2019-2020年湘教版初一数学下学期期末测试卷
2020学年七年级数学下学期期末试题 湘教版(1)

2019学年七年级数学下学期期末试题.一组数据按从小到大的顺序排列为,若这组数据的中位数为D.x=(7-3y)/25.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现在有36张白铁皮,设用x张制作盒身,y张制作盒底可以使盒身和盒底正好配套,则所列方程组正确的是(B)A.{x+y=36,25x=40y}B.{x+y=36,2×25x=40y}C.{x+y=36,25x=2×40y}D.{x+y=36,40x=25y}6.若x+y=7,xy=-11,则x2+y2的值是(D)A.49B.27C.38D.717.把x2y-2y2x+y3分解因式正确的是(C)A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)28.如图所示,下列说法中:①∠A与∠B是同旁内角;②∠2与∠1是内错角;③∠A与∠C 是内错角;④∠A与∠1是同位角。
正确的个数是(C)A.1个B.2个C.3个D.4个9.如图,等边三角形风格中,已有两个小等边三角形被涂黑,再将图中其余小等边三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有(C)种。
A.1B.2C.3D.410.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于(B)A.18°B.20°C.22°D.24°11.已知x3+2x2-3x+k因式分解后,其中有一个因式为(x-2),则k为(D)A.6B.-6C.10D.-1012.定义:对于任意有理数a,b,都满足aⓧb=(a-b)2+4ab,若x2-18x+y2+20y+181=0,则x ⓧy=(A)A.1B.-1C.361D.-361x=2将方程3(x-1)=y+5整理变形可得3x-y=8用方程3x-y=8去减方程3x-2y=-2两边可解得y=10把y=10代入方程3x-y=8得x=6因此原方程组的解为{x=6,y=10}21.(6分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:因为EF∥AD所以∠2= ∠3 (两直线平等,同位角相等)又因为∠1=∠2所以∠1=∠3(等量代换)所以AB∥DG (内错角相等,两直线平等)所以∠BAC+ ∠AGD =180°(两直线平等,同旁内角互补)因为∠BAC=70°(已知)所以∠AGD= 180°-70°=110°(等量代换)22.(6分)如图所示,不用量角器,将方格纸中的四边形绕着点O按逆时针方向旋转90°,画出旋转后的图形。
2019~2020学年度第二学期初一数学七年级下册期末试卷及答案(湘教版)

2019~2020学年度第二学期初一数学期末试卷及答案(湘教版)一.选择题(共9小题)1.下列各方程组中,不是二元一次方程组的是()A.B.C.x﹣y=x+y﹣6=0 D.2.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2D.a2a3=a63.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣24.如图,在△ABC中,∠ACB=15°,△ABC绕点C逆时针旋转90°后与△DEC重合,则∠ACE的读数是()A.105°B.90°C.15°D.120°(第4题)(第5题)(第7题)5.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处 B.4处 C.3处 D.2处6.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7;乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小关系是()A.S2甲>S2乙B.S2甲<S2乙C.S2甲=S2乙 D.无法确定7.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠BAC=∠ACDC.因为∠ABD=∠CDB,所以AD∥BCD.因为AD∥BC,所以∠BCA=∠DAC8.方程组的解中x 与y 的值相等,则k 等于( ) A .2B .1C .3D .49.如图,直线AB ∥CD ,∠C=44°,∠E 为直角,则∠1等于( ) A .132° B .134° C .136° D .138°(第9题) (第13题) (第15题)二.填空题(共9小题)10.若a m =2,a n =3,则a 3m +2n = .11.若x 2﹣16x +m 2是一个完全平方式,则m= ;若m ﹣1m=9,则m 2+21m= . 12.六名同学在“爱心捐助”活动中,捐款数额为8,10,9,10,4,6(单位:元),这组数据的中位数是 .13.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=35°,则∠2的度数为 .14.已知x 2+x ﹣1=0,则x 3+x 2﹣x +3的值为 .15.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m 2,10m 2,36m 2,则第四块田的面积为 m 2.16.在△ABC 中,AB=AC=8,作AB 边的垂直平分线交AB 边于点D ,交直线AC 于点E ,若DE=3,则线段CE 的长为 .17.如图,将△ABC 沿着直线DE 折叠,使点C 与点A 重合,已知AB=7,BC=9,则△BAD 的周长为 .18.若(2x ﹣3y +5)2+|x +y ﹣2|=0,则x= ,y= . (第17题) 三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a (2)9a2(x﹣y)+4b2(y﹣x)20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 221.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.23.已知小红的成绩如下表:(1)小红的这三次文化测试成绩的平均分是分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.24.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共9小题)1.D.2.B.3.B.4.A.5.A.6.A.7.C.8.B.9.B.二.填空题(共9小题)10.72.11.±8;83.12.8.5..13.55°.14.3.15.m2.16.3或13.17.16.18.15,95.三.解答题(共7小题)19.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣12时,原式=12+(﹣12)2=1+1 4=54.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.21.【分析】仔细审题,发现题中有两个等量关系:由(1)×2﹣(2)能消x,可知等量关系①:方程(1)中未知数x的系数的2倍减去方程(2)中未知数x 的系数等于0;由(2)+(1)能消y,可知等量关系②:方程(1)中未知数y 的系数加上方程(2)中未知数y的系数等于0,根据这两个等量关系列出关于m,n的二元一次方程组,解方程组即可求出m,n的值.【解答】解:由题意可得,解得.故答案为:m=54,n=﹣34.【点评】本题主要考查二元一次方程组的解法及其应用,难度中等.关键是透彻理解加减消元法的实质,从而将已知条件转化为一个关于m,n的二元一次方程组.22.