第2章 图象的几何变换

合集下载

数学北师大版九年级下册《二次函数的图象与性质(第二课时)》教学设计

数学北师大版九年级下册《二次函数的图象与性质(第二课时)》教学设计

北师大版数学九年级下册第二章第2节《二次函数的图象与性质(第二课时)》教学设计陕西师范大学附属中学马翠一、教材分析二次函数的图象—抛物线是人们最熟悉的曲线之一,生活中的应用非常广泛。

本节课是北师大版数学九年级下册第二章二次函数第2节二次函数的图象与性质的第二课时。

该内容属于《全日制义务教育课程标准(2011版)》中的“数与代数”领域,是在已经学习了二次函数定义、探究了y=±x2图象基础上,进一步探究函数y=ax2与y=ax2+c的图象与性质,既是前面所学知识的延续,又是探究其他二次函数图象的基础,起到了承上启下的作用。

二次函数的核心内容是它的概念和图象特征,本节课开始研究a、c对函数图象的影响,对后期研究一般的二次函数从方法和内容上有着重要的铺垫和打基础作用。

对二次函数图象的研究,充分体现了数形结合思想,通过对图象的研究和分析,可以确定函数本身的性质. 在以前学习的一次函数和反比例函数中都有所体现,结合本节课的内容,可以进一步加强对数形结合思想方法的理解。

从列表、解析式、图象三方面理解函数,分析a,c的影响,反应了研究函数图象的基本方法。

因此,学好本节课,将为今后的数学学习,尤其是函数学习,奠定坚实的基础。

二、学情分析学生的知识技能基础:在此之前,学生已掌握一次函数和反比例函数的图象和性质,并刚刚学习了二次函数的基本概念,能利用描点法画抛物线的图象;对于抛物线的图象形状、开口方向、对称轴、顶点坐标有所了解;能够根据图象认识和理解二次函数的性质。

学生的图形计算器基础:学生通过培训已经初步掌握了HP Prime图形计算器的使用,对图形计算器的运用熟悉,且有浓厚的学习兴趣。

学生活动经验基础:九年级学生逻辑思维从经验型逐步向理论型发展,开始有了数学抽象思维和一定的分析、归纳内能力,具备本节课的认知心理基础。

该阶段的学生几何直观能力也有了很大发展,教学中应深入浅出地引导分析,利用HP Prime图形计算器和几何画板相结合可以使学生更清晰的观察和认识图形,充分理解与归纳。

专题24一次函数图象与几何变换之平移、旋转与对称(原卷版)

专题24一次函数图象与几何变换之平移、旋转与对称(原卷版)

