数字图像处理几何变换

合集下载

《数字图像处理》课程教学大纲

《数字图像处理》课程教学大纲

《数字图像处理》课程教学大纲课程代码:ABJD0619课程中文名称:数字图像处理课程英文名称:Dig让a1ImageProcessing课程性质:选修课程学分数:3学分课程学时数:48学时(32理论课时+16实验学时)授课对象:电子信息工程本课程的前导课程:高等数学,概率论,线性代数,数字信号处理,信息论,程序设计等一、课程简介数字图像处理是一门新兴的跨学科的前沿高科技,在军事、工业、科研、医学等领域获得了广泛应用,是国内外高校和科研院所的研窕生教育中一个重要的研究方向。

通过本课程的学习,同学们将掌握数字图像处理的基本理论与方法,包括图像变换、图像增强、图像分割、图像恢复、图像识别、图像压缩编码、数字图像处理系统及应用等内容。

二、教学基本内容和要求(-)数字图像处理方法概述教学内容:数字图像处理的研究对象、基本应用、研究内容等,数字图像的基本概念、彩色图像的调色板等概念。

课程的重点、难点:重点:CDIB类与程序框架结构介绍。

难点:调色板的基本概念和应用。

教学要求:D了解本课程研究的对象、内容及其在培养软件编程高级人才中的地位、作用和任务;2)了解数字图像处理的应用;3)理解数字图像的基本概念、与设备相关的位图(DDB)、与设备无关的位图(D1B);4)理解调色板的基本概念和应用;5)了解CD1B类与程序框架结构介绍;6)掌握位图图像处理技术。

(二)图像的几何变换教学内容:图像的几何变换种类以及概念,几何变换的实现原理和实施方法课程的重点、难点:重点:镜像变换。

难点:旋转。

教学要求:1)理解图像的缩放、平移、镜像变换、转置、旋转。

(三)图像灰度变换教学内容:直方图的概念、灰度的点运算(包含灰度信息的线性变化、指数变换等)、直方图的均匀化和规定化课程的重点、难点:重点:灰度直方图。

难点:灰度分布均衡化。

教学要求:1)了解非O元素取1法、固定阈值法、双固定阈值法的图像灰度变换;2)掌握灰度的线性变换、窗口灰度变换处理、灰度拉伸、灰度直方图、灰度分布均衡化。

【精选】数字图像处理第3章

【精选】数字图像处理第3章

设定加权因子 ai 和 bi 的值,可以得到不同的变换。例如,当选定
a2 b1 切。
1 ,b2

0.1
,a1

a0
b0

0
,该情况是图像剪切的一种列剪
(a)原始图像
Digital Image Processing
(b)仿射变换后图像
3.1 图像的几何变换
◘透视变换 :
把物体的三维图像表示转变为二维表示的过程,称为透视 变换,也称为投影映射,其表达式为:

a2

b2
a1 b1
a0
b0


y

1
平移、比例缩放和旋转变换都是一种称为仿射变换的特殊情况。
仿射变换具有如下性质:
(1)仿射变换有6个自由度(对应变换中的6个系数),因此,仿射变换后 互相平行直线仍然为平行直线,三角形映射后仍是三角形。但却不能
保 证将四边形以上的多边形映射为等边数的多边形。
1D-DFT的矩阵表示 :
F (0)

F (1)


WN00 WN10

F (2)

WN20

F (N 1)
W
(N N
1)0
WN01 WN11 WN21
WN(N 1)1

W
0( N
N
1)
WN1(N 1)

第3章 图像变换
◆ 3.1 图像的几何变换 ◆ 3.2 图像的离散傅立叶变换 ◆ 3.3 图像变换的一般表示形式 ◆ 3.4 图像的离散余弦变换 ◆ 3.5 图像的离散沃尔什-哈达玛变换 ◆ 3.6 K-L变换 ◆ 3.7 本章小结