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D 互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点评】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23.已知小红的成绩如下表:(1)小红的这三次文化测试成绩的平均分是 590 分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有 41 名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.【分析】(1)根据平均数公式计算小红的这三次文化测试成绩的平均分; (2)由数据总数=频数计算班级总人数;(3)计算600分以上人数,即可知道小红能否被保送.【解答】解:(1)由题意可知:小红的这三次文化测试成绩的平均分是=590;(2)由频数直方图可以看出:小红所在班级共有8+7+10+11+3+2=41人; (3)小红的总成绩为590+12=602分,600分以上的学生共有10+3+2=15人=15人,所以小红能被保送.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则100 521600 x yx y+=⎧⎨+=⎩解得200300 xy=⎧⎨=⎩故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则302 4560a a+=+解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.。
2020最新湘教版七年级数学下期末复习试卷(有答案)

湘教版版七年级数学下册期末复习试卷一.选择题(共9小题)1.下列各方程组中,不是二元一次方程组的是()A.B. C.x﹣y=x+y﹣6=0 D.2.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2 D.a2a3=a63.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣24.如图,在△ABC中,∠ACB=15°,△ABC绕点C逆时针旋转90°后与△DEC重合,则∠ACE的读数是()A.105°B.90°C.15°D.120°5.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处B.4处C.3处D.2处6.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7;乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小关系是()A.S2甲>S2乙B.S2甲<S2乙C.S2甲=S2乙 D.无法确定7.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠BAC=∠ACDC.因为∠ABD=∠CDB,所以AD∥BCD.因为AD∥BC,所以∠BCA=∠DAC8.方程组的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.49.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°二.填空题(共9小题)10.若a m=2,a n=3,则a3m+2n= .11.若x2﹣16x+m2是一个完全平方式,则m= ;若m﹣1m=9,则m2+21m= .12.六名同学在“爱心捐助”活动中,捐款数额为8,10,9,10,4,6(单位:元),这组数据的中位数是.13.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为.14.已知x2+x﹣1=0,则x3+x2﹣x+3的值为.15.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m2,10m2,36m2,则第四块田的面积为m2.16.在△ABC中,AB=AC=8,作AB边的垂直平分线交AB边于点D,交直线AC于点E,若DE=3,则线段CE的长为.17.如图,将△ABC沿着直线DE折叠,使点C与点A重合,已知AB=7,BC=9,则△BAD 的周长为.18.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 221.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.23.已知小红的成绩如下表:文化成绩综合素质成绩总成绩测验1测验2测验3小红560分580分630分12(1)小红的这三次文化测试成绩的平均分是分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF= .()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF= °.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= °.25.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共9小题)1. D.2. B.3. B.4. A.5. A.6. A.7. C.8. B.9. B.二.填空题(共9小题)10.72 .11.±8 ;83 .12.8.5..13.55°.14. 3 .15.m2.16.3或13 .17.16 .18.15,95.三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 2【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣12时,原式=12+(﹣12)2=1+1 4=54.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.21.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?【分析】仔细审题,发现题中有两个等量关系:由(1)×2﹣(2)能消x,可知等量关系①:方程(1)中未知数x的系数的2倍减去方程(2)中未知数x的系数等于0;由(2)+(1)能消y,可知等量关系②:方程(1)中未知数y的系数加上方程(2)中未知数y的系数等于0,根据这两个等量关系列出关于m,n的二元一次方程组,解方程组即可求出m,n的值.【解答】解:由题意可得,解得.故答案为:m=54,n=﹣34.【点评】本题主要考查二元一次方程组的解法及其应用,难度中等.关键是透彻理解加减消元法的实质,从而将已知条件转化为一个关于m,n的二元一次方程组.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点评】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23.已知小红的成绩如下表:文化成绩综合素质成绩总成绩测验1测验2测验3小红560分580分630分12(1)小红的这三次文化测试成绩的平均分是590 分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有41 名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.【分析】(1)根据平均数公式计算小红的这三次文化测试成绩的平均分;(2)由数据总数=频数计算班级总人数;(3)计算600分以上人数,即可知道小红能否被保送.