数字图像处理 几何变换
图像的几何变换的两种实现(旋转、平移、放大、缩小)

面向对象程序设计学号:2学生所在学院:信息工程学院学生姓名:邵丽群任课教师:熊邦书教师所在学院:信息工程学院2013级实现图像的几何变换电子信息工程信息工程学院摘要:几何变换是最常见的图像处理手段,通过对变形的图像进行几何校正,可以得出准确的图像。
常用的几何变换功能包括图像的平移、图像的镜像变换、图像的转置、图像的缩放、图像的旋转等等。
目前数字图像处理的应用越来越广泛,已经渗透到工业、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
作为数字图像处理的一个重要部分,本文接受的工作是如何Visual C++编程工具设计一个完整的应用程序,实现经典的图像几何变换功能。
程序大概分为两大部分:读写BMP图像,和数字图像的几何变换。
即首先用Visual C++创建一个单文档应用程序框架,在实现任意BMP图像的读写,打印,以及剪贴板操作的基础上,完成经典的图像几何变换功能。
图像几何变换的Visual C++编程实现,为校内课题的实现提供了一个实例。
关键字:图像处理;几何变换(图像的平移、缩放、转置、旋转和镜像变换);BMP图像;Visual C++一、引言图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。
在实际场景拍摄到的一幅图像,如果画面过大或过小,都需要进行缩小或放大。
如果拍摄时景物与摄像头不成相互平行关系的时候,会发生一些几何畸变,例如会把一个正方形拍摄成一个梯形等。
这就需要进行一定的畸变校正。
在进行目标物的匹配时,需要对图像进行旋转、平移等处理。
在进行三维景物显示时,需要进行三维到二维平面的投影建模。
因此,图像几何变换是图像处理及分析的基础。
图像几何变换是计算机图像处理领域中的一个重要组成部分,也是值得深讨的一个重要课题。
在图像几何变换中主要包括图像的放缩、图像的旋转、图像的移动、图像的镜像、图像的块操作等内容,几何变换不改变图像的像素值,只改变像素所在的几何位置。
从广义上说,图像是自然界景物的客观反映,是人类认识世界和人类本身的重要源泉。
数字图像处理 -习题2增强-噪声-几何变换-频域变换

第三章图像增强一.填空题1. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为____动态范围__。
2.所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行__压缩____,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。
3. 动态范围调整分为线性动态范围调整和__非线性调整___两种。
4. 直方图均衡化把原始图的直方图变换为分布均匀的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
基本思想是:对图像中像素个数多的灰度值进行__展宽_____,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。
5. 数字图像处理包含很多方面的研究内容。
其中,__图像增强_的目的是将一幅图像中有用的信息进行增强,同时将无用的信息进行抑制,提高图像的可观察性。
6. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。
二.选择题1. 下面说法正确的是:(B )A、基于像素的图像增强方法是一种线性灰度变换;B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高;D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。
2. 指出下面正确的说法:(D )A、基于像素的图像增强方法是一种非线性灰度变换。
B、基于像素的图像增强方法是基于频域的图像增强方法的一种。
C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高。
D、基于频域的图像增强方法可以获得和基于空域的图像增强方法同样的图像增强效果。
3.指出下面正确的说法:(D )①基于像素的图像增强方法是一种非线性灰度变换。
②基于像素的图像增强方法是基于空域的图像增强方法的一种。
