1+a 2+…+a 20)+(a 21+…+a 30)=S 30-2S 20=(-60+90-63)×302-(-60+60-63)×20=765.三、解答题7. (13分)(2012·四川)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立.(1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n ,当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2.② 由②-①,得a 2(a 2-a 1)=a 2.③若a 2=0,由①知a 1=0; 若a 2≠0,由③知a 2-a 1=1.④由①④解得a 1=2+1,a 2=2+2或a 1=1-2, a 2=2- 2.综上可得,a 1=0,a 2=0或a 1=2+1,a 2=2+2或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2. 当n ≥2时,有(2+2)a n =S 2+S n , (2+2)a n -1=S 2+S n -1.所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2). 所以a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg10a 1a n, 则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1.所以数列{b n }是单调递减的等差数列⎝⎛⎭⎫公差为-12lg 2. 从而b 1>b 2>…>b 7=lg108>lg 1=0. 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0.故当n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。
【苏教版】【步步高】2014届高三数学(理)大一轮复习学案第6章学案29等比数列及其前n项和

学案29 等比数列及其前n 项和导学目标: 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.了解等比数列与指数函数的关系.4.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.自主梳理1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的________,通常用字母______表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =____________. 3.等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·________ (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则__________________.(3)若{a n },{b n }(项数相同)是等比数列,则{λa n } (λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍是等比数列.(4)单调性:⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎨⎧ a 1<00<q <1⇔{a n }是________数列;⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎨⎧a 1<0q >1⇔{a n }是________数列;q =1⇔{a n }是____数列;q <0⇔{a n }是________数列. 5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1(q n -1)q -1=a 1q n q -1-a 1q -1.6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为______.自我检测 1.(2011·苏州模拟)如果-1,a ,b ,c ,-9成等比数列,那么b =________. 2.(2011·湖南长郡中学模拟)已知等比数列{a n }的前三项依次为a -2,a +2,a +8,则a n =______________.3.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1 (n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.4.若数列{a n }的前n 项和S n =3n -a ,数列{a n }为等比数列,则实数a 的值为________.5.设f (n )=2+24+27+…+23n +1 (n ∈N *),则f (n )=____________.探究点一 等比数列的基本量运算例1 已知正项等比数列{a n }中,a 1a 5+2a 2a 6+a 3a 7=100,a 2a 4-2a 3a 5+a 4a 6=36,求数列{a n }的通项a n 和前n 项和S n .变式迁移1 在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,S n =126,求n 和q .探究点二 等比数列的判定例2 已知数列{a n }的首项a 1=5,前n 项和为S n ,且S n +1=2S n +n +5,n ∈N *. (1)证明:数列{a n +1}是等比数列; (2)求{a n }的通项公式以及S n .变式迁移2 设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.探究点三 等比数列性质的应用例3 在等比数列{a n }中,a 1+a 2+a 3+a 4+a 5=8,且1a 1+1a 2+1a 3+1a 4+1a 5=2,求a 3.变式迁移3 (1)已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,求b 5+b 9的值;(2)在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,求a 41a 42a 43a 44.分类讨论思想与整体思想例 (14分)设首项为正数的等比数列{a n }的前n 项和为80,它的前2n 项和为6 560,且前n 项中数值最大的项为54,求此数列的第2n 项.【答题模板】解 设数列{a n }的公比为q , 若q =1,则S n =na 1,S 2n =2na 1=2S n . ∵S 2n =6 560≠2S n =160,∴q ≠1,[4分]由题意得⎩⎪⎨⎪⎧a 1(1-q n )1-q=80, ①a 1(1-q 2n)1-q =6 560. ②[6分]将①整体代入②得80(1+q n )=6 560,∴q n =81.[8分]将q n =81代入①得a 1(1-81)=80(1-q ), ∴a 1=q -1,由a 1>0,得q >1, ∴数列{a n }为递增数列.[10分]∴a n =a 1q n -1=a 1q ·q n =81·a 1q=54.∴a 1q =23.[12分] 与a 1=q -1联立可得a 1=2,q =3, ∴a 2n =2×32n -1 (n ∈N *).