【解答】解:(1)由题意可知:小红的这三次文化测试成绩的平均分是=590;(2)由频数直方图可以看出:小红所在班级共有8+7+10+11+3+2=41人;(3)小红的总成绩为590+12=602分,600分以上的学生共有10+3+2=15人=15人,所以小红能被保送.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF= ∠EFC .(两直线平行,内错角相等)∵EF∥AB,∴∠EFC =∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF= 40 °.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= 120 °.【分析】(1)依据两直线平行,内错角相等;两直线平行,同位角相,即可得到∠DEF=40°.(2)依据两直线平行,内同位角相;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣60°=120°.【解答】解:(1)∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=40°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;(2)∵DE∥BC,∴∠ABC=∠EADE=60°.(两直线平行,内同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内同位角相;两直线平行,同旁内角互补.25.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则100 521600 x yx y解得200300 xy故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则3024560a a解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.。
湘教版2019-2020学年度第二学期七年级期末考试数学试卷

湘教版2019-2020学年度第二学期七年级期末考试数学试卷 满分:120分,考试时间:100分钟 题号一 二 三 总分 得分评卷人得分 一、单选题(共30分)1.(本题3分)下面四个手机应用图标中,是轴对称图形的是( ) A . B . C . D . 2.(本题3分)下列方程中是二元一次方程的是( )A .1xy =B .12x y +=C .31y x =-D .230x x --= 3.(本题3分)下列运算正确的是( )A .22m n mn +=B .2232a b b a -=C .2363(2)8m n m n -=-D .22(2)4n n -=+ 4.(本题3分)已知2x 2y 3a 与-4x 2a y 1+b 是同类项,则b a 的值为( ) A .2 B .-2 C .1 D .-1 5.(本题3分)下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 6.(本题3分)计算(﹣1.5)2018×(23)2019的结果是( ) A .﹣32 B .32 C .﹣23 D .23 7.(本题3分)若多项式21x kx ++是一个完全平方式,则k 等于( ) A .4± B .2± C .2 D .2- 8.(本题3分)为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学辅导答疑的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学辅导和答疑,提高了同学们在线学习的质效.随机抽查了某中学九年级5名学生一周在线学习的时长分别为:17,18,19,20,21,(单位:时)则这5名学生一周在线学习时间的方差(单位:时²)为( )A .2B .19C .10D .2 9.(本题3分)如图,直线a ∥b ,将一块含30°角的直角三角尺按图中方式放置,其中点A 和点B 两点分别落在直线a 和b 上.若2=50∠︒,则1∠的度数为( )A .10︒B .20︒C .30°D .40︒ 10.(本题3分)小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm评卷人得分 二、填空题(共32分)11.(本题4分)因式分解:2()4()a a b a b ---=___.12.(本题4分)已知二元一次方程5x +y =9,若用含x 的代数式表示y ,则有y =_____. 13.(本题4分)如图,为了把河中的水引到C 处,可过点C 作CD AB ⊥于D ,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是__________.14.(本题4分)为了参加中学生篮球联赛,某校篮球队准备购买10双运动鞋收集尺码,并整理如下统计表:尺码/cm 25 25.526 26.5 27 购买量/双 12 3 2 2则这组数据的中位数是__________________.15.(本题4分)根据图中提供的信息,可知一个杯子的价格是______.16.(本题4分)如图,将直角三角形ABC 沿CB 方向平移BE 的距离后,得到直角三角形DEF .已知AG=4,BE=6,DE=12,则阴影部分的面积为_____.17.(本题4分)如果()()1163a b a b +++-=,那么+a b 的值为______. 18.(本题4分)如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为_____.评卷人得分 三、解答题(共58分)19.(本题8分)解方程组:(1)213211x y x y +=⎧⎨-=⎩; (2)45011223x y x y --=⎧⎪⎨+=⎪⎩20.(本题8分)先化简,再求值::()()()2a 2a 22a 3+-++,其中a=13.21.(本题8分)因式分解(1)32234363x y x y xy -+-; (2)3()6()x a b y b a ---.22.(本题8分)体育文化用品商店购进篮球和排球共20个,进价和售价如下表所示,全部销售完后共获利润260元.(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?23.(本题8分)观察下列等式:①2419⨯+=;②46125⨯+=;③68149⨯+=;…根据上述式子的规律,解答下列问题:(1)第④个等式为 ;(2)写出第n 个等式,并验证其正确性.24.(本题9分)如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2.试问DG 与BA 是否平行?说明你的理由.25.(本题9分)某校为了解全校学生假期主题阅读的情况(要求每名学生的文章阅读篇数,最少3篇,最多7篇),随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇) 3 4 5 6 7人数(人)20 28 m16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生读书总数.答案第1页,总1页 参考答案1.D2.C3.C4.A5.D6.D7.B8.A9.A10.A11.()()()22a b a a -+-12.﹣5x +9.13.垂线段最短14.2615.816.6017.8±18.60°19.(1)=31x y ⎧⎨=-⎩;(2)23x y =⎧⎨=⎩ 20.12321.(1) 223()xy x y --;(2) 3()(2)a b x y -+22.(1)购进篮球12个,购进排球8个;(2)销售6个排球的利润与销售4个篮球的利润相等.23.(1)10×12+1=121;(2) 2n×(2n+2)+1=(2n+1)224.平行,理由见解析25.(1)100人,24;(2)中位数为5篇,众数为4篇;(3)3376本。