(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
数字图像处理-图像基本运算

数字图像处理_图像基本运算图像基本运算1点运算线性点运算是指输⼊图像的灰度级与输出图像呈线性关系。
s=ar+b(r为输⼊灰度值,s为相应点的输出灰度值)。
当a=1,b=0时,新图像与原图像相同;当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显⽰时更亮或更暗;当a>1时,新图像对⽐度增加;当a<1时,新图像对⽐度降低;当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补; ⾮线性点运算是指输⼊与输出为⾮线性关系,常见的⾮线性灰度变换为对数变换和幂次变换,对数变换⼀般形式为:s=clog(1+r)其中c为⼀常数,并假设r≥0.此变换使窄带低灰度输⼊图像映射为宽带输出值,相对的是输出灰度的⾼调整。
1 x=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1)3 imshow(x);4 title('原图');5 J=0.3*x+50/255;6 subplot(2,2,2);7 imshow(J);8 title('线性点变换');9 subplot(2,2,3);10 x1=im2double(x);11 H=2*log(1+x1);12 imshow(H)13 title('⾮线性点运算');%对数运算幂次变换⼀般形式:s=cr^γ幂级数γ部分值把窄带暗值映射到宽带输出值下⾯是⾮线性点运算的幂运算1 I=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1);3 imshow(I);title('原始图像','fontsize',9);4 subplot(2,2,2);5 imshow(imadjust(I,[],[],0.5));title('Gamma=0.5');7 imshow(imadjust(I,[],[],1));title('Gamma=1');8 subplot(2,2,4);9 imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');2代数运算和逻辑运算加法运算去噪处理1 clear all2 i=imread('lenagray.jpg');3 imshow(i)4 j=imnoise(i,'gaussian',0,0.05);5 [m,n]=size(i);6 k=zeros(m,n);7for l=1:1008 j=imnoise(i,'gaussian',0,0.05);9 j1=im2double(j);10 k=k+j1;11 End12 k=k/100;13 subplot(1,3,1),imshow(i),title('原始图像')14 subplot(1,3,2),imshow(j),title('加噪图像')15 subplot(1,3,3),imshow(k),title(‘求平均后的减法运算提取噪声1 I=imread(‘lena.jpg’);2 J=imnoise (I,‘lena.jpg’,0,0.02);3 K=imsubtract(J,I);4 K1=255-K;5 figure;imshow(I);7 figure;imshow(K1);乘法运算改变图像灰度级1 I=imread('D:/picture/SunShangXiang.jpg')2 I=im2double(I);3 J=immultiply(I,1.2);4 K=immultiply(I,2);5 subplot(1,3,1),imshow(I);subplot(1,3,2),imshow(J);6 subplot(1,3,3);imshow(K);逻辑运算1 A=zeros(128);2 A(40:67,60:100)=1;3 figure(1)4 imshow(A);5 B=zeros(128);6 B(50:80,40:70)=1;7 figure(2)8 imshow(2);9 C=and(A,B);%与10 figure(3);11 imshow(3);12 D=or(A,B);%或13 figure(4);14 imshow(4);15 E=not(A);%⾮16 figure(5);17 imshow(E);3⼏何运算平移运算实现图像的平移1 I=imread('lenagray.jpg');2 