高三数学必做题--数列放缩法
高中数学课程数列中的放缩法

数列中的放缩法
在全国卷高考中,数列已经远远降低了难度,再也不会出现那种丧心病狂,虐死人不犯罪的压轴题了。
相应的放缩技巧,在数列考查中也几乎绝迹了,就算偶尔出现意外,也不会太难,掌握下面这几类,完全可以搞定。
一·放缩法
1·放缩法的步骤:
【注意】
放缩法在很多时候会保留第一项或前几项不放缩,这样才不至于使得结果过大或者过小。
2·放缩成等比数列模型:
3·放缩成裂项相消模型:
二·放缩法的应用 1·直接可求和放缩:
2·放缩成等比数列:
3·错位相减法放缩:
4·裂项相消放缩:。
全国高考数学复习微专题:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧 1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 ) (2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和: 若()()()121,2,,n a f a f a f n >>>,则:()()()1212n a a a f f f n +++>+++(3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同 2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数) ② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
数列及函数不等式放缩如何一步到位

——如何放缩才能一步到位
数列不等式为高中数学的重点和难点,常 出现在高考压轴题中,具有极高的思想性和 技巧性。解决数列不等式的一般思想是进行 合理地放缩,放缩后能够再运算是解决此类 问题的重要原则。
熟记一些常见的放缩结论,掌握一些常见 的放缩技巧很重要。在放缩过程中经常用到 的方法有:积分(函数法)放缩、裂项放缩、 对偶放缩、分类放缩、二项式定理放缩、 等比放缩、切线放缩等等。
一、积分放缩
积分法即利用积分的几何意义进行放缩。
基本结论:
1 n1 1 dx ln( n 1) ln n
n
nx
1 n 1 dx ln n ln( n 1)
n n1 x
1
n 1
1
dx 2
n
nx
x
| n 1 n
1
n1
dx 2
n n1 x
x
|n n 1
f (x) 1 或 1
x
(
1 2
1 31
)
(1 4
1 5
...
1 32
)
...
(3n11
1
1 3n1
2
...
1 3n
)
n段,每个括号都 5 ?
6
下证f
(n)
1 3n1 1
1 3n1 2
...
1 3n
5 6
1 n1 1 dx ln( n 1) ln n
n nx
1
1
1
1 3n1 2
1 3n1 3
1 3n 1
)
3n
1
5n 6
1 2
1 ... 3
1 3n
5n 6
2020届高考数学专题汇编:数列放缩方法

数列放缩法常见的数列不等式大多与数列求和或求积有关,基本结构有4种:1.形如∑a i n i=1<k (k 为常数)2.形如∑a i n i=1<f (n )3.形如∏a i n i=1<k (k 为常数)4.形如∏a i ni=1<f (n )例1.求证:12+122+123+⋯+12n<1(n ∈N ∗)变式1求证:12+222+323+⋯+n 2n<2(n ∈N ∗)变式2求证:12+1+122+1+⋯+12n +1<1(n ∈N ∗)变式3求证:12+1+222+2+⋯+n2n+n<2(n∈N∗)例2.求证:11×3+13×5+⋯+1(2n−1)(2n+1)<12(n∈N∗)变式1求证:11×3+13×5+⋯+1(2n−1)(2n+1)≤13(n∈N∗)变式2求证:12×3+13×5+⋯+1(n+1)(2n+1)<512(n∈N∗)例3.求证:1+122+132+⋯⋅1+n2<2(n∈N∗)变式1求证:1+122+132+⋯⋅1+n2<74(n∈N∗)变式2求证:1+122+132+⋯⋅1+n2<53(n∈N∗)变式3求证:1+132+152+⋯⋅1(2n−1)2<54(n∈N∗)例4.已知数列{a n},a n=2n2n−1(n∈N∗)求证:∑a i(a i−1)ni=1<3变式.已知数列{a n},a n=2n2n−1(n∈N∗)求证:∑a i(a i−1)ni=1<25 9例5. 求证:13−2+132−22+⋯+13n−2n<32(n∈N∗)变式.求证:13−2+132−2+⋯+13n−2<1714(n∈N∗)例6. 求证:2(√n+1−1)<1+√2+√3+⋯+√n<2√n(n∈N∗)变式.求证:1+√2+√3+⋯+√n<√2(√2n+1−1)(n∈N∗)例7. 求证:12×34×56⋯2n−12n<√12n+1(n ∈N ∗)变式.求证:(1+1)(1+14)(1+17)⋯(1+13n−2)>√3n +13(n ∈N ∗)常见放缩公式: 平方型:1n (n+1)<1n 2<1n (n−1) (n ≥2)1n 2<1n 2−1=12(1n−1−1n+1)(n ≥2) 1n 2=44n 2<44n 2−1=2(12n −1−12n +1) 1(2n −1)2<14n (n −1)=14(1n −1−1n)(n ≥2)立方型:1n 3<1n (n 2−1)=12n (1n−1−1n+1)=12[1(n−1)n−1n (n+1)] (n ≥2)根式型:2(√n+1−√n)=2√n+1+√n<1√n=22√n<2√n+√n−1=2(√n−√n−1)1√n =2√22√2n<2√2√2n−1+√2n+1=√2(√2n+1−√2n−1) 1√n+2=22√n+2<2√n+2+√n=√n+2−√n1√n(n+1)<1√n+√n−1=√n−√n−1指数型:1a n−b n ≤1a n−1(a−b)(a>b≥1)证:1a n−b n =1a n−1[a−b⋅(ba)n−1]≤1a n−1[a−b⋅(ba)]=1a n−1(a−b)1a n−b≤1a n−1(a−b)(a>b≥1)证:1a n−b =1a n−1(a−ba n−1)≤1a n−1(a−ba0)=1a n−1(a−b)13n<13n−2≤13n−114n<14n−3≤14n−114n<14n−1≤13⋅4n−1奇偶型:2n−1 2n <2n−1√(2n−1)(2n+1)<√2n−12n+1。
高三数学必做题数列放缩法典型试题