2019-2020学年湘教版七年级数学下期末复习试卷(二)(有答案)

湘教版版七年级数学下册期末复习试卷(二)解析版一.选择题(共9小题)1.下列各方程组中,不是二元一次方程组的是()A.B.C.x﹣y=x+y﹣6=0 D.2.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2D.a2a3=a63.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣24.如图,在△ABC中,∠ACB=15°,△ABC绕点C逆时针旋转90°后与△DEC重合,则∠ACE的读数是()A.105°B.90°C.15°D.120°5.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处B.4处 C.3处 D.2处6.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7;乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小关系是()A.S2甲>S2乙B.S2甲<S2乙C.S2甲=S2乙D.无法确定7.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠BAC=∠ACDC.因为∠ABD=∠CDB,所以AD∥BCD.因为AD∥BC,所以∠BCA=∠DAC8.方程组的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.49.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°二.填空题(共9小题)10.若a m=2,a n=3,则a3m+2n= .11.若x2﹣16x+m2是一个完全平方式,则m= ;若m﹣1m =9,则m2+21m= .12.六名同学在“爱心捐助”活动中,捐款数额为8,10,9,10,4,6(单位:元),这组数据的中位数是.13.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为.14.已知x2+x﹣1=0,则x3+x2﹣x+3的值为.15.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m2,10m2,36m2,则第四块田的面积为m2.16.在△ABC中,AB=AC=8,作AB边的垂直平分线交AB边于点D,交直线AC于点E,若DE=3,则线段CE的长为.17.如图,将△ABC沿着直线DE折叠,使点C与点A重合,已知AB=7,BC=9,则△BAD 的周长为.18.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1221.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.23.已知小红的成绩如下表:)小红的这三次文化测试成绩的平均分是分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF= .()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF= °.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= °.25.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.湘教版版七年级数学下册期末复习试卷(二)简答一.选择题(共9小题)1.D.2.B.3.B.4.A.5.A.6.A.7.C.8.B.9.B.二.填空题(共9小题)10.72 .11.±8 ;83 .12.8.5..13.55°.14. 3 .15.m2.16.3或13 .17.16 .18.15,95.三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣12【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣12时,原式=12+(﹣12)2=1+14=54.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.21.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?【分析】仔细审题,发现题中有两个等量关系:由(1)×2﹣(2)能消x,可知等量关系①:方程(1)中未知数x的系数的2倍减去方程(2)中未知数x的系数等于0;由(2)+(1)能消y,可知等量关系②:方程(1)中未知数y的系数加上方程(2)中未知数y的系数等于0,根据这两个等量关系列出关于m,n的二元一次方程组,解方程组即可求出m,n的值.【解答】解:由题意可得,解得.故答案为:m=54,n=﹣34.【点评】本题主要考查二元一次方程组的解法及其应用,难度中等.关键是透彻理解加减消元法的实质,从而将已知条件转化为一个关于m,n的二元一次方程组.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点评】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23.已知小红的成绩如下表:)小红的这三次文化测试成绩的平均分是590 分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有41 名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.【分析】(1)根据平均数公式计算小红的这三次文化测试成绩的平均分;(2)由数据总数=频数计算班级总人数;(3)计算600分以上人数,即可知道小红能否被保送.【解答】解:(1)由题意可知:小红的这三次文化测试成绩的平均分是=590;(2)由频数直方图可以看出:小红所在班级共有8+7+10+11+3+2=41人;(3)小红的总成绩为590+12=602分,600分以上的学生共有10+3+2=15人=15人,所以小红能被保送.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF= ∠EFC .(两直线平行,内错角相等)∵EF∥AB,∴∠EFC =∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF= 40 °.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= 120 °.【分析】(1)依据两直线平行,内错角相等;两直线平行,同位角相,即可得到∠DEF=40°.(2)依据两直线平行,内同位角相;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣60°=120°.【解答】解:(1)∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=40°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;(2)∵DE∥BC,∴∠ABC=∠EADE=60°.(两直线平行,内同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内同位角相;两直线平行,同旁内角互补.25.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则100 521600 x yx y+=⎧⎨+=⎩解得200300 xy=⎧⎨=⎩故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a 人, 则3024560a a +=+ 解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.。