数字图像处理第五章

数字图像处理第五章

系统失真是有规律的、能预测的;非系统失真则是随 机的。
当对图像作定量分析时,就要对失真的图像先进行精 确的几何校正(即将存在几何失真的图像校正成无几何失 真的图像),以免影响定量分析的精度。
几何校正方法
图像几何校正的基本方法是先建立几何校正的数学模型; 其次利用已知条件确定模型参数;最后根据模型对图像进行 几何校正。通常分两步: ①图像空间坐标变换;首先建立图像像点坐标(行、列 号)和物方(或参考图)对应点坐标间的映射关系, 解求映射关系中的未知参数,然后根据映射关系对图 像各个像素坐标进行校正; ②确定各像素的灰度值(灰度内插)。
因此还有
f ( x , y ) f ( x, y) ( x , y )
二维线性位移不变系统 如果对二维函数施加运算T[· ] ,满足 ⑴ T f1 x, y f 2 x, y T f1 x, y T f 2 x, y ⑵ T af x, y aT f x, y
但实际获取的影像都有噪声,因而只能求F(u,v)的估 ˆ (u, v) 。 计值 F
N (u, v) ˆ F (u, v) F (u, v) H (u, v)
再作傅立叶逆变换得
1 j 2 ( ux vy) ˆ ( x, y) f ( x, y) f N ( u , v ) H ( u , v ) e dudv
采用线性位移不变系统模型的原由: 1)由于许多种退化都可以用线性位移不变模型来近似, 这样线性系统中的许多数学工具如线性代数,能用于 求解图像复原问题,从而使运算方法简捷和快速。 2)当退化不太严重时,一般用线性位移不变系统模型来 复原图像,在很多应用中有较好的复原结果,且计算 大为简化。 3)尽管实际非线性和位移可变的情况能更加准确而普遍 地反映图像复原问题的本质,但在数学上求解困难。 只有在要求很精确的情况下才用位移可变的模型去求 解,其求解也常以位移不变的解法为基础加以修改而 成。

数字图像处理 -习题2增强-噪声-几何变换-频域变换

数字图像处理  -习题2增强-噪声-几何变换-频域变换

第三章图像增强一.填空题1. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为____动态范围__。

2.所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行__压缩____,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。

3. 动态范围调整分为线性动态范围调整和__非线性调整___两种。

4. 直方图均衡化把原始图的直方图变换为分布均匀的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

基本思想是:对图像中像素个数多的灰度值进行__展宽_____,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。

5. 数字图像处理包含很多方面的研究内容。

其中,__图像增强_的目的是将一幅图像中有用的信息进行增强,同时将无用的信息进行抑制,提高图像的可观察性。

6. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。

二.选择题1. 下面说法正确的是:(B )A、基于像素的图像增强方法是一种线性灰度变换;B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高;D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。