subplot(1,2,1);3 imshow(I);4 [M,N]=size(I);g=zeros(M,N);5 a=20;b=20;6for i=1:M7for j=1:N8if((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N)) 9 g(i,j)=I(i-a,j-b);10else11 g(i,j)=0;12 end13 end14 end15 subplot(1,2,2);imshow(uint8(g));⽔平镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(i,N-j+1);7 end8 end9 subplot(122);imshow(uint8(g));垂直镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(M-i+1,j);7 end8 end9 subplot(122);imshow(uint8(g));图像的旋转1 x=imread('D:/picture/DiaoChan.jpg');2 imshow(x);3 j=imrotate(x,45,'bilinear');4 k=imrotate(x,45,'bilinear','crop');5 subplot(1,3,1),imshow(x);6 title(‘原图')7 subplot(1,3,2),imshow(j);8 title(‘旋转图(显⽰全部)')9 subplot(1,3,3),imshow(k);10 title(‘旋转图(截取局部)')⼏种插值法⽐较1 i=imread('lena.jpg');2 j1=imresize(i,10,'nearest');3 j2=imresize(i,10,'bilinear');4 j3=imresize(i,10,'bicubic');5 subplot(1,4,1),imshow(i);title(‘原始图像')6 subplot(1,4,2),imshow(j1);title(‘最近邻法')7 subplot(1,4,3),imshow(j2);title(‘双线性插值法')8 subplot(1,4,4),imshow(j3);title(‘三次内插法')放缩变换1 x=imread('D:/picture/ZiXia.jpg')2 subplot(2,3,1)3 imshow(x);4 title('原图');5 Large=imresize(x,1.5);6 subplot(2,3,2)7 imshow(Large);8 title('扩⼤为1.5');9 Small=imresize(x,0.1);10 subplot(2,3,3)11 imshow(Small);12 title('缩⼩为0.3');13 subplot(2,3,4)14 df=imresize(x,[600700],'nearest');15 imshow(df)16 title('600*700');17 df1=imresize(x,[300400],'nearest');18 subplot(2,3,5)19 imshow(df1)20 title('300*400');后记:(1)MATLAB基础知识回顾1:crtl+R是对选中的区域注释,ctrl+T是取消注释2:有的代码中点运算如O=a.*I+b/255 ,其中b除以255原因是:灰度数据有两种表式⽅法:⼀种是⽤unit8类型,取值0~255;另⼀种是double类型,取值0~1。
数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
数字图像处理---图像的几何变换

数字图像处理---图像的⼏何变换图像的⼏何变换图像的⼏何变换包括了图像的形状变换和图像的位置变换图像的形状变换图像的形状变换是指图像的放⼤、缩⼩与错切图像缩⼩图像的缩⼩是对原有的数据进⾏挑选或处理,获得期望缩⼩尺⼨的数据,并尽量保持原有的特征不消失分为按⽐例缩⼩和不按⽐例缩⼩两种最简单的⽅法是等间隔地选取数据图像缩⼩实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1<1,K 2<1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像放⼤图像放⼤时对多出的空位填⼊适当的值,是信息的估计最简单的思想是将原图像中的每个像素放⼤为k ∗k 的⼦块图像放⼤实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1>1,K 2>1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像错切图像错切变换实际上是平⾯景物在投影平⾯上的⾮垂直投影效果图像错切的数学模型x ′=x +d x y y ′=y(x ⽅向的错切,dx =tan θ)x ′=x y ′=y +d y x(y ⽅向的错切,dy =tan θ)图像的位置变换图像的位置变换是指图像的平移、镜像与旋转,即图像的⼤⼩和形状不发⽣变化主要⽤于⽬标识别中的⽬标配准图像平移公式:{{x ′=x +Δx y ′=y +Δy图像镜像图像镜像分为⽔平镜像和垂直镜像,即左右颠倒和上下颠倒公式:图像⼤⼩为M*Nx ′=x y ′=−y (⽔平镜像)x ′=−x y ′=y(垂直镜像)由于不能为负,因此需要再进⾏⼀次平移x ′=x y ′=N +1−y (⽔平镜像)x ′=M +1−xy ′=y(垂直镜像)图像旋转公式:x ′=xcos θ−ysin θy ′=xsin θ+ycos θ由于计算结果值所在范围与原有值不同,因此需要在进⾏扩⼤画布、取整、平移等处理画布扩⼤原则:以最⼩的⾯积承载全部的画⾯信息⽅法:根据公式x ′=xcos θ−ysin θy ′=xsin θ+ycos θ计算x ′min ,x ′max ,y ′min ,y ′max旋转后可能导致像素之间相邻连接不再连续,因此需要通过增加分辨率的⽅式填充空洞插值最简单的⽅式就是⾏插值(列插值)⽅法1. 找出当前⾏的最⼩和最⼤的⾮背景点坐标,记作:(i,k1)、(i,k2)2. 在(k1,k2)范围内进⾏插值,插值⽅法为空点的像素值等于前⼀点的像素值3. 重复上述操作直⾄没有空洞图像的仿射变换图像的仿射变换即通过通⽤的仿射变换公式,表⽰⼏何变换{{{{{{{齐次坐标原坐标为(x,y),定义齐次坐标为(wx,wy,w)实质上是通过增加坐标量来解决问题仿射变换通式通过齐次坐标定义仿射变换通式为x ′=ax +by +Δx y ′=cx +dy +Δy⇒x ′y ′=a b Δx c dΔyx y⼏何变换表⽰1. 平移x ′y ′1=10Δx 01Δy 001x y12. 旋转x ′y ′1=cos θ−sin θ0sin θcos θ0001x y 13. ⽔平镜像x ′y ′1=−10001001x y14. 垂直镜像x ′y ′1=1000−10001x y15. 垂直错切x ′y ′1=1d x 00−10001x y16. ⽔平错切x ′y ′1=100d y −10001x y1图像的⼏何校正由于图像成像系统的问题,导致拍摄的图⽚存在⼀定的⼏何失真⼏何失真分为{[][][][][][][][][][][][][][][][][][][][][]1. 系统失真:有规律的、可预测的2. ⾮系统失真:随机的⼏何校正的基本⽅法是先建⽴⼏何校正的数学模型,其次利⽤已知条件确定模型参数,最后根据模型对图像进⾏⼏何校正步骤:1. 图像空间坐标的变换2. 确定校正空间各像素的灰度值(灰度内插)途径:1. 根据畸变原因,建⽴数学模型2. 参考点校正法,根据⾜够多的参考点推算全图变形函数空间坐标变换实际⼯作中利⽤⼀幅基准图像f(x,y),来校正失真图像g(x′,y′)根据⼀些控制点对,建⽴两幅图像之间的函数关系,通过坐标变换,以实现失真图像的⼏何校正两幅图像上的f(x,y)=g(x′,y′)时,称其为对应像素(同名像素)通过表达式x′=h1(x,y)y′=h2(x,y)表⽰两幅图像之间的函数关系通常⽤多项式x′=n∑i=0n−i∑j=0a ij x i y jy′=n∑i=0n−i∑j=0b ij x i y j来近似h1(x,y)、h2(x,y)当多项式系数n=1时,畸变关系为线性变换x′=a00+a10x+a01yy′=b00+b10x+b01y六个未知数需要⾄少三个已知点来建⽴⽅程式当多项式系数n=2时,畸变关系式为x′=a00+a10x+a01y+a20x2+a11xy+a02y2y′=b00+b10x+b01y+b20x2+b11xy+b02y2 12个未知数需要⾄少6个已知点来建⽴⽅程式当超过已知点数⽬超过要求时,通过最⼩⼆乘法求解n=2时多项式通式为B2∗n=H2∗6A6∗n(n为待求点数)B2∗n=x′1x′2⋯x′n y′1y′2⋯y′n{ []H 2∗6=a 00a 10a 01a 20a 11a 02b 00b 10b 01b 20b 11b 02A 6∗n =11⋯1x 1x 2⋯x n y 1y 2⋯y n x 21x 22⋯x 2n x 1y 1x 2y 2⋯x n y ny 21y 22⋯y 2n同名点对要求1. 