[14分] 【突破思维障碍】(1)分类讨论的思想:①利用等比数列前n 项和公式时要分公比q =1和q ≠1两种情况讨论;②研究等比数列的单调性时也应进行讨论:当a 1>0,q >1或a 1<0,0<q <1时为递增数列;当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.(2)函数的思想:等比数列的通项公式a n =a 1q n -1=a 1q ·q n(q >0且q ≠1)常和指数函数相联系.(3)整体思想:应用等比数列前n 项和时,常把q n ,a 11-q当成整体求解.本题条件前n 项中数值最大的项为54的利用是解决本题的关键,同时将q n和a 1(1-q n)1-q的值整体代入求解,简化了运算,体现了整体代换的思想,在解决有关数列求和的题目时应灵活运用.1.等比数列的通项公式、前n 项和公式分别为a n =a 1q n-1,S n =⎩⎪⎨⎪⎧na 1, q =1,a 1(1-q n)1-q, q ≠1.2.等比数列的判定方法:(1)定义法:即证明a n +1a n =q (q ≠0,n ∈N *) (q 是与n 值无关的常数).(2)中项法:证明一个数列满足a 2n +1=a n ·a n +2 (n ∈N *且a n ·a n +1·a n +2≠0). 3.等比数列的性质: (1)a n =a m ·q n -m (n ,m ∈N *);(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n ;(3)设公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .4.在利用等比数列前n 项和公式时,一定要对公比q =1或q ≠1作出判断;计算过程中要注意整体代入的思想方法.5.等差数列与等比数列的关系是:(1)若一个数列既是等差数列,又是等比数列,则此数列是非零常数列;(2)若{a n }是等比数列,且a n >0,则{lg a n }构成等差数列.(满分:90分)一、填空题(每小题6分,共48分) 1.(2010·辽宁)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=________.2.(2010·浙江)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.3.在各项都为正数的等比数列{a n }中,a 1=3,前三项的和S 3=21,则a 3+a 4+a 5=________.4.(2011·无锡模拟)等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是________.5.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5=________.6.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为________.7.在等比数列{a n }中,公比q =2,前99项的和S 99=30,则a 3+a 6+a 9+…+a 99=________.8.(2010·福建)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.二、解答题(共42分) 9.(12分)(2010·陕西)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项;(2)求数列{2a n }的前n 项和S n .10.(14分)已知数列{log 2(a n -1)}为等差数列,且a 1=3,a 2=5. (1)求证:数列{a n -1}是等比数列;(2)求1a 2-a 1+1a 3-a 2+…+1a n +1-a n的值.11.(16分)已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c nb n=a n +1成立,求c 1+c 2+c 3+…+c 2 010.答案 自主梳理1.公比 q 2.a 1·q n -1 4.(1)q n -m (2)a k ·a l =a m ·a n(4)递增 递减 常 摆动 6.q n自我检测1.-3解析 由等比数列的性质可得ac =(-1)×(-9)=9,b 2=9且b 与奇数项的符号相同,故b =-3.2.8·⎝⎛⎭⎫32n -1 解析 因为{a n }为等比数列,所以(a +2)2=(a -2)(a +8),解得a =10,a -2=8,q =a +2a -2=32, ∴a n =a 1q n -1=8·⎝⎛⎭⎫32n -1. 3.-9解析 由题意:等比数列{a n }有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知:四项是两个正数、两个负数,故-24,36,-54,81,符合题意,则q =-32,∴6q =-9.4.1解析 可用特殊值法,由S n 得a 1=3-a ,a 2=6,a 3=18,由等比数列的性质可知a =1.5.27(8n +1-1) 解析 由题意可知,f (n )即为一个以2为首项,公比q =23=8,项数为n +1的等比数列的和.由公式可得f (n )=S n +1=a 1(1-q n +1)1-q=2×(1-8n +1)1-8=27(8n +1-1).课堂活动区例1 解题导引 (1)在等比数列的通项公式和前n 项和公式中共有a 1,a n ,q ,n ,S n五个量,知道其中任意三个量,都可以求出其余两个量.解题时,将已知条件转化为基本量间的关系,然后利用方程组的思想求解;(2)本例可将所有项都用a 1和q 表示,转化为关于a 1和q 的方程组求解;也可利用等比数列的性质来转化,两种方法目的都是消元转化.解 方法一 由已知得:⎩⎪⎨⎪⎧ a 21q 4+2a 21q 6+a 21q 8=100,a 21q 4-2a 21q 6+a 21q 8=36.①②①-②,得4a 21q 6=64,∴a 21q 6=16.③代入①,得16q2+2×16+16q 2=100.解得q 2=4或q 2=14.又数列{a n }为正项数列,∴q =2或12.当q =2时,可得a 1=12,∴a n =12×2n -1=2n -2,S n =12(1-2n )1-2=2n -1-12;当q =12时,可得a 1=32.∴a n =32×⎝⎛⎭⎫12n -1=26-n. S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=64-26-n .方法二 ∵a 1a 5=a 2a 4=a 23,a 2a 6=a 3a 5,a 3a 7=a 4a 6=a 25,由⎩⎪⎨⎪⎧a 1a 5+2a 2a 6+a 3a 7=100,a 2a 4-2a 3a 5+a 4a 6=36,可得⎩⎪⎨⎪⎧a 23+2a 3a 5+a 25=100,a 23-2a 3a 5+a 25=36,即⎩⎪⎨⎪⎧(a 3+a 5)2=100,(a 3-a 5)2=36.∴⎩⎪⎨⎪⎧ a 3+a 5=10,a 3-a 5=±6.解得⎩⎪⎨⎪⎧ a 3=8,a 5=2,或⎩⎪⎨⎪⎧a 3=2,a 5=8.当a 3=8,a 5=2时,q 2=a 5a 3=28=14.∵q >0,∴q =12,由a 3=a 1q 2=8,得a 1=32,∴a n =32×⎝⎛⎭⎫12n -1=26-n.S n =32-26-n ×121-12=64-26-n .当a 3=2,a 5=8时,q 2=82=4,且q >0,∴q =2.