高三数列列项求和和放缩法专题

高三数列列项求和和放缩法专题
高三数列列项求和和放缩法专题

(一)数列通项公式的求法

8.(1)和型: )(1n f a a n n =++

基本思路是,由)(1n f a a n n =++得)1(21+=+++n f a a n n ,相减,得奇数项成等差,偶数项成等

差,分别求奇数项通项,偶数项通项。

例如:数列{}n a 中相邻两项n a ,1+n a 是方程032=++n b nx x 的两根,已知1710-=a ,则51b =____.

(2)积型:)(1n f a a n n =?+

基本思路是,由)(1n f a a n n =?+,得)1(21+=?++n f a a n n ,两式相除,得奇数项成等比,偶数项成等比,分别求奇数项通项,偶数项通项,做法与“商型”相乘的思路相反.

例如:已知数列}{n a 中,11=a ,n n n a a )2

1(1=?+,则数列}{n a 的通项公式为________.

特别地:

(1)如果数列}{n a 从第2项起的每一项与前一项的和为定值,则此数列}{n a 为等和数列。 递推公式为:??

?=+=+c

a a a

a n n 11 (c 为常数),则n n a a =+2.即该数列的所有的奇数项均相等,所有的偶

数项也相等.

(2)如果数列}{n b 从第2项起的每一项与前一项的积为定值,则此数列}{n b 为等积数列。 递推公式为:??

?=?=+p

b b b

b n n 11 (p 为常数),则n n a a =+2,即该数列的所有的奇数项均相等,所有的偶

数项也相等. 9.周期型

解法:由递推式计算出前几项,寻找周期。

例如:已知数列}{n a 满足)(1

33,0*11N n a a a a n n n ∈+-==+,则56a =______.

10.取对数法

形如r

n n pa a =+1,一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。 例如.设正项数列{}n a 满足11=a ,2

12-=n n a a (n ≥2).求数列{}n a 的通项公式.

11.换元法:适用于含有根式递推关系式

类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。

例如.已知数列}{n a 中,111

(14116

n n a a a +=+=,,求数列}{n a 的通项公式.

练习:

1.数列{}n a 满足01=a ,n a a n n 21=++,则数列{}n a 的通项公式为_________.

2.数列{}n a 中,若31=a ,)(*1N n a a n n ∈=+,则数列{}n a 的通项公式=n a ________.

3.若数列{}n a 满足???

????

<≤-≤≤=+)

121(,12)210(,21

n n n n n a a a a a ,若761=a ,则2014a 的值为___________。

4.在数列}{n a 中,12211,5,n n n a a a a a ++===-,则1998a 的值为___________。

5.已知数列}{n a 满足:11=a ,54322

1+++=+n n a a n n ,则数列{}n a 的通项公式=n a ________.

总结:形如)001(2

1≠≠+++=+a p c bn an pa a n n ,,

解法: 利用待定系数法构造等比数列,令2

21(1)(1)()n n a x n y n c p a xn yn c ++++++=+++,

与已知递推式比较,解出y x ,,z.从而转化为

{}2n

a

xn yn c +++是公比为p 的等比数列。

6.已知数列}{n a 满足:11=a ,3221++=-n

n n a a ,则数列{}n a 的通项公式=n a ________.

7.已知数列}{n a 满足:21=a ,*

N n ∈?,0>n a , 且0)1(2

112=-++++n n n n na a a a n ,则数列{}n a

的通项公式=n a ________.

总结:当数列的关系式较复杂,可考虑分解因式和约分化为较简形式,再用其它方法求得a n . 8.已知在各项均不为零的数列}{n a 中,11=a ,)(02*

11N n a a a a n n n n ∈=-+++. (1)求数列}{n a 的通项公式;

(2)若数列}{n b 满足1+=n n n a a b ,求数列}{n b 的前n 项和n S .

总结:数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以

,11-n n a a 先求出.,1

n n

a a 再求得

9.已知数列}{n a 满足2

22213221n

a a a a n n =++++- ,*N n ∈. (1)求数列}{n a 的通项公式;

(2)设n n a n b )12(-=,求数列}{n b 的前项和n S .

10.已知数列}{n a 满足:11=a ,2

1

41+=++n a a n n ,*N n ∈. (Ⅰ)证明数列}{12-n a 为等差数列;

(Ⅱ)求数列}{n a 的通项公式及其前n 项和n S .