湘教版 2019-2020学年七年级数学下学期期末考试试卷(含答案)

2019-2020学年七年级数学下册期末考试试卷一、选择题(本大题共12道小题,每小题3分,满分36分,每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填写在下表内)1.下列等式中,正确的是()A.3a+2b=5ab B.2(a﹣b)=2a﹣bC.(a﹣b)2=a2﹣b2D.(﹣2a3)2=4a62.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2﹣4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)23.把多项式x3﹣4x分解因式所得的结果是()A.x(x2﹣4)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.(x+2)(x﹣2)4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.5.如图,直线a∥b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度6.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A.平均数B.众数C.方差D.中位数7.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.78.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是()A.53°B.63°C.73°D.27°9.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.a+3B.a+6C.2a+3D.2a+610.已知方程组,则x+y的值为()A.﹣1B.0C.2D.311.如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为()A.20°B.50°C.80°D.110°12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.方程组的解是.14.如果10m=12,10n=3,那么10m+n=.15.分解因式:4x2﹣16=.16.如图,要使AD∥BF,则需要添加的条件是(写一个即可)17.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是.18.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.三、解答题(本大题共2个小题,每小题6分,满分12分)19.先化简,再求值:(x+2)(x﹣2)﹣(x+3)2,其中x=.20.给出三个多项式:a2+3ab﹣2b2,b2﹣3ab,ab+6b2,任请选择两个多项式进行加法运算,并把结果分解因式.四、解答题(本大题共2个小题,每小题8分,满分16分)21.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=80°,求∠BOD的度数;(2)若∠EOC=∠EOD,求∠BOD的度数.22.如图,已知∠1=∠2,∠B=100°,求∠D的度数.五、解答题(本大题共2个小题,每小题9分,满分18分)23.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲858075乙809073丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.24.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?六、综合题(本大题共2个小题,每小题10分,满分20分)25.填空或填写理由.(1)如图甲,∵∠=∠(已知);∴AB∥CD()(2)如图乙,已知直线a∥b,∠3=80°,求∠1,∠2的度数.解:∵a∥b,()∴∠1=∠()又∵∠3=∠4()∠3=80°(已知)∴∠1=∠=°(等量代换)又∵∠2+∠3=180°∴∠2=°(等式的性质)26.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n 的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为;(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.参考答案与试题解析一、选择题(本大题共12道小题,每小题3分,满分36分,每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填写在下表内)1.解:A、3a与2b不能合并,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(﹣2a3)2=4a6,正确;故选:D.2.解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,过程不够完整,故选:A.3.解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故选:C.4.解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.5.解:由直线a∥b,CD⊥b,得线段CD的长度是直线a,b之间距离,故选:B.6.解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选:C.7.解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.8.解:∵∠1=27°,∴∠3=90°﹣∠1=90°﹣27°=63°.∵直尺对边平行,∴∠2=∠3=63°.故选:B.9.解:长方形的另一边长是:(a+3)+3=a+6,故选:B.10.解:,①+②得:3x+3y=9,则x+y=3.故选:D.11.解:∵△ABC绕点C顺时针旋转50°,∴∠ACA′=50°,∴∠A′CB=80°,∵l1∥l2,∴∠1=∠A′CB=80°.故选:C.12.解:设大马有x匹,小马有y匹,由题意得:,故选:C.二、填空题(本大题共6个小题,每小题3分,满分18分)13.解:,①﹣②,得3x=﹣3,解这个方程,得x=﹣1,把x=﹣1代入①,得﹣1+y=3,解得x=4,这个方程组的解为,故答案为:.14.解:10m+n=10m•10n=12×3=36.故答案为:36.15.解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).16.解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).17.解:运动员张华测试成绩的众数是7,故答案为:7.18.解:如图所示,新图形是一个轴对称图形.故答案为:3.三、解答题(本大题共2个小题,每小题6分,满分12分)19.