由a 3=a 1q 2,得a 1=24=12.∴a n =12×2n -1=2n -2.S n =12(2n-1)2-1=2n -1-12.变式迁移1 解 由题意得⎩⎪⎨⎪⎧a 2·a n -1=a 1·a n =128,a 1+a n =66,解得⎩⎪⎨⎪⎧ a 1=64,a n =2或⎩⎪⎨⎪⎧a 1=2,a n =64.若⎩⎪⎨⎪⎧ a 1=64,a n =2,则S n =a 1-a n q 1-q =64-2q 1-q =126,解得q =12,此时,a n =2=64·⎝⎛⎭⎫12n -1,∴n =6. 若⎩⎪⎨⎪⎧a 1=2,a n =64,则S n =2-64q 1-q =126,∴q =2.∴a n =64=2·2n -1.∴n =6. 综上n =6,q =2或12.例2 解题导引 (1)证明数列是等比数列的两个基本方法: ①a n +1a n=q (q 为与n 值无关的常数)(n ∈N *). ②a 2n +1=a n a n +2 (a n ≠0,n ∈N *).(2)证明数列不是等比数列,可以通过具体的三个连续项不成等比数列来证明,也可用反证法.解 (1)由已知S n +1=2S n +n +5,n ∈N *, 可得n ≥2时,S n =2S n -1+n +4, 两式相减得S n +1-S n =2(S n -S n -1)+1, 即a n +1=2a n +1,从而a n +1+1=2(a n +1), 当n =1时,S 2=2S 1+1+5, 所以a 2+a 1=2a 1+6, 又a 1=5,所以a 2=11, 从而a 2+1=2(a 1+1),故总有a n +1+1=2(a n +1),n ∈N *, 又a 1=5,a 1+1≠0,从而a n +1+1a n +1=2,即数列{a n +1}是首项为6,公比为2的等比数列. (2)由(1)得a n +1=6·2n -1, 所以a n =6·2n -1-1,于是S n =6·(1-2n )1-2-n =6·2n -n -6.变式迁移2 解 (1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2;当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4; 当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, ∴a 3=8.(2)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),① ∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1 =(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2.∴-S n +2S n -1+2=0,即S n =2S n -1+2, ∴S n +2=2(S n -1+2).∵S 1+2=4≠0,∴S n -1+2≠0,∴S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列.例3 解题导引 在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.解 由已知得1a 1+1a 2+1a 3+1a 4+1a 5=a 1+a 5a 1a 5+a 2+a 4a 2a 4+a 3a 23 =a 1+a 2+a 3+a 4+a 5a 23=8a 23=2,∴a 23=4,∴a 3=±2.若a 3=-2,设数列的公比为q , 则-2q 2+-2q-2-2q -2q 2=8, 即1q 2+1q +1+q +q 2=⎝⎛⎭⎫1q +122+⎝⎛⎭⎫q +122+12=-4. 此式显然不成立,经验证,a 3=2符合题意,故a 3=2. 变式迁移3 解 (1)∵a 3a 11=a 27=4a 7, ∵a 7≠0,∴a 7=4,∴b 7=4, ∵{b n }为等差数列,∴b 5+b 9=2b 7=8.(2)a 1a 2a 3a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41q 6=1.①a 13a 14a 15a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15 =a 41·q 54=8.② ②÷①:a 41·q 54a 41·q 6=q 48=8⇒q 16=2,又a 41a 42a 43a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43 =a 41·q 166=a 41·q 6·q 160=(a 41·q 6)·(q 16)10 =1·210=1 024.课后练习区 1.314解析 ∵{a n }是由正数组成的等比数列,且a 2a 4=1, ∴设{a n }的公比为q ,则q >0,且a 23=1,即a 3=1.∵S 3=7,∴a 1+a 2+a 3=1q 2+1q+1=7,即6q 2-q -1=0.故q =12或q =-13(舍去),∴a 1=1q2=4.∴S 5=4(1-125)1-12=8(1-125)=314.2.-11解析 由8a 2+a 5=0,得8a 1q +a 1q 4=0,所以q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.3.84解析 由题可设等比数列的公比为q , 则3(1-q 3)1-q =21⇒1+q +q 2=7⇒q 2+q -6=0⇒(q +3)(q -2)=0,根据题意可知q >0,故q =2. 所以a 3+a 4+a 5=q 2S 3=4×21=84. 4.T 17解析 a 3a 6a 18=a 31q 2+5+17=(a 1q 8)3=a 39,即a 9为定值,所以下标和为9的倍数的积为定值,可知T 17为定值. 5.33解析 因为等比数列{a n }中有S 3=2,S 6=18,即S 6S 3=a 1(1-q 6)1-q a 1(1-q 3)1-q=1+q 3=182=9, 故q =2,从而S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q=1+q 5=1+25=33. 6.127解析 ∵公比q 4=a 5a 1=16,且q >0,∴q =2,∴S 7=1-271-2=127.7.1207解析 ∵S 99=30,即a 1(299-1)=30,∵数列a 3,a 6,a 9,…,a 99也成等比数列且公比为8, ∴a 3+a 6+a 9+…+a 99=4a 1(1-833)1-8=4a 1(299-1)7=47×30=1207.8.4n -1解析 ∵等比数列{a n }的前3项之和为21,公比q =4,不妨设首项为a 1,则a 1+a 1q +a 1q 2=a 1(1+4+16)=21a 1=21,∴a 1=1,∴a n =1×4n -1=4n -1.9.解 (1)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列, 得1+2d 1=1+8d1+2d,…………………………………………………………………………(4分)解得d =1或d =0(舍去).故{a n }的通项a n =1+(n -1)×1=n .……………………………………………………(7分) (2)由(1)知2a n =2n ,由等比数列前n 项和公式,得S n =2+22+23+ (2)=2(1-2n)1-2=2n +1-2.