11.已知数列}{n a 满足:c a =1,)1(12*

1N n c a a n n ∈≠+=+,,记数列}{n a 的前n 项和为n S .

(Ⅰ)令1-=n n a b ,证明:数列}{n b 是等比数列;

(Ⅱ)求最小的实数c ,使得对任意*

N n ∈,都有3≥n S 成立.

(一)数列通项公式的求法 8.(1)和型: )(1n f a a n n =++

基本思路是,由)(1n f a a n n =++得)1(21+=+++n f a a n n ,相减,得奇数项成等差,偶数项成等

差,分别求奇数项通项,偶数项通项。

例如:数列{}n a 中相邻两项n a ,1+n a 是方程032=++n b nx x 的两根,已知1710-=a ,则51b =____.

分析:由题意:n a +n a n 31-=+ ①,得: 1+n a +)1(32+-=+n a n ②,

②—①:32-=-+n n a a .

所以该数列的所有的奇数项成等差,所有的偶数项也成等差,公差都为-3.

(2)积型:)(1n f a a n n =?+

基本思路是,由)(1n f a a n n =?+,得)1(21+=?++n f a a n n ,两式相除,得奇数项成等比,偶数项成等比,分别求奇数项通项,偶数项通项,做法与“商型”相乘的思路相反.

例如:已知数列}{n a 中,11=a ,n n n a a )2

1

(1=?+,求数列}{n a 的通项公式.

特别地:

(1)如果数列}{n a 从第2项起的每一项与前一项的和为定值,则此数列}{n a 为等和数列。

递推公式为:???=+=+c

a a a

a n n 11 (c 为常数),则n n a a =+2.即该数列的所有的奇数项均相等,所有的偶

数项也相等.

(2)如果数列}{n b 从第2项起的每一项与前一项的积为定值,则此数列}{n b 为等积数列。

递推公式为:???=?=+p b b b

b n

n 11 (p 为常数),则n n a a =+2,即该数列的所有的奇数项均相等,所有的偶

数项也相等.

9.周期型

解法:由递推式计算出前几项,寻找周期。

例如:已知数列}{n a 满足)(1

33,0*11N n a a a a n n n ∈+-=

=+,则56a =______.

10.取对数法

形如r

n n pa a =+1,一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。 例如.设正项数列{}n a 满足11=a ,2

12-=n n a a (n ≥2).求数列{}n a 的通项公式.

解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a

n b , 则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 1

21=+=b .

11221--=?=n n n b ,122

1log -=+n a n

,12log 12-=-n a n , ∴1

21

2--=n n a

11.换元法:适用于含有根式递推关系式

类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。

例如.已知数列}{n a 中,111

(14116

n n a a a +=

+=,,求数列}{n a 的通项公式.

解法: 令n b =21(1)24

n n a b =

-,代入得22

14(3)n n b b +=+, 则123n n b b +=+,即11322n n b b +=

+,可化为11

3(3)2

n n b b +-=-,

所以{3}n b -是以13332b -==为首项,以2

1

为公比的等比数列,

因此121132()()22n n n b ---==,

21()32n -=+,得2111

()()3423

n n n a =++。

评注:的换元为n b ,使得所给递推关系式转化113

22

n n b b +=

+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式。

练习:

1.数列{}n a 满足01=a ,n a a n n 21=++,则数列{}n a 的通项公式为_________.

2.数列{}n a 中,若31=a ,)(*1N n a a n n ∈=+,则数列{}n a 的通项公式=n a ________.

3.若数列{}n a 满足???

????

<≤-≤≤=+)

121(,12)210(,21

n n n n n a a a a a ,若761=a ,则2014a 的值为___________。

4.在数列}{n a 中,.19981221,,5,1a a a a a a n n n 求-===++.

解:由条件,)(11123n n n n n n n a a a a a a a -=--=-=+++++

即,,363n n n n n a a a a a =-=∴-=+++即每间隔6项循环一次.1998=6×333,∴.461998-==a a 结论:数列有形如0),(12=++n n n a a a f ,的关系,如果复合数列构不成等差、等比数列,有时可考虑构

成循环关系而求出.n a

5.已知数列}{n a 满足:11=a ,54322

1+++=+n n a a n n ,则数列{}n a 的通项公式=n a ________.