专题24 一次函数图象与几何变换之平移、旋转与对称(原卷版)类型一 平移1.(2022秋•南京期末)将一次函数y =﹣2x +3的图象沿y 轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为( )A .y =﹣2x +1B .y =﹣2x ﹣5C .y =﹣2x +5D .y =﹣2x +72.(2022秋•埇桥区期中)将直线y =x +1向上平移5个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法错误的是( )A .函数图象经过第一、二、三象限B .函数图象与x 轴的交点在x 轴的正半轴C .点(﹣2,4)在函数图象上D .y 随x 的增大而增大3.(2019•雅安)如图,在平面直角坐标系中,直线l 1:y =√33x +1与直线l 2:y =√3x 交于点A 1,过A 1作x 轴的垂线,垂足为B 1,过B 1作l 2的平行线交l 1于A 2,过A 2作x 轴的垂线,垂足为B 2,过B 2作l 2的平行线交l 1于A 3,过A 3作x 轴的垂线,垂足为B 3…按此规律,则点A n 的纵坐标为( )A .(32)nB .(12)n +1C .(32)n ﹣1+12D .3n −124.(2022•南京模拟)如图1,在平面直角坐标系中,平行四边形ABCD 在第一象限,且BC ∥x 轴.直线y =x 从原点O 出发沿x 轴正方向平移.在平移过程中,直线被平行四边形ABCD 截得的线段长度m 与直线在x 轴上平移的距离t 的函数图象如图2所示,那么平行四边形ABCD 的面积为( )A .5B .5√2C .10D .10√25.(2021秋•白银期末)已知点P(1,2)关于x轴的对称点为P',且P'在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.6.(2008秋•宿迁期末)已知直线l1:y=kx+b与直线y=2x平行,且与坐标轴围成的三角形的面积为4.(1)求直线l1的解析式;(2)直线l1经过怎样平移可以经过原点;(3)求直线l1关于y轴对称的直线的解析式.类型二旋转7.(2022•碑林区二模)把一次函数y=x+1的图象绕点(2,0)顺时针旋转180°所得直线的表达式为()A.y=﹣x+2B.y=﹣x+3C.y=x﹣4D.y=x﹣58.(2022•安阳县一模)将y=x的函数图象绕点(1,1)顺时针旋转90°以后得到的函数图象是()A.B.C.D.9.(2021秋•华容区期末)已知一次函数y=3x+12的图象与x轴、y轴分别相交于A、B两点,将直线AB 绕点A顺时针旋转90°,则点B的对应点B'的坐标为()A.(8,﹣4)B.(﹣16,4)C.(12,8)D.(﹣12,16)10.(2021秋•三元区期末)如图,在平面直角坐标系xOy中,直线y=−43x+4分别与x轴,y轴交于点A,B,将直线AB绕点A顺时针旋转90°后,所得直线与y轴的交点坐标为()A.(0,﹣4)B.(0,−94)C.(0,−43)D.(0,−34)11.(2022秋•虹口区校级月考)平面直角坐标系中有一直线l1:y=﹣2x+5,先将其向右平移3个单位得到l2,再将l2作关于x轴的对称图形l3,最后将l3绕l3与y轴的交点逆时针旋转90°得到l4,则直线l4的解析式为()A.y=−12x−11B.y=−12x−2C.y=12x+1D.y=12x−812.(2022•秦淮区校级模拟)将函数y=﹣2x+4的图象绕图象上一点P旋转n°(45<n<90),若旋转后的图象经过点(3,5),则点P的横坐标不可能是()A.﹣1B.0C.1D.213.(2022•敖汉旗一模)如图一次函数y=x+√3的图象与x轴、y轴分别交于点A、B,把直线AB绕点B 顺时针旋转30°交x轴于点C.则线段AC的长为.14.