解:原式=x2﹣4﹣(x2+6x+9)=x2﹣4﹣x2﹣6x﹣9=﹣6x﹣13,当x=时,原式=﹣6×﹣13=﹣2﹣13=﹣15.20.解:(a2+3ab﹣2b2)+(b2﹣3ab)=a2+3ab﹣2b2+b2﹣3ab=a2﹣b2=(a+b)(a﹣b).四、解答题(本大题共2个小题,每小题8分,满分16分)21.解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×80°=40°,∴∠BOD=∠AOC=40°;(2)设∠EOC=x,∠EOD=x,根据题意得x+x=180°,解得x=90°,∴∠EOC=x=90°,∴∠AOC=∠EOC=×90°=45°,∴∠BOD=∠AOC=45°.22.解:∵∠1=∠AEF,∠1=∠2,∴∠AEF=∠2,∴AB∥CD,∴∠B+∠D=180°,∵∠B=100°,∴∠D=80°.五、解答题(本大题共2个小题,每小题9分,满分18分)23.解:(1)甲=(85+80+75)÷3=80(分),乙=(80+90+73)÷3=81(分),丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;(2)甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),丙的总分是:83×60%+79×30%+90×10%=82.5(分),∵公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴丙排除,∴甲的总分最高,甲被录用.24.解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40﹣30)+60×(50﹣35)=1300(元).答:商场共计获利1300元.六、综合题(本大题共2个小题,每小题10分,满分20分)25.解:(1)∵∠3=∠4(已知);∴AB∥CD(内错角相等,两直线平行)(2)∵a∥b,(已知)∴∠1=∠4(两直线平行,同位角相等)又∵∠3=∠4(对顶角相等)∠3=80°(已知)∴∠1=∠3=80°(等量代换)又∵∠2+∠3=180°∴∠2=100°(等式的性质)故答案为:3;4;内错角相等,两直线平行;已知;4;两直线平行,同位角相等;对顶角相等;3;80;100.26.解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n=6(m+n);(2)2m2+5mn+2n2可以因式分解为:(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(3)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.1、读书破万卷,下笔如有神。
湘教版 2019-2020学年七年级数学下册期末考试试题(含答案)

2019-2020学年七年级数学下册期末考试试卷一、选择题(本大题共12道小题,每小题3分,满分36分,每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填写在下表内)1.下列等式中,正确的是()A.3a+2b=5ab B.2(a﹣b)=2a﹣bC.(a﹣b)2=a2﹣b2D.(﹣2a3)2=4a62.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2﹣4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)23.把多项式x3﹣4x分解因式所得的结果是()A.x(x2﹣4)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.(x+2)(x﹣2)4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.5.如图,直线a∥b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度6.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A.平均数B.众数C.方差D.中位数7.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.78.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是()A.53°B.63°C.73°D.27°9.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.a+3B.a+6C.2a+3D.2a+610.已知方程组,则x+y的值为()A.﹣1B.0C.2D.311.如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为()A.20°B.50°C.80°D.110°12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.方程组的解是.14.如果10m=12,10n=3,那么10m+n=.15.分解因式:4x2﹣16=.16.如图,要使AD∥BF,则需要添加的条件是(写一个即可)17.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是.18.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.三、解答题(本大题共2个小题,每小题6分,满分12分)19.先化简,再求值:(x+2)(x﹣2)﹣(x+3)2,其中x=.20.给出三个多项式:a2+3ab﹣2b2,b2﹣3ab,ab+6b2,任请选择两个多项式进行加法运算,并把结果分解因式.四、解答题(本大题共2个小题,每小题8分,满分16分)21.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=80°,求∠BOD的度数;(2)若∠EOC=∠EOD,求∠BOD的度数.22.如图,已知∠1=∠2,∠B=100°,求∠D的度数.五、解答题(本大题共2个小题,每小题9分,满分18分)23.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲858075乙809073丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.24.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?六、综合题(本大题共2个小题,每小题10分,满分20分)25.填空或填写理由.(1)如图甲,∵∠=∠(已知);∴AB∥CD()(2)如图乙,已知直线a∥b,∠3=80°,求∠1,∠2的度数.解:∵a∥b,()∴∠1=∠()又∵∠3=∠4()∠3=80°(已知)∴∠1=∠=°(等量代换)又∵∠2+∠3=180°∴∠2=°(等式的性质)26.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n 的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为;(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.参考答案与试题解析一、选择题(本大题共12道小题,每小题3分,满分36分,每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填写在下表内)1.解:A、3a与2b不能合并,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(﹣2a3)2=4a6,正确;故选:D.2.