总结:形如)001(2

1≠≠+++=+a p c bn an pa a n n ,,

解法:利用待定系数法构造等比数列,令2

21(1)(1)()n n a x n y n c p a xn yn c ++++++=+++,

与已知递推式比较,解出y x ,,z.从而转化为

{}2n

a

xn yn c +++是公比为p 的等比数列。

6.已知数列}{n a 满足:11=a ,3221++=-n

n n a a ,则数列{}n a 的通项公式=n a ________.

7.已知数列}{n a 满足:21=a ,*

N n ∈?,0>n a , 且0)1(2

112=-++++n n n n na a a a n ,则数列{}n a

的通项公式=n a ________.

总结:当数列的关系式较复杂,可考虑分解因式和约分化为较简形式,再用其它方法求得a n . 8.已知在各项均不为零的数列}{n a 中,11=a ,)(02*

11N n a a a a n n n n ∈=-+++. (1)求数列}{n a 的通项公式;

(2)若数列}{n b 满足1+=n n n a a b ,求数列}{n b 的前n 项和n S .

总结:数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1

n n

a a 再求得 9.已知数列}{n a 满足2

22213221n a a a a n n =++++- ,*

N n ∈. (1)求数列}{n a 的通项公式;

(2)设n n a n b )12(-=,求数列}{n b 的前项和n S .

10.已知数列}{n a 满足:11=a ,2

1

41+=++n a a n n ,*N n ∈. (Ⅰ)证明数列}{12-n a 为等差数列;

(Ⅱ)求数列}{n a 的通项公式及其前n 项和n S .

11.已知数列}{n a 满足:c a =1,)1(12*

1N n c a a n n ∈≠+=+,,记数列}{n a 的前n 项和为n S .

(Ⅰ)令1-=n n a b ,证明:数列}{n b 是等比数列;

(Ⅱ)求最小的实数c ,使得对任意*N n ∈,都有3≥n S 成立.

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

数列综合应用(放缩法)教案资料

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1Λ=+=+n a n a n n n .求证: 112 13-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

2019年高考数学高频考点专题43数列数列的求和4分组求和倒序相加法 文数(含解析)

专题43 数列 数列的求和4 ( 分组求和、倒序相加法) 【考点讲解】 一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法. 考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述: 求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:; 等比: 公比是字母时需要讨论. (理)无穷递缩等比数列时,q a S -= 11 (2)掌握一些常见的数列的前n 项和公式: ; ; ; ; (3)倒序相加法求和:如果一个数列 {}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前n 项和即可用倒序相加法. (4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么

这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =?,其中{}n a 、 {}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合. 2.关注相减的项数及没有参与相减的项的保留. (5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n = 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 形如: n n b a +其中, (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类 型,可采用两项合并求解. 合并求和:如求 的和. (7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项: ; . 【真题分析】

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

数列放缩法高考专题

高考专题—数列求和放缩法 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 n n n n a a 4.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明32221+<++

高三数学必做题--数列放缩法

(1) 求数列 4的通项公式; 1 a a 1 (2) 若a ,设b n n 丄,且数列b n 的前n 项和为「,求证:人 3 1 a n 1 a n i 3 n 1 a 2、已知数列 q 的前n 项和s n -,且a 1 1. 2 (1) 求数列耳的通项公式; (2) 令b n ln a n ,是否存在k (k 2,k N),使得b k 、b k 1、b k 2成等比数列.若存在, 值;若不存在,请说明理由. 3、已知a n 是等差数列,a 2 3, a 3 5. ⑴求数列a n 的通项公式; 4、设数列a n 的前n 项和为S n ,且满足a 1 2, a . 1⑵对一切正整数n ,设b n n (1) n a n a n 1 ,求数列 b n 的前n 项和S n . 求出所有符合条件的 k 2S n 2 n 1,2,3L

(1)求 a 2 ; (2)数列a n 的通项公式; 5、对于任意的n € N*,数列{a n }满足 (I )求数列{a n }的通项公式; (n )求证:对于 n 》2,—— a ? a a i 1 a 2 2 , a n n -1 .2 L n 1 2 1 2 1 2 1 L 2 1 J a n 1 2n 2 6、已知各项均为正数的数列 {a n }的前n 项和为S n 满足4S n a n 2a n ?(3)设 b n a n 1 S n i S n ,求证: b i b 2 b n