(2022春•顺德区校级月考)如图,已知点A:(2,﹣5)在直线l1:y=2x+b上,l1和l2:y=kx﹣1的图象交于点B,且点B的横坐标为8,将直线l1绕点A逆时针旋转45°与直线l2,相交于点Q,则点Q 的坐标为.15.(2022秋•渠县期末)【建立模型】课本第7页介绍:美国总统伽菲尔德利用图1验证了勾股定理,直线l过等腰直角三角形ABC的直角顶点C:过点A作AD⊥l于点D,过点B作BE⊥l于点E研究图形,不难发现:△MDC≌△CEB.(无需证明):【模型运用】(1)如图2,在平面直角坐标系中,等腰Rt△ACB,∠ACB=90°,AC=BC,点C的坐标为(0,﹣2),A点的坐标为(4,0),求B点坐标;(2)如图3,在平面直角坐标系中,直线l1:y=2x+4分别与y轴,x轴交于点A,B,将直线l1绕点A 顺时针或逆时针旋转45°得到l2,请任选一种情况求l2的函数表达式;(3)如图4,在平面直角坐标系,点B(6,4),过点B作AB⊥y轴于点A,作BC⊥x轴于点C,P为线段BC上的一个动点,点Q(a,2a﹣4)位于第一象限.问点A,P,Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出a的值;若不能,请说明理由.类型三对称16.(2021秋•藤县期末)直线y=2x+3与直线l关于x轴对称,则直线l的解析式为()A.y=2x+3B.y=2x﹣3C.y=﹣2x+3D.y=﹣2x﹣317.已知,点A(m+1,1),B(3,n﹣2)关于x轴对称,则一次函数y=mnx﹣n的图象大致是图中的()A.B.C.D.18.(2021秋•新郑市期末)在平面直角坐标系中,已知点A(﹣2,m)在第三象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.3B.1C.﹣1D.﹣319.(2022秋•苏州期末)如图,直线y=−23x+4交x轴,y轴于点A,B,点P在第一象限内,且纵坐标为4.若点P关于直线AB的对称点P'恰好落在x轴的正半轴上,则点P'的横坐标为()A.313B.35C.53D.13320.(2021春•莒南县期末)若直线L1经过点(0,4),L2经过点(3,2),且L1与L2关于x轴对称,则L1与L2的交点坐标为.21.已知直线l1的解析式为y=2x﹣6,直线l2与直线l1关于y轴对称,则直线l2的解析式为.22.(2022•南通一模)已知一次函数y=2x+3,则该函数图象关于直线y=x对称的函数解析式为.23.(2022秋•望花区校级期末)如图,在平面直角坐标系中,直线y=34x+6交x轴于点A、交y轴于点B,C点与A点关于y轴对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,点P的坐标是.24.(2022秋•沙坪坝区期末)如图,正比例函数y1=x与一次函数y2=ax−53(a≠0)交于点A(﹣1,m).(1)求出一次函数y2的解析式,并在图中画出一次函数y2的图象;(2)点C与点B(4,2)关于y1函数图象对称,过点B作直线BD∥x轴,交一次函数y2的图象于点D,求△CBD的面积.25.(2022秋•临川区校级期末)在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G 的[l1,l2]伴随图形.例如:点P(2,1)的[x轴,y轴]伴随图形是点P'(﹣2,﹣1).(1)点Q(﹣3,﹣2)的[x轴,y轴]伴随图形点Q'的坐标为;(2)已知A(t,1),B(t﹣3,1),C(t,3),直线m经过点(1,1).①当t=﹣1,且直线m与y轴平行时,点A的[x轴,m]伴随图形点A'的坐标为;②当直线m经过原点时,若△ABC的[x轴,m]伴随图形上只存在两个与x轴的距离为0.5的点,直接写出t的取值范围.。