数量多且分散2. 优先选择特征点直接法利⽤已知点坐标,根据x ′=h 1(x ,y )y ′=h 2(x ,y )⇒x =h ′1(x ′,y ′)y =h ′2(x ′,y ′)x =n ∑i =0n −i∑j =0a ′ij x ′i y′jy =n ∑i =0n −i∑j =0b ′ijx ′i y ′j解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,⽣成校正图像由于像素分布的不规则,导致出现像素挤压、疏密不均等现象,因此最后还需要进⾏灰度内插,⽣成规则图像间接法间接法通过假定⽣成图像的⽹格交叉点,从⽹格交叉点(x,y)出发,借助已知点求取未知参数,根据x ′=n ∑i =0n −i∑j =0a ij x i y jy ′=n ∑i =0n −i∑j =0b ij x i y j推算⽹格交叉点(x,y)对应畸变图像坐标(x',y'),由于对应坐标⼀般不为整数,因此需要通过畸变图像坐标周围点的灰度值内插求解,作为⽹格交叉点(x,y)的灰度值间接法相对直接法内插较为简单,因此常采⽤间接法作为⼏何校正⽅法像素灰度内插最近邻元法最近邻元法即根据四邻域中最近的相邻像素灰度决定待定点灰度值该⽅法效果较佳,算法简单,但是校正后图像存在明显锯齿,即存在灰度不连续性双线性内插法[][]{{双线性内插法是利⽤待求点四个邻像素的灰度在两个⽅向上作线性内插该⽅法相较最近邻元法更复杂,计算量更⼤,但是没有灰度不连续的缺点,且具有低通滤波性质,图像轮廓较为模糊三次内插法三次内插法利⽤三次多项式S(x)来逼近理论最佳插值函数sin(x)/xS(x)=1−2|x|2+|x|30≤|x|<1 4−8|x|+5|x|2−|x|31≤|x|<20|x|≥2该算法计算量最⼤,但是内插效果最好,精度最⾼{Processing math: 100%。
数字图像的几何运算

数字图像的几何运算数字图像的几何运算是指对图像进行平移、旋转、缩放和翻转等几何变换操作的过程。
这些几何运算可以改变图像的位置、方向、大小和形状,是数字图像处理中常用的操作之一。
本文将介绍几何运算的原理和应用,并讨论其在图像处理领域的重要性和作用。
一、几何运算的原理数字图像是由像素组成的二维矩阵,每个像素代表图像的一个点,包含了图像的颜色和位置信息。
几何运算是基于像素的位置信息对图像进行变换和调整的方法,可以通过修改像素的坐标来实现图像的平移、旋转、缩放和翻转等操作。
1. 平移平移是指将图像沿着水平和垂直方向进行移动,使得图像的位置发生变化。
平移操作可以通过修改像素的坐标来实现,将每个像素的坐标按照设定的平移量进行移动,从而改变图像的位置。
平移操作可以用以下公式表示:R’(x, y) = R(x-dx, y-dy)R(x, y)代表原始图像的像素,R’(x, y)代表平移后的图像像素,dx和dy分别代表水平和垂直方向的平移量。
二、几何运算的应用几何运算在数字图像处理中具有重要的应用价值,能够实现图像的位置、方向、大小和形状的调整,为图像处理提供了丰富的操作手段。
以下是几何运算的一些常见应用:1. 图像校正对于拍摄时出现的倾斜、扭曲等问题,可以通过旋转操作对图像进行校正,使得图像恢复到正常的状态。
图像校正能够提高图像的质量和美观度,减少图像处理时的误差和影响。
2. 图像增强通过缩放操作对图像进行放大或缩小,可以改变图像的大小和细节,使得图像更加清晰和细致。
图像增强能够提高图像的清晰度和可视性,使得图像更加逼真和吸引人。
3. 图像合成通过平移操作将多个图像进行位置调整,可以实现多个图像的合成和叠加,融合不同图像的信息和特点,生成新的图像内容。
图像合成能够实现图像的复杂处理和创意设计,为图像处理提供了更多的可能性。
4. 图像镜像通过翻转操作对图像进行镜像处理,可以改变图像的对称性和形状,生成镜像对称的图像。
实验4 图像几何变换—哈哈镜制作

switch(method)
{
//最邻近插值图像缩小
caseDOWNRESIZE:
size = cvSize(q*pImg->width,q*pImg->height);
pImg1 = cvCreateImage(size,pImg->depth,pImg->nChannels);