(1)求a i 的值; (2)求{a .}的通项公式; 1 (1)求证:数列{」}是等差数列; a n 1 2 (2)求证:丄色更鱼L n 1 a 2 a 3 a ° (3)求证: 1 ~2 a i 1 ~2 a 2 a n ^,n N 2 7、已知数列耳满足a 1 2,a n 1a n 细1 1 0," N 8已知首项大于0的等差数列 a n }的公差d 1,且二 a n a n 1

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

高三数学总复习综合专题数列求和(学生版)

数列求和 概述:先分析数列通项的结构特征,再利用数列通项揭示的规律来求数列的前n 项和,即求和抓通项。 1、直接(或转化)由等差数列、等比数列的求和公式求和 思路:利用下列常用求和公式求和是数列求和的最基本最重要的方法。 ①等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=; ②等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n ; ③)1(211+==∑=n n k S n k n ; ④)12)(1(6112++==∑=n n n k S n k n ; ⑤21 3)]1(21[+==∑=n n k S n k n 。 2、逆序相加法 思路:把数列正着写和倒着写再相加。(即等差数列求和公式的推导过程的推广) 例1:设函数2 22)(+=x x x f 的图象上有两点),(),,(211121y x P y x P ,若)(2121OP OP OP +=,且点P 的横坐标为2 1。 (1)求证:P 点的纵坐标为定值,并求出这个定值; (2)若; 求,),()3()2()1(*n n S N n n n f n f n f n f S ∈+?+++= 3、错位相减法

思路:设数列{}n a 是等差数列,{}n b 是等比数列,则求{}n n b a 的前n 项和n S 可用错位相减法。 例2:在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>。 (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S 。 4、裂项相消法 思路:这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。一般地,数列{}n a 为等差数列,且公差不为 0,首项也不为0,∑∑∑=++==+-?=-=n i i i i i n i n i i i a a d a a d a a 111111)11(1)11(11。 常见的通项分解(裂项)如下: ①)11(1)(1k n n k k n n a n +-?=+=,(当1≠k 时,通项裂项后求和是隔项相消的,注意观察剩余项) 1 11)1(1+-=+=n n n n a n ;(通项裂项后求和是逐项相消的,剩余的是所裂项的首项和末项) ②)1 21121(211)12)(12()2(2+--+=+-=n n n n n a n ; ③]) 2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n 等。 例3:求数列 ???++???++,11 ,,321 ,211 n n 的前n 项和。 补充练习:已知二次函数()y f x =的图象经过坐标原点,其导函数为26)('-=x x f ,数列{}n a 的前n 项

高考数学数列放缩法技巧全汇总

高考数学数列放缩法技巧全汇总

————————————————————————————————作者:————————————————————————————————日期:

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = + -?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

高三数学一轮复习 数列求和巩固与练习

高三数学一轮复习 数列求和巩固与练习 A .64 B .100 C .110 D .120 解析:选B.设等差数列公差为d ,则由已知得 ? ???? a 1+a 1+d =4a 1+6d +a 1+7d =28, 即????? 2a 1+d =42a 1+13d =28 , 解得a 1=1,d =2, ∴S 10=10a 1+10×92d =10×1+10×9 2 ×2=100. 2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列{S n n }的前10项的和为( ) A .120 B .70 C .75 D .100 解析:选C.S n =n (a 1+a n )2=n (n +2),∴S n n =n +2. 故S 11+S 22+…+S 10 10 =75. 3.(原创题)设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{ 1f (n ) }(n ∈N * )的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 解析:选A.f ′(x )=mx m -1 +a =2x +1,∴a =1,m =2,∴f (x )=x (x +1), 1f (n )= 1 n (n +1) =1n -1n +1,用裂项相消法求和得S n =n n +1 .故选A. 4.若S n =1-2+3-4+…+(-1)n -1 ·n ,S 17+S 33+S 50等于________. 解析:由题意知S n =????? n +12(n 为奇数), -n 2(n 为偶数). ∴S 17=9,S 33=17,S 50=-25, ∴S 17+S 33+S 50=1. 答案:1 5.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2 +3n (n ∈N * ),则a 12+a 23+…+ a n n +1 =________. 解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2 +3(n -1)]=2n +2,所以a n =4(n +1)2 ,当n =1时,也适合,所以a n =4(n +1)2 (n ∈N * ).于是 a n n +1 =