图象平移的概念

图象平移的概念

图象平移的概念图象平移是图像处理中的一个基本概念,指的是将一个图像中的所有像素点沿着指定的方向和距离移动,从而改变图像在平面上的位置。

平移变换是图像处理中最简单的几何变换之一,它对于图像的位置、移动、对齐和配准具有重要的作用。

下面详细介绍图像平移的概念、原理和应用。

图像平移的概念:图像平移是指将一个图像的每个像素点按照指定的距离和方向进行移动,移动后的像素点的位置发生改变,从而得到一个新的平移后的图像。

平移操作并不改变图像的形状和大小,只是改变了图像在平面上的位置。

图像平移的原理:图像平移的原理是对每个像素点进行坐标变换。

假设需要将一个图像平移(x,y)个单位,则原始图像上的像素(i,j)在平移后的位置为(i+x,j+y)。

即将原始图像上的每个像素点的坐标都加上平移的距离,得到平移后的图像。

图像平移的步骤如下:1. 读取原始图像,获取图像的宽度和高度。

2. 创建一个新的图像,用于存储平移后的结果。

3. 遍历原始图像的每个像素点。

4. 对于每个像素点,计算它在平移后的位置,并将原始图像上的像素值赋给相应的位置。

5. 完成遍历后,保存平移后的图像。

图像平移的应用:1. 视觉效果增强:通过平移图像,可以实现一些视觉效果的增强,例如移动背景、改变图像的位置和朝向等,从而使图像更加生动和有趣。

2. 物体配准:图像平移可以用于物体配准,即将两个或多个图像的特征点对齐,从而实现图像的融合和比较,例如医学影像中的图像对准、遥感图像中的图像注册等。

3. 图像拼接:图像平移可以用于图像拼接,即将多个图像拼接在一起,从而实现全景图像的生成。

拼接过程中,需要对每个图像进行平移操作,将它们的重叠区域对齐,从而得到一个完整的全景图像。

4. 图像重建:图像平移可以用于图像重建,即根据已知的一部分图像信息,推测出缺失的部分。

通过平移已有的图像像素,可以填补图像中的空洞,从而还原缺失的图像信息。

5. 目标跟踪:图像平移可以用于目标的跟踪,即通过一系列平移变换,跟踪目标在图像序列中的位置和运动轨迹。

专题二次函数与几何变换

专题二次函数与几何变换
A.y=-(x+1)2+2 B.y=-(x-1)2+4 C.y=-(x-1)2+2 D.y=-(x+1)2+4
2、在平面直角坐标系中,先将抛物线y=x2+x-2
关于x轴作轴对称变换,再将所得的抛物线关于y
轴作轴对称变换,那么经两次变换后所得的新抛
物线的解析式为( )
A.y=-x2-x+2
B.y=-x2+x-2
(三)、抛物线的旋转
情况一:关于原点成中心对称(即绕原点旋转1800)
例题:若抛物线C:y=ax2+bx+c与抛物线 y=2x2-4x+3关于原点成中心对称,则抛物 线C的解析式为___________。
情况二:关于顶点成中心对称(即绕顶点旋转00)
若抛物线C:y=ax2+bx+c绕顶点旋转180后得 到抛物线y=2x2-4x+3,则抛物线C的解析式 为___________。
C.y=-x2+x+2 D.y=x2+x+2
3、将抛物线l:y=2x2-4x+3沿直线y=-1翻折 得到抛物线l′,则抛物线l′的解析式为 __________
4、已知二次函数y=x2+4x+3的顶点为A,与y 轴交于点B,作它关于以P(1,0)为中心的中 心对称的图象顶点为C,交y轴于点D,则四边 形ABCD面积为
(二)、抛物线的轴对称
情况一:关于x轴对称:
例题:若抛物线C:y=ax2+bx+c与抛物线y=2x24x+3关于x轴对称,则抛物线C的解析式为 ___________。
情况二:关于y轴对称:
例题:若抛物线C:y=ax2+bx+c与抛物线 y1=x2-4x+1关于y轴对称,则抛物线C的解析式 为___________。

专题27几何三大变换之平移问题—解析卷

专题27几何三大变换之平移问题—解析卷

备考2019中考数学高频考点剖析专题二十七几何三大变换之平移问题考点扫描☆聚焦中考平移,是每年中考的必考内容之一,考查的知识点包括在函数中的平移和几何中的平移两方面,总体来看,难度系数低,以选择填空为主。