for(j=0;j<pImg1->width;j++)
{
floatsrcX=(float)(j*((float)pImg->width/(float)pImg1->width));
floatsrcY=(float)(i*((float)pImg->height/(float)pImg1->height));
#defineRANGE 100//水平外凹或外凸的幅度
#definePI 3.1415926
//哈哈镜制作
intmain(intargc,char** argv )
{
IplImage* pImg;//声明IplImage指针
IplImage* pImg1;//声明IplImage指针
inti,j;
caseHORAO:
pImg1 = cvCreateImage(cvGetSize(pImg),pImg->depth,pImg->nChannels);
for(i=0;i<pImg1->height;i++)
{
tmp = RANGE*sin(i*PI/pImg1->height);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上沿行方向与列方向分别移动Δi与Δj。假设
平移后的像素坐标为(i’, j’)。则平移计算公
式为:
i ' i i
j'
j
j
注意:i与j是原图像的像素坐标,i’与j’是平移后 的图像像素坐标。
4.1.1 图像的平移
将图像进行平移, 取Δi=1与Δj=2
i ' i 1
由于基于等间隔采样的方法无法反映未被采样的像素信息。为 此可采用基于局部均值的图像缩小方法,其实现步骤如下: (1) 计算新图像的大小,计算采样间隔Δi=1/k1,Δj=1/k2 (2) 对新图像的像素g(i, j),计算其在原图像中对应的子块f (i, j):
(3)根据下式求出缩小的图像:
例题:k1=0.7, k2=0.6 → Δi=1.4, Δj=1.7
j
'
j2
板书计算
photoshop演示
画布没有扩大 画布扩大
平移后的图像内容没有变化。
但“画布”一定要扩大,否则就会丢失信息。
4.1.2 图像的镜像(翻转)
镜像分为水平镜像和垂直镜像
一、水平镜像(水平翻转)
以图像垂直中轴线为中心,交换图像的左右
两部部分。假设图像的大小为M×N,水平镜像
计算公式为: i ' i
第i2行 g(i2, j)
g (i,
j)
g (i1 ,
j)
i i1 i2 i1
g (i2 ,
j)
g (i1 ,
j)
板书计算g(3,1)
g(3,1) f 21 3 2 f 31 f 21
42
( f 31 f 21) / 2
对剩余像素的值,可以利用该像素的左方与 右方的已填充像素的值,通过线性插值方法 计算得到。
6×6
3×3
算 法 描 述 : 设 原 图 像 大 小 为 M×N, 缩 小 为 k1M×k2N,(k1<1,k2<1)。算法步骤如下: 1)设旧图像是f (i, j),i=1, 2,…,M, j=1,2, …, N. 新图像是g (i, j), i=1,2,…,k1M, j=1,2,…,k2N. 2)计算采样间隔Δi=1/k1,Δj=1/k2 3)g (i, j)=f (Δi×i, Δj×j)
i i
j
j
1 1
4.3.3 仿射变换表示图像的几何变换
图像的平移: 图像的旋转:
i ' 1 0 i i
j
'
j
其中,(i, j)为原图像某个像素的坐标,(i’, j’)为该像素在新图像中的坐标。
123
123
1
1
2
2
3
3
photoshop演示
4.1.3 图像的旋转
图像的旋转:以图像中的某一点为原点,按 照顺时针或逆时针旋转一定的角度。图像逆 时针旋转的计算公式如下:
i ' i cos j sin
g(1, 2) f 11 2 1 f 12 f 11
4 1
g(2,7)的推测 Photoshop演示算法效果
2 f 11 1 f 12
3
3
4.2.3 图像错切
图像的错切变换可看成是平面景物在投影平面上的 非垂直投影效果。
错切变换可分为两种。一种是水平错切,水平方向 的线段发生倾斜。另一种是垂直错切,垂直方向的 线段发生倾斜。
图像缩小有按比例缩小和不按比例缩小两种情况。 图像缩小之后,像素的个数减少,承载的信息量小
了,画布可相应缩小。 图像缩小方法有两种:(1)基于等间隔采样的缩
小方法;(2)基于局部均值的缩小方法。
(a) 按比例缩小
(b) 不按比例缩小
一、基于等间隔采样的图像缩小方法