解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,过程不够完整,故选:A.3.解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故选:C.4.解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.5.解:由直线a∥b,CD⊥b,得线段CD的长度是直线a,b之间距离,故选:B.6.解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选:C.7.解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.8.解:∵∠1=27°,∴∠3=90°﹣∠1=90°﹣27°=63°.∵直尺对边平行,∴∠2=∠3=63°.故选:B.9.解:长方形的另一边长是:(a+3)+3=a+6,故选:B.10.解:,①+②得:3x+3y=9,则x+y=3.故选:D.11.解:∵△ABC绕点C顺时针旋转50°,∴∠ACA′=50°,∴∠A′CB=80°,∵l1∥l2,∴∠1=∠A′CB=80°.故选:C.12.解:设大马有x匹,小马有y匹,由题意得:,故选:C.二、填空题(本大题共6个小题,每小题3分,满分18分)13.解:,①﹣②,得3x=﹣3,解这个方程,得x=﹣1,把x=﹣1代入①,得﹣1+y=3,解得x=4,这个方程组的解为,故答案为:.14.解:10m+n=10m•10n=12×3=36.故答案为:36.15.解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).16.解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).17.解:运动员张华测试成绩的众数是7,故答案为:7.18.解:如图所示,新图形是一个轴对称图形.故答案为:3.三、解答题(本大题共2个小题,每小题6分,满分12分)19.解:原式=x2﹣4﹣(x2+6x+9)=x2﹣4﹣x2﹣6x﹣9=﹣6x﹣13,当x=时,原式=﹣6×﹣13=﹣2﹣13=﹣15.20.解:(a2+3ab﹣2b2)+(b2﹣3ab)=a2+3ab﹣2b2+b2﹣3ab=a2﹣b2=(a+b)(a﹣b).四、解答题(本大题共2个小题,每小题8分,满分16分)21.解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×80°=40°,∴∠BOD=∠AOC=40°;(2)设∠EOC=x,∠EOD=x,根据题意得x+x=180°,解得x=90°,∴∠EOC=x=90°,∴∠AOC=∠EOC=×90°=45°,∴∠BOD=∠AOC=45°.22.解:∵∠1=∠AEF,∠1=∠2,∴∠AEF=∠2,∴AB∥CD,∴∠B+∠D=180°,∵∠B=100°,∴∠D=80°.五、解答题(本大题共2个小题,每小题9分,满分18分)23.解:(1)甲=(85+80+75)÷3=80(分),乙=(80+90+73)÷3=81(分),丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;(2)甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),丙的总分是:83×60%+79×30%+90×10%=82.5(分),∵公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴丙排除,∴甲的总分最高,甲被录用.24.解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40﹣30)+60×(50﹣35)=1300(元).答:商场共计获利1300元.六、综合题(本大题共2个小题,每小题10分,满分20分)25.解:(1)∵∠3=∠4(已知);∴AB∥CD(内错角相等,两直线平行)(2)∵a∥b,(已知)∴∠1=∠4(两直线平行,同位角相等)又∵∠3=∠4(对顶角相等)∠3=80°(已知)∴∠1=∠3=80°(等量代换)又∵∠2+∠3=180°∴∠2=100°(等式的性质)故答案为:3;4;内错角相等,两直线平行;已知;4;两直线平行,同位角相等;对顶角相等;3;80;100.26.解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n=6(m+n);(2)2m2+5mn+2n2可以因式分解为:(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(3)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.1、三人行,必有我师。
湘教版七年级下册数学期末考试卷及答案

⼀、精⼼选⼀选:(本⼤题共8⼩题,每⼩题4分,共32分)1、在平⾯直⾓坐标系中,点P(3,4)关于x轴对称的点的坐标是 ( )A、(-3,4)B、(3,-4)C、(-3,-4)D、(4,3)2、不等式组的正整数解的个数是 ( )A、1B、2C、3D、43、某市为迎接⼤学⽣冬季运动会,正在进⾏城区⼈⾏道路翻新,准备只选⽤同⼀种正多边形地砖铺设地⾯.下列正多边形的地砖中,不能进⾏平⾯镶嵌的是 ( )A、正三⾓形B、正⽅形C、正六边形D、正⼋边形4、下列调查⽅式中合适的是 ( )A、要了解⼀批空调使⽤寿命,采⽤全⾯调查⽅式B、调查你所在班级同学的⾝⾼,采⽤抽样调查⽅式C、环保部门调查⽊兰溪某段⽔域的⽔质情况采⽤抽样调查⽅式D、调查仙游县中学⽣每天的就寝时间,采⽤全⾯调查⽅式5、已知三元⼀次⽅程组,则 ( )A、5B、6C、7D、86、已知如图,AD ∥CE,则∠A+∠B+∠C= ( )A、180°B、270°C、360°D、540°7、如图,宽为50cm的矩形图案由10个全等的⼩长⽅形拼成,其中⼀个⼩长⽅形的⾯积为 ( )A、400㎝2B、500㎝2C、600㎝2D、4000㎝28、若⽅程组的解满⾜,则m的取值范围是 ( )A、m>-6B、m<6C、m<-6D、m>6⼆、细⼼填⼀填(本⼤题共8⼩题,每⼩题4分,共32分)9、不等式的解集是__________。
10、如果⼀个多边形的每个内解都等于144°,则它的内⾓和为__________它是__________边形。
11、为了了解某校2000名学⽣视⼒情况,从中测试了100名学⽣视⼒进⾏分析,在这个问题中,总体是__________,样本容量是__________。
12、已知如图,在△ABC中,∠B=∠C,FD⊥BC于点D,DE⊥AB ,于点E,∠AFD=158°,则∠EDF=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年湘教版初一数学下学期期末测试卷
以饱满的斗志投入备考,无论是上课、作业还是考试、总结,都一丝不苟,不被惰性情绪左右。
充分利用时间,最大限度地压缩非学习时间,各种学习以外的事情速战速决。
一、选择题。
(共40分,每题4分。
)
1. 下列计算正确的是( )
A. 4
4
8236a a a ⋅= B. 4
4
8
a a a += C. 4
44
2a a a ⋅= D. 448()a a =
2. 下列图形中,轴对称图形的个数是( )
A.1
B.2 C.3 D.4
3 (-2x 3y 4)3的值是( )A.-6x 6y 7 B.-8x 27y 6
4 C.-8x 9y 12 D.-6xy 10
4.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.