………………………………………………………………………………(12分) 10.(1)证明 设log 2(a n -1)-log 2(a n -1-1)=d (n ≥2),因为a 1=3,a 2=5,所以d =log 2(a 2-1)-log 2(a 1-1)=log 24-log 22=1,…………………………………………………………(3分)所以log 2(a n -1)=n ,所以a n -1=2n ,所以a n -1a n -1-1=2 (n ≥2),所以{a n -1}是以2为首项,2为公比的等比数列.………(6分)(2)解 由(1)可得a n -1=(a 1-1)·2n -1,所以a n =2n +1,…………………………………………………………………………(8分)所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=122-2+123-22+…+12n +1-2n =12+122+…+12n =1-12n .………………………………………………………………(14分) 11.解 (1)由已知有a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).解得d =2(d =0舍).……………………………………………………………………(2分) ∴a n =1+(n -1)·2=2n -1.………………………………………………………………(5分)又b 2=a 2=3,b 3=a 5=9, ∴数列{b n }的公比为3,∴b n =3·3n -2=3n -1.………………………………………………………………………(8(2)由c 1b 1+c 2b 2+…+c n b n=a n +1得 当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n . 两式相减得:当n ≥2时,c n b n=a n +1-a n =2.……………………………………………(10分)∴c n =2b n =2·3n -1 (n ≥2).又当n =1时,c 1b 1=a 2,∴c 1=3. ∴c n =⎩⎪⎨⎪⎧3 (n =1)2·3n -1 (n ≥2).………………………………………………………………(12分)∴c 1+c 2+c 3+…+c 2 010=3+6-2×32 0101-3=3+(-3+32 010)=32 010.…………………………………………(16分)。
【步步高】2014届高三数学大一轮复习 6.4 数列求和课时检测 理 苏教版

6.4 数列求和一、填空题1.在公比为整数的等比数列{n a }中,如果14231812a a a a +=,+=,那么该数列的前8项和=________.解析 33211213(1)18()122q a q a q q q q++=,+=,=,+q=12或q=2, 而q ∈Z ,∴122q a =,=.∴8982(12)2251012S -==-=-. 答案 5102.数列11×3,12×4,13×5,…,1n n +2,…的前n 项和S n =________.解析 ∵1n n +2=12⎝ ⎛⎭⎪⎫1n -1n +2,∴ S n =121-13+12-14+…+1n -1n +2=121+12-1n +1-1n +2 =34-12n +2-12n +4.答案 34-12n +2-12n +43.在等比数列{a n }中,a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 ∵a 4a 1=q 3=-8,∴q =-2.∴|a 1|+|a 2|+…+|a n |=121-2n1-2=2n -1-12.答案 -2 2n -1-124.数列{n a }的前n 项和为n S ,若1(1)n a n n =,+则5S =________.解析 ∵111(1)1n a n n n n ==-,++ ∴51234511111122334S a a a a a =++++=-+-+-+ (5115)66+-=. 答案 565.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________. 解析 当n =1时,a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=2n-1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列. ∴a 21+a 22+…+a 2n =1·1-4n1-4=13(4n-1). 答案 13(4n-1)6.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=________. 解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列, 所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10 =(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 157.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n =________.解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120. 答案 1208.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________.解析 由题意知{a n +b n }也为等差数列,所以{a n +b n }的前20项和为:S 20=20a 1+b 1+a 20+b 202=20×5+7+602=720.答案 7209.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n项和S n =________.解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3. 所以a n =a 1q n -1=3×3n -1=3n,故b n =log 3a n =n ,所以1b n b n +1=1nn +1=1n -1n +1. 则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.答案nn +110.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.解析 设数列{a n }的公比为q .由题意可知q ≠1,且91-q 31-q=1-q 61-q, 解得q =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.答案311611.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为________. 解析 a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1, 则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n .答案 23⎝⎛⎭⎪⎫1-14n12.在等差数列{n a }中12a ,=- 008,其前n 项的和为n S .若20072005220072005S S -=,则2008S =________.