最新高考数学数列放缩法技巧全总结

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = +-?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

高三数学必做题--数列放缩法(典型试题)

数列综合题 1、已知数列{}n a 的前n 项和n S 满足:()11n n a S a a = --,a 为常数,且0a ≠,1a ≠. (1)求数列{}n a 的通项公式; (2)若13a =,设1111n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证:13n T <. 2、已知数列{}n a 的前n 项和()12n n n a S +=,且11a =. (1)求数列{}n a 的通项公式; (2)令ln n n b a =,是否存在k (2,)k k N ≥∈,使得k b 、1k b +、2k b +成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由. 3、已知{}n a 是等差数列,32=a ,53=a . ⑴求数列{}n a 的通项公式; ⑵对一切正整数n ,设1 )1(+?-=n n n n a a n b ,求数列{}n b 的前n 项和n S .

4、设数列{}n a 的前n 项和为n S ,且满足21=a ,221+=+n n S a ()1,2,3 n =. (1)求2a ; (2)数列{}n a 的通项公式; (3)设n n n n S S a b 11++= ,求证:2121<+++n b b b . 5、对于任意的n ∈N *,数列{a n }满足 1212121212121n n a n a a n ---+++=++++. (Ⅰ) 求数列{a n }的通项公式; (Ⅱ) 求证:对于n≥2,23 1222112n n a a a ++++<-

6、已知各项均为正数的数列{}n a 的前n 项和为n S 满足242n n n S a a =+. (1)求1a 的值; (2)求{}n a 的通项公式; (3)求证: *222121111,2n n N a a a ++???+<∈。 7、已知数列{}n a 满足112a = ,11210n n n a a a ++-+=,*n N ∈. (1)求证:数列1{}1 n a -是等差数列; (2)求证:2 3 12234 1 1n n a a a a n n n a a a a +<+++<+.

高三数学数列放缩法

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设 ,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴. 3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数 .j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

高考数学专题复习数列求和

第4讲数列求和 一、选择题 1.设数列{(-1)n}的前n项和为S n,则对任意正整数n,S n=( ) A.n[1n-1] 2 B. 1n-1+1 2 C.1n+1 2 D. 1n-1 2 解析∵数列{(-1)n}是首项与公比均为-1的等比数列, ∴S n=11n1 11 = 1n-1 2 . 答案 D 2.已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|=( ) A.66 B.65 C.61 D.56 解析当n=1时,a1=S1=-1,当n≥2时,a n=S n-S n-1=n2-4n+2-[(n -1)2-4(n -1)+2]=2n-5.∴a2=-1,a3=1,a4=3,…,a10=15,∴|a1| +|a2|+…+|a10|=1+1+81+15 2 =2+64=66. 答案 A 3.在数列{a n}中,a n= 1 n n +1 ,若{a n}的前n项和为 2 013 2 014 ,则项数n为( ). A.2 011 B.2 012 C.2 013 D.2 014 解析∵a n=1 n n +1= 1 n - 1 n+1 ,∴S n=1- 1 n+1 = n n+1 = 2 013 2 014 ,解得n=2 013. 答案 C 4.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( ).A.3 690 B.3 660 C.1 845 D.1 830 解析当n=2k时,a2k+1+a2k=4k-1, 当n=2k-1时,a2k-a2k-1=4k-3,

∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61. ∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30 3+119 2 =30×61=1 830. 答案 D 5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100 这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676 D .1 300 解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252 ×13=676. 答案 C 6.数列{a n }满足a n +a n +1=1 2(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21 = ( ). A.21 2 B .6 C .10 D .11 解析 依题意得a n +a n +1=a n +1+a n +2=1 2,则a n +2=a n ,即数列{a n }中的奇数项、 偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×1 2+1=6,故选B. 答案 B 二、填空题 7.在等比数列{a n }中,若a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+… +|a n |=________. 解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以

放缩法技巧全总结(非常精辟-是尖子生解决高考数学最后一题之瓶颈之精华!!)

例析放缩法在数列不等式中的应用 孙卫 (安徽省芜湖市第一中学 241000) 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1(2008 辽宁21)在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如:),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2(2008 安徽21.节选)设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数 (Ⅰ)证明:[0,1]n a ∈对任意* n N ∈成立的充分必要条件是[0,1]c ∈;

相关文档
最新文档