180=∠+∠ACD D 5.下列计算中,正确的是( )
A 、 (x-1)2
=x 2
-2x-1 B 、(2a+b)2
=2a 2
+4ab+b 2
C 、 (3x+2)2
=9x 2
+6x+4 D 、(
21m –n)2=4
1m 2-mn+n 2
6. 右图是一个旋转对称图形,要使它旋转后能与自身重合, 至少应将它绕中心点旋转的度数是( ) A 30° B 60° C1 20° D 180°
7. 已知(a+b)2
=11,ab=2, 则(a –b)2
的值应为( )A 、11 B 、5 C 、 3 D 、19 8、若1
4
2-=y x
,1
3
27+=x y ,则y x -等于( )A 、-5 B 、-3 C 、-1 D 、1
9、下列多项式不能用完全平方公式分解的是 ( )
E
D
C B
A
432
1
A 442
++x x B 16824+-y y C 422
+-x x
D 91242
+-y y
10、如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形()a b >(如图1),将余下的部分剪开后拼成一个梯形(如图2),根据两个图形阴影部分面积的关系,可以得到一个关于,a b 的恒等式为( ) (A )()
2
222a b a ab b -=-+
(B )
()
2
222a b a ab b +=++
(C )2
2()()a
b a b a b -=+-
(D )()2
a a
b a a b +=+ 图1 图2
二、填空题:(共32分,每小题4分。
)
11、如果
0102323=+-+-n m n m y x 是二元一次方程,那么=mn 。
12.如果⎩
⎨⎧-==12
y x 是方程3mx -y =-1的解,则m =______.
13、一个人从A 点出发向北偏东︒60方向走到点B ,又从B 点向南偏西︒15方向走到点C ,那么ABC ∠的度数是 。
14、已知7,
9x y x y +=-=,则22
x y -=_______。
15. 一个角的余角是这个角的补角的
5
1,则这个角的度数为_______ 。
16.如图④,若
22021=∠+∠ ,则=3∠ 。
17.如图⑤,已知b a //,若
501=∠,则=∠2 ;若
1003=
∠,则=∠2 。
18.如图,在△ABC 中,∠A=80°,∠B=60°,将△ABC 沿EF 对折,点C 落在C'处, 如果∠1=50°,那么:∠2= .
b
a
3
图④
212
图⑤
c
b
a 3
1
三、计算题(共78分,) 19.解方程组(10分)
(1) (2)
20、分解因式:(16分)
(1)3223
2xy y x y x +- (2) 4a 2(x-2a)2-2a(2a-x)3
21、先化简后求值:已知a=4,b=-1
求代数式)3)(1()62()3(2
-++---a a b a a b a 的值。
22.已知方程组⎩⎨⎧=-=+m y x y x 233
2与方程1=+
y x 的解相同,
求m 的值(10分)
⎧
⎪⎪⎪⎨⎪⎪⎪⎩
23= 11 65= 9x+y x y --①②
, . ⎩⎨
⎧-=+-=1232y x y x
23. 如图所示,已知∠B=∠C ,AD ∥BC ,试证明:AD 平分∠CAE 。
(10分)
24.如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。
求证BC AD //。
(12分)
25.初三(2)班的一个综合实践活动小组去A ,B 两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景.根据他们的对话,请你分别求出A 、B 两个超市今年“五一节”期间的销售额(12分)
D
E A B C
2
1
2
1
F
E
D
C
B
A。