解析 ∵2007200520072005S S -12007120052007()2005()2220072005a a a a ++=- =d=2.∴20082S = 008(2⨯- 20082007008)2⨯+⨯2=-2 008.答案 -2 00813.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n =a 2+a 4+a 8+…+a 2n ,则T n =________.解析 设{a n }的公差为d ≠0,由a 1,a 2,a 5成等比数列,得a 22=a 1a 5, 即(7-2d )2=(7-3d )(7+d ) 所以d =2或d =0(舍去). 所以a n =7+(n -4)×2=2n -1. 又a 2n =2·2n-1=2n +1-1,故T n =(22-1)+(23-1)+(24-1)+…+(2n +1-1)=(22+23+…+2n +1)-n=2n +2-n -4.答案 2n +2-n -4二、解答题14.已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式. 解析 (1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0, 所以⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a n =-10+(n -1)·2=2n -12. (2)设等比数列{b n }的公比为q . 因为b 2=a 1+a 2+a 3=-24,b 1=-8, 所以-8q =-24,即q =3.所以{b n }的前n 项和公式为S n =b 11-q n 1-q=4(1-3n).15.设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项;(2)求{nS n }的前n 项和T n .解析 (1)由210S 30-(210+1)S 20+S 10=0得210(S 30-S 20)=S 20-S 10,即210(a 21+a 22+…+a 30)=a 11+a 12+…+a 20,可得210·q 10(a 11+a 12+…+a 20)=a 11+a 12+…+a 20.因为a n >0,所以210q 10=1,解得q =12,因而a n =a 1q n -1=12n ,n =1,2,….(2)因为{a n }是首项a 1=12、公比q =12的等比数列,故S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n ,nS n =n -n 2n .则数列{nS n }的前n 项和T n =(1+2+…+n )-⎝ ⎛⎭⎪⎫12+222+…+n 2n ,T n 2=12(1+2+…+n )-⎝ ⎛⎭⎪⎫122+223+…+n -12n +n 2n +1.两式相减,得T n 2=12(1+2+…+n )-⎝ ⎛⎭⎪⎫12+122+…+12n +n 2n +1=n n +14-12⎝ ⎛⎭⎪⎫1-12n 1-12+n2n +1,即T n =n n +12+12n -1+n 2n -2.16.已知首项不为零的数列{a n }的前n 项和为S n ,若对任意的r ,t ∈N *,都有S r S t =⎝ ⎛⎭⎪⎫r t 2. (1)判断{a n }是否是等差数列,并证明你的结论;(2)若a 1=1,b 1=1,数列{b n }的第n 项是数列{a n }的第b n -1项(n ≥2),求b n ; (3)求和T n =a 1b 1+a 2b 2+…+a n b n . 解析 (1){a n }是等差数列. 证明如下:因为a 1=S 1≠0,令t =1,r =n ,则由S r S t =⎝ ⎛⎭⎪⎫r t 2,得S n S 1=n 2,即S n =a 1n 2,所以当n ≥2时,a n =S n -S n -1=(2n -1)a 1,且n =1时此式也成立, 所以a n +1-a n =2a 1(n ∈N *),即{a n }是以a 1为首项,2a 1为公差的等差数列. (2)当a 1=1时,由(1)知a n =a 1(2n -1)=2n -1, 依题意,当n ≥2时,b n =ab n -1=2b n -1-1, 所以b n -1=2(b n -1-1),又b 1-1=2,所以{b n -1}是以2为首项,2为公比的等比数列,所以b n -1 =2·2n -1,即b n =2n+1.(3)因为a n b n =(2n -1)(2n+1)=(2n -1)·2n+(2n -1)T n =[1·2+3·22+…+(2n -1)·2n ]+[1+3+…+(2n -1)],即T n =[1·2+3·22+…+(2n -1)·2n ]+n 2,① 2T n =[1·22+3·23+…+(2n -1)·2n +1]+2n 2,②②-①,得T n =(2n -3)·2n +1+n 2+6.17.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和S n .解析 (1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且⎩⎪⎨⎪⎧1+2d +q 4=21,1+4d +q 2=13,解得⎩⎪⎨⎪⎧d =2,q =2.所以a n =1+(n -1)d =2n -1,b n =qn -1=2n -1.(2)a n b n =2n -12n -1, S n =1+321+522+…+2n -32n -2+2n -12n -1,① 2S n =2+3+52+…+2n -32n -3+2n -12n -2.②②-①,得S n =2+2+22+222+…+22n -2-2n -12n -1=2+2×⎝ ⎛⎭⎪⎫1+12+122+…+12n -2-2n -12n -1=2+2×1-12n -11-12-2n -12n -1=6-2n +32n -1.18.在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n .解析 (1)设{a n }公比为q ,由题意,得q >0,且⎩⎪⎨⎪⎧a 2=2a 1+3,3a 2+5a 3=2a 4,即⎩⎪⎨⎪⎧a 1q -2=3,2q 2-5q -3=0.解得⎩⎪⎨⎪⎧a 1=3,q =3或⎩⎪⎨⎪⎧a 1=-65,q =-12(舍去).所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *.(2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n. 所以S n =1·3+2·32+3·33+…+n ·3n. 所以3S n =1·32+2·33+3·34+…+n ·3n +1两式相减,得2S n =-3-(32+33+ (3))+n ·3n +1=-(3+32+33+…+3n )+n ·3n +1=-31-3n 1-3+n ·3n +1=3+2n -1·3n +12.所以数列{a n b n }的前n 项和为S n =3+2n -1·3n +14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案30 数列的通项与求和导学目标: 1.能利用等差、等比数列前n 项和公式及其性质求一些特殊数列的和.2.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.自主梳理1.