也有少量的解析题。

解析题主要以函数和多边形的计算为主。

结合2018年全国各地中考的实例,我们从两个方面进行平移问题的探讨:(1)函数问题中的平移;(2)几何图形中的平移;考点剖析☆典型例题(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C. D.【分析】由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.2018·湖北省武汉·12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG ﹣S△BMG=BG•x N﹣BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=,根据x N ﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、利用割补法求三角形的面积建立关于k的方程及相似三角形的判定与性质等知识点.考点过关☆专项突破类型一函数问题中的平移1. (2018•湘西州)一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2)B.(0,﹣2) C.(2,0) D.(﹣2,0)【分析】代入x=0求出y值,进而即可得出发一次函数y=x+2的图象与y轴的交点坐标.【解答】解:当x=0时,y=x+2=0+2=2,∴一次函数y=x+2的图象与y轴的交点坐标为(0,2).故选:A.2. (2018•娄底)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.化简,得y=2x﹣4,故选:A.3. (2018·天津·3分)将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”4.(2017湖北荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为 4 .【考点】F9:一次函数图象与几何变换.【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A(﹣1,2)关于y轴的对称点是(1,2),∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.5. (2018•山东淄博•4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为 2 .【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,从而得结论.【解答】解:如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,(x﹣1)(x+3)=0,x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.【点评】本题考查了抛物线与x轴的交点问题、抛物线的平移及解一元二次方程的问题,利用数形结合的思想和三等分点的定义解决问题是关键.6. (2018•重庆)如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.【分析】(1)先把A(5,m)代入y=﹣x+3得A(5,﹣2),再利用点的平移规律得到C(3,2),接着利用两直线平移的问题设CD的解析式为y=2x+b,然后把C点坐标代入求出b即可得到直线CD 的解析式;(2)先确定B(0,3),再求出直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,然后求出直线y=2x+3与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.【解答】解:(1)把A(5,m)代入y=﹣x+3得m=﹣5+3=﹣2,则A(5,﹣2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(3,2),∵过点C且与y=2x平行的直线交y轴于点D,∴CD的解析式可设为y=2x+b,把C(3,2)代入得6+b=2,解得b=﹣4,∴直线CD的解析式为y=2x﹣4;(2)当x=0时,y=﹣x+3=3,则B(0,3),当y=0时,2x﹣4=0,解得x=2,则直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,当y=0时,2x+3=0,解的x=﹣,则直线y=2x+3与x轴的交点坐标为(﹣,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为﹣≤x≤2.7. (2018•四川凉州•10分)如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.【分析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2﹣3x+2得y=2,可知抛物线y=x2﹣3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2﹣3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.【解答】解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴,解得,∴所求抛物线的解析式为y=x2﹣3x+2;(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2﹣3x+2得y=2,可知抛物线y=x2﹣3x+2过点(3,2),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2﹣3x+1;(3)∵点N在y=x2﹣3x+1上,可设N点坐标为(x0,x02﹣3x0+1),将y=x2﹣3x+1配方得y=(x﹣)2﹣,∴其对称轴为直线x=.①0≤x0≤时,如图①,∵,∴∵x0=1,此时x02﹣3x0+1=﹣1,∴N点的坐标为(1,﹣1).②当时,如图②,同理可得,∴x0=3,此时x02﹣3x0+1=1,∴点N的坐标为(3,1).③当x<0时,由图可知,N点不存在,∴舍去.综上,点N的坐标为(1,﹣1)或(3,1).【点评】此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.类型二几何图形中的平移1. (2018•山东枣庄•3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.( 2,2)C.(﹣2,2)D.( 2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.2.(2018•江西•3分)小军同学在格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形错误!未找到引用源。

二次函数几何变换

二次函数几何变换
解析式是否发生改变,联立方程求 与坐标轴的交点
注意问题:
1.是否可取等号问题 2.解析式是否发生变化 3.是否考虑全面
练1.二次函数 y = x2 + bx + c 的顶点坐标为M(1,-4).
(1)求二次函数的解析式 (2)将二次函数的图象在X轴下方的部分沿X轴翻折,图象的 其余部分保持不变,得到一个新的图象,请你结合新图象回答: 当直线y=x+n与这个新图象有两个公共点时,求n的取值范围
△△△ >0 =0 <0 21无 个个交 交交点 点点
3 与非平行于坐标轴的直线交点
y
y=kx+b
x
基础练习
(1)判断直线y x 1
y 与x抛2 物3x线 1
交点情况?
如果有交点,请求y 出交x 点1 坐标。 解:联立 y x2 3x 1
x2 2x 0

△ =4 >0
所以有两个交点,交点坐标为(0,1)和(2,-1)
平移后的抛物线与 直线联立,根据判 别式来进行确定。
n=0
解题思路:
1 列出平移后的函数 解析式。 y=4x+6+n B(-1-n,0) C(3-n,0)
二次函数 几何变换与交点问题
新东方初中数学组 张志安
平移 旋转 翻折
一 平移
抛物线平移问题
例1.将抛物线 y = 2x2 + 4x - 3 向右平移3个单位, 再向上平移5个单位,求平移后所得抛物线的解析式。
方法一:顶点平移
y = 2x2 + 4x - 3 = 2(x +1)2 - 5
顶点坐标为(-1,-5)
y 2x2 - 4x - 2
练1:

第3讲 一次函数的解析式与图象变换(教师版)

第3讲 一次函数的解析式与图象变换(教师版)