高三数学必做题数列放缩法典型试题Prepared on 22 November 2020数列综合题1、已知数列{}n a 的前n 项和n S 满足:()11n n aS a a =--,a 为常数,且0a ≠,1a ≠.(1)求数列{}n a 的通项公式;(2)若13a =,设1111n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证:13n T <.2、已知数列{}n a 的前n 项和()12n n n a S +=,且11a =.(1)求数列{}n a 的通项公式;(2)令ln n n b a =,是否存在k (2,)k k N ≥∈,使得k b 、1k b +、2k b +成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由.3、已知{}n a 是等差数列,32=a ,53=a .⑴求数列{}n a 的通项公式;⑵对一切正整数n ,设1)1(+⋅-=n n n n a a nb ,求数列{}n b 的前n 项和n S .4、设数列{}n a 的前n 项和为n S ,且满足21=a ,221+=+n n S a ()1,2,3n =. (1)求2a ;(2)数列{}n a 的通项公式;(3)设n n n n S S a b 11++=,求证:2121<+++n b b b .5、对于任意的n ∈N *,数列{a n }满足1212121212121n n a n a a n ---+++=++++. (Ⅰ) 求数列{a n }的通项公式;(Ⅱ) 求证:对于n≥2,231222112n n a a a ++++<-6、已知各项均为正数的数列{}n a 的前n 项和为n S 满足242n n n S a a =+.(1)求1a 的值;(2)求{}n a 的通项公式;(3)求证:*222121111,2n n N a a a ++⋅⋅⋅+<∈。
高中数列放缩法技巧

高中数列放缩法技巧
高中数列放缩法是一种用于求解数列问题的技巧。
通过适当的方法对数列进行放缩,可以简化问题的求解过程,提高解题效率。
在高中数学中,数列是一个非常重要的概念。
通过研究数列的性质和规律,可以帮助学生培养数学思维和分析问题的能力。
数列放缩法的基本思想是通过一系列变换将原始数列转化为一个更
加简单或者更加易于处理的数列,从而使问题的求解变得更加容易。
下面介绍几种常用的数列放缩方法:
1. 数列的倍数放缩:如果一个数列的每一项都乘以一个相同的常数,那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有明显倍数关系的数列问题,可以通过放缩将数列转化为一个等比数列,从而更加方便地求解。
2. 数列的平移放缩:如果一个数列的每一项都加上或者减去一个相
同的常数,那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有明显递推关系的数列问题,可以通过放缩将数列转化为一个等差数列,从而更加方便地求解。
3. 数列的递推放缩:如果一个数列的每一项都是前一项的某个函数,
那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有复杂递推关系的数列问题,可以通过放缩将数列转化为一个递推公式,从而更加方便地求解。
除了以上几种基本的放缩方法,还可以根据具体问题的特点进行其他类型的放缩。
数列放缩法在高中数学中有着广泛的应用,可以帮助学生解决各种数列问题,提高数学分析和推理能力。
总之,高中数列放缩法是一种重要的解题技巧,通过适当的放缩方法可以简化数列问题的求解过程,提高解题效率。
掌握数列放缩法对于高中数学的学习和应试都具有重要的意义。
高考数学压轴题放缩法技巧全解