求数列的通项(1)数列前n 项和S n 与通项a n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n-S n -1, n ≥2.(2)当已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用________求数列的通项a n ,常利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1).(3)当已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用________求数列的通项a n ,常利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a na n -1.(4)作新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来求通项.(5)归纳、猜想、证明法. 2.求数列的前n 项的和 (1)公式法①等差数列前n 项和S n =____________=________________,推导方法:____________; ②等比数列前n 项和S n =⎩⎪⎨⎪⎧,q =1, = ,q ≠1.推导方法:乘公比,错位相减法. ③常见数列的前n 项和:a .1+2+3+…+n =________;b .2+4+6+…+2n =________;c .1+3+5+…+(2n -1)=________;d .12+22+32+…+n 2=________;e .13+23+33+…+n 3=____________.(2)分组求和:把一个数列分成几个可以直接求和的数列.(3)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.常见的拆项公式有:①1n n +=1n -1n +1; ②1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (5)倒序相加:例如,等差数列前n 项和公式的推导. 自我检测1.(原创题)已知数列{a n }的前n 项的乘积为T n =3n 2(n ∈N *),则数列{a n }的前n 项的和为________.2.设{a n }是公比为q 的等比数列,S n 是其前n 项和,若{S n }是等差数列,则q =________. 3.已知等比数列{a n }的公比为4,且a 1+a 2=20,故b n =log 2a n ,则b 2+b 4+b 6+…+b 2n=________.4.(2010·天津高三十校联考)已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N *),设{a n }的前n 项的和为S n ,则使S n <-5成立的自然数n 的最小值为________.5.(2010·北京海淀期末练习)设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.6.数列1,412,714,1018,…前10项的和为________.探究点一 求通项公式 例1 已知数列{a n }满足a n +1=2n +1·a na n +2n +1,a 1=2,求数列{a n }的通项公式.变式迁移1 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)求数列{a n }的通项公式.探究点二 裂项相消法求和例2 已知数列{a n },S n 是其前n 项和,且a n =7S n -1+2(n ≥2),a 1=2. (1)求数列{a n }的通项公式;(2)设b n =1log 2a n ·log 2a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .变式迁移2 求数列1,11+2,11+2+3,…,11+2+3+…+n,…的前n 项和.探究点三 错位相减法求和例3 已知数列{a n }是首项、公比都为q (q >0且q ≠1)的等比数列,b n =a n log 4a n (n ∈N *). (1)当q =5时,求数列{b n }的前n 项和S n ;(2)当q =1415时,若b n <b n +1,求n 的最小值.变式迁移3 求和S n =1a +2a 2+3a 3+…+nan .分类讨论思想例 (5分)二次函数f (x )=x 2+x ,当x ∈[n ,n +1](n ∈N *)时,f (x )的函数值中所有整数值的个数为g (n ),a n =2n 3+3n 2g n(n ∈N *),则S n =a 1-a 2+a 3-a 4+…+(-1)n -1a n =______________________.答案 (-1)n -1n n +2解析 当x ∈[n ,n +1](n ∈N *)时,函数f (x )=x 2+x 的值随x 的增大而增大,则f (x )的值域为[n 2+n ,n 2+3n +2](n ∈N *),∴g (n )=2n +3(n ∈N *),于是a n =2n 3+3n 2g n=n 2.当n 为偶数时,S n =a 1-a 2+a 3-a 4+…+a n -1-a n =(12-22)+(32-42)+…+[(n -1)2-n 2]=-[3+7+…+(2n -1)]=-3+n -2·n 2=-n n +2;当n 为奇数时,S n =(a 1-a 2)+(a 3-a 4)+…+(a n -2-a n -1)+a n=S n -1+a n =-n n -2+n 2=n n +2,∴S n =(-1)n -1n n +2. 【突破思维障碍】在利用并项转化求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行分类讨论,但最终的结果却往往可以用一个公式来表示.1.求数列的通项:(1)公式法:例如等差数列、等比数列的通项; (2)观察法:例如由数列的前几项来求通项; (3)可化归为使用累加法、累积法;(4)可化归为等差数列或等比数列,然后利用公式法; (5)求出数列的前几项,然后归纳、猜想、证明. 2.数列求和的方法:一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.3.求和时应注意的问题:(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列的特点和规律,在分析数列通项的基础上或分解为基本数列求和,或转化为基本数列求和.(满分:90分)一、填空题(每小题6分,共48分)1.(2010·广东)已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1且a 4与2a 7的等差中项为54,则S 5=________.2.有两个等差数列{a n },{b n },其前n 项和分别为S n ,T n ,若S n T n =7n +2n +3,则a 5b 5=________.3.如果数列{a n }满足a 1=2,a 2=1且a n -1-a n a n a n -1=a n -a n +1a n a n +1(n ≥2),则此数列的第10项为________.4.数列{a n }的前n 项和为S n ,若a n =1n n +,则S 5=________.5.(2011·南京模拟)数列1,1+2,1+2+4,…,1+2+22+…+2n -1,…的前n 项和S n >1 020,那么n 的最小值是________.6.