板块一
此处需要添加知识点1
已知:正比例函数
1
1
1
一次函数
板块二
此处需要添加知识点1
把函数
1
1
阅读下面的材料:
∵直线分别与轴、轴交于点、,∴点∵,∴直线为.∴点的坐标为∵,∴.∴点在轴的正半轴上.
当点在点的左侧时,
当点在点的右侧时,
1
⑴2
3
如图,在平面直角坐标系中,
板块三
1
在直角坐标系中画函数
1
求在直角坐标平面中不等式1
如图,已知直线
1
已知一次函数图象经过点
1
一辆汽车在行驶过程中,路程1
已知一次函数
1
已知一次函数1
若将直线
1
如图,将直线
1
在同一坐标系中,对于函数①2
某一次函数的图象与直线
1
已知:一次函数2
已知点
1
在直角坐标系中画函数
的值对应取绝对值所得,
图象中位于轴下方部分翻折到轴上方所得,直1
已知
1
如果一条直线
1
已知一次函数
1
函数
1
平面直角坐标系中,正方形
1
解关于
标注函数>二次函数。

(完整版)天津理工大学《数字图像处理》数字图像处理复习题2

(完整版)天津理工大学《数字图像处理》数字图像处理复习题2

第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。

数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2.像增强等;二是从图像到非图像的一种表示,如图像测量等。

5. 数字图像处理包含很多方面的研究内容。

其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。

二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。

①图像数字化:将一幅图像以数字的形式表示。

主要包括采样和量化两个过程。

②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。

③图像的几何变换:改变图像的大小或形状。

④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

如傅利叶变换等。

⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。

2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。

比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。

5. 简述图像几何变换与图像变换的区别。

①图像的几何变换:改变图像的大小或形状。

比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。

②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

比如傅里叶变换、小波变换等。

第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。

2. 采样频率是指一秒钟内的采样次数。

3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。

3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章图象的几何变换这一章我们将介绍图象的几何变换,包括图象的平移、旋转、镜象变换、转置、放缩等。

如果你熟悉矩阵运算,你将发现,实现这些变换是非常容易的。

2.1 平移平移(translation)变换大概是几何变换中最简单的一种了。

如图2.1所示,初始坐标为(x0,y0)的点经过平移(t x,t y)(以向右,向下为正方向)后,坐标变为(x1,y1)。

这两点之间的关系是x1=x0+t x ,y1=y0+t y。

图2.1 平移的示意图以矩阵的形式表示为(2.1) 我们更关心的是它的逆变换:(2.2) 这是因为:我们想知道的是平移后的图象中每个象素的颜色。

例如我们想知道,新图中左上角点的RGB值是多少?很显然,该点是原图的某点经过平移后得到的,这两点的颜色肯定是一样的,所以只要知道了原图那点的RGB值即可。

那么到底新图中的左上角点对应原图中的哪一点呢?将左上角点的坐标(0,0)入公式(2.2),得到x0=-t x ,y0=-t y;所以新图中的(0,0)点的颜色和原图中(-t x , -t y)的一样。

这样就存在一个问题:如果新图中有一点(x1,y1),按照公式(2.2)得到的(x0,y0)不在原图中该怎么办?通常的做法是,把该点的RGB值统一设成(0,0,0)或者(255,255,255)。