原理:该方法通过对原图像的均匀采样,等间隔地 选取一部分像素,从而获得小尺寸图像的数据,并 且尽量保持原有图像特征不丢失。
错切的计算公式如下:
i '
j
i '
j
di
j
(水平错切)
i ' i
j
'
j d ji
(垂直错切)
图像错切的例题
i ' i
j
'
j d ji
(垂直错切)
i '
j
'
j
di
j
(水平错切)
计算f(1,1)的新坐标
di 1
dj 1
可以看到,错切之后的像素坐标只有一种发生变化。 图像旋转,则是行坐标与列坐标同时发生变化。
4.1 图像的位置变换
图像的位置变换是指图像的尺寸和 形状不发生变化,只是将图像进行 平移,或者作镜像变换,或者进行 旋转。
图像的位置变换的一个应用实例: 目标配准。
4.1.1 图像的平移
目的:改变图像在画布上的位置。
方法:将图像的所有像素都按要求进行垂直
或者水平移动。
设图像的任一像素坐标为( i, j ), 图像在画布
(3) 通过双线性插值方法计算剩余像素的值。
对所有填充像素所在列中的其他像素的值,可以 根据该像素的上方与下方的已填充的像素值,采用 双线性插值方法计算得到。
第j 列
第i1行 g(i1, j)
g (i1 ,
j)
i i1 i2 i1
g (i2 ,
j)
g (i1 ,
j)
第i行 g(i, j)
这里,令系数w取值为1,即像素(i,j) 的齐次坐标为(i,j,1)。
4.3.2 仿射变换
可以定义仿射变换 如下:
i ' ai bj i
j
'
ci
dj
j
有了齐次坐标 , 就可以用矩阵形 式表示为:
i ' a b
j
'
c
d
1 0 0
i :[1,3]; j :[1,3]
i ' :[1, 2]; j ' :[1, 4]
i i 2
j
j
i '' :[1, 4]; j '' :[1, 4]
图像旋转之后,出现了两个问题:
1) 因为相邻像素之间只能有8个方向,而 旋转方向却是任意的,使得像素的排列 不是完全按照原有的相邻关系。
第四章 图像的几何变换
数字图像的几何变换就是对图像进行如 下处理:改变图像的几何位置、几何形状、 几何尺寸等几何特征。
几何变换的特点是:改变图像像素的空 间位置,而不改变像素灰度值。
本章主要内容: 4.1 位置变换:图像的平移、镜像、旋转 4.2 形状变换:图像的缩放、错切 4.3 仿射变换:图像几何变换一般表示方法
Photoshop的实验综合运用几何变换技术
4.3 图像的仿射变换
图像仿射变换提出的意义是采用通用的数学 变换公式,来表示前面给出的几何变换。
为了能够采用统一变换公式表示平移变换, 引入齐次坐标概念。
i' i i
平移公式:
j'
j j
4.3.1 齐次坐标
原坐标为 (x,y),定义齐次坐标为: (wx, wy, w)
j
'
i
sin
j
cos
• 这个计算公式计算出的值为小数,而坐标值为正整数。 • 计算结果中的新坐标值可能超过原图像所在的空间范围。
图像旋转时,为了避免信息的丢失,应当扩 大画布,并将旋转后的图像平移到新画布上。
图像的旋转例题
30
板书:计算像素(1,1) 的旋转新坐标
i ' 0.866i 0.5 j
2)会出现许多的空洞点。 我们来看一个旋转图像的画面效果。 空洞点
新图像中的空洞可以采用插值方法填充
插值方法有两种方式: 一、近邻插值法 二、均值插值法
一、近邻插值法
对于判断为空洞点的像素,用其同一 行(或列)中的相邻像素值来填充。
二、均值插值法
对于空洞的像素,用其相邻四个像素的 平均颜色来填充。
板书演算:f(1,1),f(3,4)
4.2.2 图像放大
图像放大有两种:按比例放大或不按比例放大。 图像放大从字面上看,是图像缩小的逆操作。但
是,从信息处理的角度来看,图像缩小是对信息 的一种简化,而图像放大则需要为增加的像素填 入适当的灰度值,是对未知信息的估计。 两种图像放大方法: (1)基于像素放大原理的图像放大方法 (2)基于双线性插值的图像放大方法
第j1 列 第i 行 g(i, j1)
第j 列 g(i, j)
第j2 列 g(i, j2)
g (i,
j) g(i,
j1)
j j1 g(i,
j2 j1
j2 ) g(i,
j1)
g(i,
j1)
j j1 g(i,
j2 j1
j2 ) g(i,
j1)
板书计算g(1,2)
j'
N
j 1
其中,(i, j)为原图像某个像素的坐标,(i’, j’)为该像素在新图像中的坐标。
123 1
123 1
2
2
3
3
4.1.2 图像的镜像
二、垂直镜像(垂直翻转)
以图像水平中轴线为中心,交换图像