(2010·东北师大附中高三月考)数列{a n }的前n 项和为S n 且a 1=1,a n +1=3S n (n =1,2,3,…),则log 4S 10=__________.7.(原创题)已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.8.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =____________.二、解答题(共42分)9.(12分)已知函数f (x )=x 2-2(n +1)x +n 2+5n -7(n ∈N *).(1)若函数f (x )的图象的顶点的横坐标构成数列{a n },试证明数列{a n }是等差数列; (2)设函数f (x )的图象的顶点到x 轴的距离构成数列{b n },试求数列{b n }的前n 项和S n .10.(14分)设等差数列{a n }的前n 项和为S n ,且S n =12na n +a n -c (c 是常数,n ∈N *),a 2=6.(1)求c 的值及数列{a n }的通项公式;(2)证明1a 1a 2+1a 2a 3+…+1a n a n +1<18.11.(16分)(2010·北京宣武高三期中)已知数列{a n }的前n 项和为S n =3n,数列{b n }满足b 1=-1,b n +1=b n +(2n -1) (n ∈N *).(1)求数列{a n }的通项公式a n ; (2)求数列{b n }的通项公式b n ;(3)若c n =a n ·b nn,求数列{c n }的前n 项和T n .答案 自主梳理 1.(4)n =1或n ≥2 自我检测1.22 2.32 3.15 4.8 5.919课堂活动区例1 解题导引 1.等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式、前n 项和公式以及等差中项、等比中项问题是历年命题的热点.2.利用等比数列前n 项和公式时注意公比q 的取值.同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的思维难度,解题时有时还需利用条件联立方程求解.解 (1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7a 1++a 3+2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q .又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1.故数列{a n }的通项为a n =2n -1.(2)由(1)得a 3n +1=23n,∴b n =ln a 3n +1=ln 23n=3n ln 2.又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n b 1+b n 2=3n n +2·ln 2.故T n =3n n +2ln 2.变式迁移1 4解析 设a 1,a 2,a 3,a 4的公差为d ,则a 1+2d =4,又0<a 1<2,所以1<d <2.易知数列{b n }是等比数列,故(1)正确;a 2=a 3-d ∈(2,3),所以b 2=2a 2>4,故(2)正确;a 4=a 3+d >5,所以b 4=2a 4>32,故(3)正确;又a 2+a 4=2a 3=8,所以b 2b 4=2a 2+a 4=28=256,故(4)正确.例2 解题导引 这是一道数列、函数、不等式的综合题,利用函数关系式求通项a n ,观察T n 特点,求出T n .由a n 再求b n 从而求S n ,最后利用不等式知识求出m .解 (1)∵a n +1=f ⎝ ⎛⎭⎪⎫1a n =2a n +33a n=2+3a n 3=a n +23,∴{a n }是以23为公差的等差数列.又a 1=1,∴a n =23n +13.(2)T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1=a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1)=-43(a 2+a 4+…+a 2n )=-43·n ⎝ ⎛⎭⎪⎫53+4n 3+132=-49(2n 2+3n ).(3)当n ≥2时,b n =1a n -1a n =1⎝ ⎛⎭⎪⎫23n -13⎝ ⎛⎭⎪⎫23n +13=92⎝ ⎛⎭⎪⎫12n -1-12n +1,又b 1=3=92×⎝ ⎛⎭⎪⎫1-13,∴S n =b 1+b 2+…+b n=92×⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =92⎝⎛⎭⎪⎫1-12n +1=9n2n +1, ∵S n <m -2 0012对一切n ∈N *成立.即9n 2n +1<m -2 0012, 又∵9n 2n +1=92⎝ ⎛⎭⎪⎫1-12n +1递增,且9n 2n +1<92.∴m -2 0012≥92, 即m ≥2 010.∴最小正整数m =2 010.变式迁移2 解 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20.∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8, 解之,得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n.(2)b n =2n ·log 122n =-n ·2n,∴-S n =1×2+2×22+3×23+…+n ×2n.①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②∴①-②,得S n =2+22+23+…+2n -n ·2n +1=-2n 1-2-n ·2n +1=2n +1-n ·2n +1-2.由S n +(n +m )a n +1<0,即2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立,∴m ·2n +1<2-2n +1对任意正整数n ,m <12n -1恒成立.∵12n -1>-1,∴m ≤-1, 即m 的取值范围是(-∞,-1].例3 解 依题意,第1个月月余款为a 1=10 000(1+20%)-10 000×20%×10%-300=11 500, 第2个月月底余款为a 2=a 1(1+20%)-a 1×20%×10%-300,依此类推下去,设第n 个月月底的余款为a n 元,第n +1个月月底的余款为a n +1元,则a n +1=a n (1+20%)-a n ×20%×10%-300=1.18a n-300.下面构造一等比数列. 设a n +1+x a n +x=1.18,则a n +1+x =1.18a n +1.18x , ∴a n +1=1.18a n +0.18x .∴0.18x =-300.∴x =-5 0003,即a n +1-5 0003a n -5 0003=1.18.∴数列{a n -5 0003}是一个等比数列,公比为1.18,首项a 1-5 0003=11 500-5 0003=29 5003. ∴a n -5 0003=29 5003×1.18n -1,∴a 12-5 0003=29 5003×1.1811,∴a 12=5 0003+29 5003×1.1811≈62 396.6(元),即到年底该职工共有资金62 396.6元. 