另一个问题是:平移后的图象是否要放大?一种做法是不放大,移出的部分被截断。

例如,图2.2为原图,图2.3为移动后的图。

这种处理,文件大小不会改变。

图2.2 移动前的图图2.3 移动后的图还有一种做法是:将图象放大,使得能够显示下所有部分,如图2.4所示。

图2.4 移动后图象被放大这种处理,文件大小要改变。

设原图的宽和高分别是w1,h1则新图的宽和高变为w1+|t x|和h1+|t y|,加绝对值符号是因为t x, t y有可能为负(即向左,向上移动)。

下面的函数Translation采用的是第一种做法,即移出的部分被截断。

在给出源代码之前,先说明一个问题。

如果你用过Photoshop,Corel PhotoPaint等图象处理软件,可能听说过“灰度图”(grayscale)这个词。

灰度图是指只含亮度信息,不含色彩信息的图象,就象我们平时看到的黑白照片:亮度由暗到明,变化是连续的。

因此,要表示灰度图,就需要把亮度值进行量化。

通常划分成0到255共256个级别,其中0最暗(全黑),255最亮(全白)。

.bmp格式的文件中,并没有灰度图这个概念,但是,我们可以很容易在.bmp文件中表示灰度图。

方法是用256色的调色板,只不过这个调色板有点特殊,每一项的RGB值都是相同的。

也就是说RGB值从(0,0,0),(1,1,1)一直到(255,255,255)。

(0,0,0)是全黑色,(255,255,255)是全白色,中间的是灰色。

这样,灰度图就可以用256色图来表示了。

为什么会这样呢?难道是一种巧合?其实并不是。

在表示颜色的方法中,除了RGB外,还有一种叫YUV的表示方法,应用也很多。

电视信号中用的就是一种类似于YUV的颜色表示方法。

在这种表示方法中,Y分量的物理含义就是亮度,U和V分量代表了色差信号(你不必了解什么是色差,只要知道有这么一个概念就可以了)。

使用这种表示方法有很多好处,最主要的有两点:(1)因为Y代表了亮度,所以Y分量包含了灰度图的所有信息,只用Y分量就能完全能够表示出一幅灰度图来。

当同时考虑U,V分量时,就能够表示出彩色信息来。

这样,用同一种表示方法可以很方便的在灰度和彩色图之间切换,而RGB表示方法就做不到这一点了。

(2)人眼对于亮度信号非常敏感,而对色差信号的敏感程度相对较弱。

也就是说,图象的主要信息包含在Y分量中。

这就提示我们:如果在对YUV信号进行量化时,可以“偏心”一点,让Y的量化级别多一些(谁让它重要呢?)而让UV的量化级别少一些,就可以实现图象信息的压缩。

这一点将在第9章介绍图象压缩时仔细研究,这里就不深入讨论了。

而RGB 的表示方法就做不到这一点,因为RGB三个分量同等重要,缺了谁也不行。

YUV和RGB 之间有着如下的对应关系(2.3)(2.4) 当RGB三个分量的大小一样时,假设都是a,代入公式(2.3),得到Y=a,U=0,V=0 。

你现在该明白我前面所说不是巧合的原因了吧。

使用灰度图有一个好处,那就是方便。

首先RGB的值都一样;其次,图象数据即调色板索引值,也就是实际的RGB值,也就是亮度值;另外,因为是256色调色板,所以图象数据中一个字节代表一个象素,很整齐。

如果是2色图或16色图,还要拼凑字节,很麻烦。

如果是彩色的256色图,由于图象处理后有可能会产生不属于这256种颜色的新颜色,就更麻烦了;这一点,今后你就会有深刻体会的。

所以,做图象处理时,一般采用灰度图。

为了将重点放在算法本身上,今后给出的程序如不做特殊说明,都是针对256级灰度图的。

其它颜色的情况,你可以自己想一想,把算法补全。

如果想得到一幅灰度图,可以使用Sea或者PhotoShop等软件提供的颜色转换功能将彩色图转换成灰度图。

好了,言归正传,下面给出Translation的源代码。

算法的思想是先将所有区域填成白色,然后找平移后显示区域的左上角点(x0,y0) 和右下角点(x1,y1) ,分几种情况进行处理。

先看x方向(width指图象的宽度)(1)t x≤-width:很显然,图象完全移出了屏幕,不用做任何处理;(2)-width<tx≤0:如图2.5所示。

容易看出,图象区域的x范围从0到width-|tx|,对应原图的范围从|tx|到width;图2.5 tx≤0,ty≤0的情况(3)0< t x <width:如图2.6所示。

容易看出,图象区域的x范围从t x到width,对应原图的范围从0到width - t x ;图2.6 0< tx<width,0<ty<height的情况(4)t x≥width:很显然,图象完全移出了屏幕,不用做任何处理。

y方向是对应的(height表示图象的高度):(1)t y≤-height,图象完全移出了屏幕,不用做任何处理;(2)-height<t y≤0,图象区域的y范围从0到height-|t y|,对应原图的范围从|t y|到height;(3)0<t y<height ,图象区域的y范围从t y到height,对应原图的范围从0到height-t y;(4)t y≥height,图象完全移出了屏幕,不用做任何处理。