放缩技巧全解证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=. 设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα例10.n2nn 2132+例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+n nn a nn a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
高三数学必做题--数列放缩法(典型试题)

1 1 2 . a1a2 a2 a3 3
1 n (1)n1 ,其中 n 2 . bn n an
②是否存在实数 ,使得数列 {bn } 为等比数列?若存在,求出 的值;若不存在,请说明理由.
9、已知数列 an 的前 n 项和为 Sn ,且 S n (1)求数列 an 的通项公式; (2)若 bn
1 n an 1 , n N ,其中 a1 1 . 2
1 3
an1
2
,数列 bn 的前 n 项和为 Tn ,求证: Tn
1 4
富不贵只能是土豪,你可以一夜暴富, 但是贵气却 需要三代以上的培养。孔子说“富而不骄,莫若富而好礼。” 如今我们不缺
土豪,但是我们缺少贵族。
3、已知 a n 是等差数列, a 2 3 , a 3 5 . ⑴求数列 a n 的通项公式; ⑵对一切正整数 n ,设 bn
(1) n n ,求数列 b n 的前 n 项和 S n . a n a n 1
4、设数列 a n 的前 n 项和为 S n ,且满足 a1 2 , an1 2S n 2 n 1,2,3 (1)求 a2 ; (2)数列 a n 的通项公式; (3)设 bn
2、已知数列 an 的前 n 项和 S n
n 1 an ,且 a
21Leabharlann 1.(1)求数列 an 的通项公式; (2)令 bn ln an ,是否存在 k (k 2, k N ) ,使得 bk 、bk 1 、bk 2 成等比数列.若存在,求出所有符合条件的 k 值;若不存在,请说明理由.
7、已知数列 an 满足 a1 (1)求证:数列 {
1 * , an1an 2an1 1 0 , n N . 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 求数列 4的通项公式;
1 a a 1
(2) 若a ,设b n n 丄,且数列b n 的前n 项和为「,求证:人
3 1 a n 1 a n i 3
n 1 a
2、已知数列 q 的前n 项和s n -,且a 1 1.
2
(1) 求数列耳的通项公式;
(2) 令b n ln a n ,是否存在k (k 2,k N),使得b k 、b k 1、b k 2成等比数列.若存在, 值;若不存在,请说明理由.
3、已知a n 是等差数列,a 2 3, a 3 5.
⑴求数列a n 的通项公式;
4、设数列a n 的前n 项和为S n ,且满足a 1 2, a . 1⑵对一切正整数n ,设b n n (1) n a n a n 1
,求数列 b n 的前n 项和S n .
求出所有符合条件的 k 2S n 2 n 1,2,3L
(1)求 a 2 ;
(2)数列a n 的通项公式;
5、对于任意的n € N*,数列{a n }满足 (I )求数列{a n }的通项公式;
(n )求证:对于 n 》2,—— a ? a a i 1 a 2 2 , a n n
-1
.2 L n
1 2 1 2 1 2 1
L 2 1 J
a n 1
2n
2
6、已知各项均为正数的数列 {a n }的前n 项和为S n 满足4S n a n 2a n •(3)设 b n a
n 1
S n i S n
,求证: b i b 2 b n
(1)求a i 的值;
(2)求{a .}的通项公式;
1
(1)求证:数列{」}是等差数列;
a n 1
2
(2)求证:丄色更鱼L
n 1 a 2 a 3 a °
(3)求证: 1 ~2 a i 1 ~2
a 2 a n
^,n N 2
7、已知数列耳满足a 1
2,a n 1a n 细1
1 0," N 8已知首项大于0的等差数列 a n }的公差d 1,且二 a n a n 1
(1) 求数列a n}的通项公式;
1 n ( 1)n 1
(2) 若数列b n}满足:bi 1, b2 ,幕b n,其中n 2.
n a n
①求数列b n}的通项b n ;
②是否存在实数,使得数列{b n}为等比数列?若存在,求出的值;若不存在,请说明理由.
1
9、已知数列耳的前n项和为S n,且S n n a n 1, n N ,其中a1 1 .
2
(1)求数列a n的通项公式;
(2)若b n ,数列b n的前n项和为「,求证:「
3 n1 2 4。