纯收入有a 12-10 000(1+25%)=62 396.6-12 500=49 896.6(元).变式迁移3 解 (1)设中低价房的面积形成的数列为{a n }, 由题意可知{a n }是等差数列,其中a 1=250,d =50, 则a n =250+(n -1)·50=50n +200,S n =250n +n n -2×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2020年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400·(1.08)n -1. 由题意可知a n >0.85b n ,即50n +200>400·(1.08)n -1·0.85. 当n =5时,a 5<0.85b 5, 当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2016年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 课后练习区1.3+2 2 2.② 3.991 4.7解析 设至少需要n 秒钟,则1+21+22+…+2n -1≥100,∴1-2n1-2≥100,∴n ≥7.5.64解析 依题意有a n a n +1=2n,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…也成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32,又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64.6.3解析 该题是数列知识与函数知识的综合.a n =5·⎝ ⎛⎭⎪⎫252n -2-4·⎝ ⎛⎭⎪⎫25n -1=5·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫25n -1-252-45,显然当n =2时,a n 取得最小值,当n =1时,a n 取得最大值,此时x =1,y =2,∴x +y =3.7.21解析 y ′=(x 2)′=2x ,则过点(a k ,a 2k )的切线斜率为2a k ,则切线方程为y -a 2k =2a k (x -a k ),令y =0,得-a 2k =2a k (x -a k ),∴x =12a k ,即a k +1=12a k .故{a n }是a 1=16,q =12的等比数列,即a n =16×(12)n -1,∴a 1+a 3+a 5=16+4+1=21.8.107解析 由数表知,第一行1个奇数,第3行3个奇数,第5行5个奇数,第61行61个奇数,前61行用去1+3+5+…+61=62×312=961个奇数.而2 009是第1 005个奇数,故应是第63行第44个数,即i +j =63+44=107.9.解 (1)∵f (1)=a =13,∴f (x )=⎝ ⎛⎭⎪⎫13x.…………………………………………………(1分)a 1=f (1)-c =13-c ,a 2=[f (2)-c ]-[f (1)-c ]=-29,a 3=[f (3)-c ]-[f (2)-c ]=-227;又数列{a n }成等比数列,a 1=a 22a 3=481-227=-23=13-c ,∴c =1;……………………………………………………………………………………(2分)公比q =a 2a 1=13,a n =-23×⎝ ⎛⎭⎪⎫13n -1=-2×⎝ ⎛⎭⎪⎫13n ,n ∈N *;……………………………………………………………………(3分)∵S n -S n -1=()S n -S n -1()S n +S n -1=S n +S n -1(n >2),……………………………………………………………………(4分) 又b n >0,S n >0,∴S n -S n -1=1.数列{S n }构成一个首项为1、公差为1的等差数列,S n =1+(n -1)×1=n ,S n =n 2.…………………………………………………………(6分)当n ≥2,b n =S n -S n -1=n 2-(n -1)2=2n -1; 又当n =1时,也适合上式,∴b n =2n -1,n ∈N *.………………………………………………………………………(8分)(2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+1n -n +=12⎝⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+12⎝ ⎛⎭⎪⎫15-17+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.……………………………………………(12分)由T n =n 2n +1>1 0002 009,得n >1 0009, ∴满足T n >1 0002 009的最小正整数为112.…………………………………………………(14分)10.解 设乙企业仍按现状生产至第n 个月所带来的总收益为A n (万元),技术改造后生产至第n 个月所带来的总收益为B n (万元).依题意得A n =45n -[3+5+…+(2n +1)]=43n -n 2,………………………………………………………………………………(5分)当n ≥5时,B n =16⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫325-132-1+16⎝ ⎛⎭⎪⎫324(n -5)-400=81n -594,………………………………………………………(10分)∴当n ≥5时,B n -A n =n 2+38n -594,令n 2+38n -594>0,即(n +19)2>955,解得n ≥12,∴至少经过12个月,改造后的乙企业的累计总收益多于仍按现状生产所带来的总收益.……………………………………………………………………………………………(14分)11.(1)解 令x =n ,y =1,得到f (n +1)=f (n )·f (1)=12f (n ),…………………………………………………………(2分)∴{f (n )}是首项为12,公比为12的等比数列,即f (n )=(12)n.………………………………………………………………………………(5分)(2)证明 记S n =a 1+a 2+a 3+…+a n ,∵a n =n ·f (n )=n ·(12)n,……………………………………………………………………(6分)∴S n =12+2×(12)2+3×(12)3+…+n ×(12)n,12S n =(12)2+2×(12)3+3×(12)4+…+(n -1)×(12)n +n ×(12)n +1,两式相减得12S n =12+(12)2+…+(12)n -n ×(12)n +1,整理得S n =2-(12)n -1-n (12)n<2.∴a 1+a 2+a 3+…+a n <2.………………………………………………………………(9分)(3)解 ∵f (n )=(12)n ,而b n =(9-n )f n +f n=(9-n )12n +112n =9-n2.…………………………………………………………………(11分)当n ≤8时,b n >0;当n =9时,b n =0; 当n >9时,b n <0, ∴n =8或9时,S n 取到最大值.………………………………………………………(14分)11。