这种做法利用了位图存储的连续性,即同一行的象素在内存中是相邻的。

利用memcpy函数,从(x0,y0)点开始,一次可以拷贝一整行(宽度为x1-x0),然后将内存指针移到(x0,y0+1)处,拷贝下一行。

这样拷贝(y1-y0)行就完成了全部操作,避免了一个一个象素的计算,提高了效率。

Translation的源代码如下:int xOffset=0,yOffset=0;BOOL Translation(HWND hWnd){DLGPROC dlgInputBox = NULL;DWORD OffBits,BufSize;LPBITMAPINFOHEADER lpImgData;LPSTR lpPtr;HLOCAL hTempImgData;LPBITMAPINFOHEADER lpTempImgData;LPSTR lpTempPtr;int SrcX0,SrcY0,SrcX1,SrcY1;int DstX0,DstY0,DstX1,DstY1;int RectWidth,RectHeight;BOOL xVisible,yVisible;HDC hDc;HFILE hf;int i;//出现对话框,输入x偏移量xOffset,和y偏移量yOffsetdlgInputBox = (DLGPROC) MakeProcInstance ( (FARPROC)InputBox,ghInst ); DialogBox (ghInst, "INPUTBOX", hWnd, dlgInputBox);FreeProcInstance ( (FARPROC) dlgInputBox );//OffBits为BITMAPINFOHEADER结构长度加调色板的大小OffBits=bf.bfOffBits-sizeof(BITMAPFILEHEADER);BufSize=OffBits+bi.biHeight*LineBytes;//要开的缓冲区的大小//为新产生的位图分配缓冲区内存if((hTempImgData=LocalAlloc(LHND,BufSize))==NULL){MessageBox(hWnd,"Error alloc memory!","Error Message",MB_OK|MB_ICONEXCLAMATION);return FALSE; //失败,返回}//lpImgData为指向原来位图数据的指针lpImgData=(LPBITMAPINFOHEADER)GlobalLock(hImgData);//lpTempImgData为指向新产生位图数据的指针lpTempImgData=(LPBITMAPINFOHEADER)LocalLock(hTempImgData); lpPtr=(char *)lpImgData;lpTempPtr=(char *)lpTempImgData;//将新的缓冲区中的每个字节都填成255,这样以后未处理的象素就是白色memset(lpTempPtr,(BYTE)255,BufSize);//两幅图之间的头信息,包括调色板都是相同的,所以直接拷贝头和调色板memcpy(lpTempPtr,lpPtr,OffBits);//xVisible为FALSE时,表示x方向已经移出了可显示的范围xVisible=TRUE;if( xOffset<= -bi.biWidth )xVisible=FALSE;else if( xOffset<=0){DstX0=0; //表示移动后,有图区域的左上角点的x坐标DstX1=bi.biWidth+xOffset; //表示移动后,有图区域的右下角点的x坐标}else if ( xOffset<bi.biWidth){DstX0=xOffset;DstX1=bi.biWidth;}elsexVisible=FALSE;SrcX0=DstX0-xOffset; //对应DstX0在原图中的x坐标SrcX1=DstX1-xOffset; //对应DstX1在原图中的x坐标RectWidth=DstX1-DstX0; //有图区域的宽度//yVisible为FALSE时,表示y方向已经移出了可显示的范围yVisible=TRUE;if( yOffset<= -bi.biHeight )yVisible=FALSE;else if( yOffset<=0){DstY0=0; //表示移动后,有图区域的左上角点的y坐标DstY1=bi.biHeight+yOffset; //表示移动后,有图区域的右下角点的y坐标}else if ( yOffset<bi.biHeight){DstY0=yOffset;DstY1=bi.biHeight;}elseyVisible=FALSE;SrcY0=DstY0-yOffset; //对应DstY0在原图中的y坐标SrcY1=DstY1-yOffset; //对应DstY1在原图中的y坐标RectHeight=DstY1-DstY0; //有图区域的高度if( xVisible && yVisible){ //x,y方向都没有完全移出可显示的范围for(i=0;i<RectHeight;i++){ //拷贝每一行//lpPtr指向要拷贝的那一行的最左边的象素对应在原图中的位//置。

相关文档
最新文档