2. 指出下面正确的说法:(D )A、基于像素的图像增强方法是一种非线性灰度变换。

B、基于像素的图像增强方法是基于频域的图像增强方法的一种。

C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高。

D、基于频域的图像增强方法可以获得和基于空域的图像增强方法同样的图像增强效果。

3.指出下面正确的说法:(D )①基于像素的图像增强方法是一种非线性灰度变换。

②基于像素的图像增强方法是基于空域的图像增强方法的一种。

数字图像处理图像变换实验报告

数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。

三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。

点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。

如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。

一旦灰度变换函数确定,该点运算就完全确定下来了。

另外,点运算处理将改变图像的灰度直方图分布。

点运算又被称为对比度增强、对比度拉伸或灰度变换。

点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。

图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。

下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。

数字图像处理---图像的几何变换

数字图像处理---图像的几何变换

数字图像处理---图像的⼏何变换图像的⼏何变换图像的⼏何变换包括了图像的形状变换和图像的位置变换图像的形状变换图像的形状变换是指图像的放⼤、缩⼩与错切图像缩⼩图像的缩⼩是对原有的数据进⾏挑选或处理,获得期望缩⼩尺⼨的数据,并尽量保持原有的特征不消失分为按⽐例缩⼩和不按⽐例缩⼩两种最简单的⽅法是等间隔地选取数据图像缩⼩实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1<1,K 2<1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像放⼤图像放⼤时对多出的空位填⼊适当的值,是信息的估计最简单的思想是将原图像中的每个像素放⼤为k ∗k 的⼦块图像放⼤实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1>1,K 2>1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像错切图像错切变换实际上是平⾯景物在投影平⾯上的⾮垂直投影效果图像错切的数学模型x ′=x +d x y y ′=y(x ⽅向的错切,dx =tan θ)x ′=x y ′=y +d y x(y ⽅向的错切,dy =tan θ)图像的位置变换图像的位置变换是指图像的平移、镜像与旋转,即图像的⼤⼩和形状不发⽣变化主要⽤于⽬标识别中的⽬标配准图像平移公式:{{x ′=x +Δx y ′=y +Δy图像镜像图像镜像分为⽔平镜像和垂直镜像,即左右颠倒和上下颠倒公式:图像⼤⼩为M*Nx ′=x y ′=−y (⽔平镜像)x ′=−x y ′=y(垂直镜像)由于不能为负,因此需要再进⾏⼀次平移x ′=x y ′=N +1−y (⽔平镜像)x ′=M +1−xy ′=y(垂直镜像)图像旋转公式:x ′=xcos θ−ysin θy ′=xsin θ+ycos θ由于计算结果值所在范围与原有值不同,因此需要在进⾏扩⼤画布、取整、平移等处理画布扩⼤原则:以最⼩的⾯积承载全部的画⾯信息⽅法:根据公式x ′=xcos θ−ysin θy ′=xsin θ+ycos θ计算x ′min ,x ′max ,y ′min ,y ′max旋转后可能导致像素之间相邻连接不再连续,因此需要通过增加分辨率的⽅式填充空洞插值最简单的⽅式就是⾏插值(列插值)⽅法1. 找出当前⾏的最⼩和最⼤的⾮背景点坐标,记作:(i,k1)、(i,k2)2. 在(k1,k2)范围内进⾏插值,插值⽅法为空点的像素值等于前⼀点的像素值3. 重复上述操作直⾄没有空洞图像的仿射变换图像的仿射变换即通过通⽤的仿射变换公式,表⽰⼏何变换{{{{{{{齐次坐标原坐标为(x,y),定义齐次坐标为(wx,wy,w)实质上是通过增加坐标量来解决问题仿射变换通式通过齐次坐标定义仿射变换通式为x ′=ax +by +Δx y ′=cx +dy +Δy⇒x ′y ′=a b Δx c dΔyx y⼏何变换表⽰1. 平移x ′y ′1=10Δx 01Δy 001x y12. 旋转x ′y ′1=cos θ−sin θ0sin θcos θ0001x y 13. ⽔平镜像x ′y ′1=−10001001x y14. 垂直镜像x ′y ′1=1000−10001x y15. 垂直错切x ′y ′1=1d x 00−10001x y16. ⽔平错切x ′y ′1=100d y −10001x y1图像的⼏何校正由于图像成像系统的问题,导致拍摄的图⽚存在⼀定的⼏何失真⼏何失真分为{[][][][][][][][][][][][][][][][][][][][][]1. 系统失真:有规律的、可预测的2. ⾮系统失真:随机的⼏何校正的基本⽅法是先建⽴⼏何校正的数学模型,其次利⽤已知条件确定模型参数,最后根据模型对图像进⾏⼏何校正步骤:1. 图像空间坐标的变换2. 确定校正空间各像素的灰度值(灰度内插)途径:1. 根据畸变原因,建⽴数学模型2. 参考点校正法,根据⾜够多的参考点推算全图变形函数空间坐标变换实际⼯作中利⽤⼀幅基准图像f(x,y),来校正失真图像g(x′,y′)根据⼀些控制点对,建⽴两幅图像之间的函数关系,通过坐标变换,以实现失真图像的⼏何校正两幅图像上的f(x,y)=g(x′,y′)时,称其为对应像素(同名像素)通过表达式x′=h1(x,y)y′=h2(x,y)表⽰两幅图像之间的函数关系通常⽤多项式x′=n∑i=0n−i∑j=0a ij x i y jy′=n∑i=0n−i∑j=0b ij x i y j来近似h1(x,y)、h2(x,y)当多项式系数n=1时,畸变关系为线性变换x′=a00+a10x+a01yy′=b00+b10x+b01y六个未知数需要⾄少三个已知点来建⽴⽅程式当多项式系数n=2时,畸变关系式为x′=a00+a10x+a01y+a20x2+a11xy+a02y2y′=b00+b10x+b01y+b20x2+b11xy+b02y2 12个未知数需要⾄少6个已知点来建⽴⽅程式当超过已知点数⽬超过要求时,通过最⼩⼆乘法求解n=2时多项式通式为B2∗n=H2∗6A6∗n(n为待求点数)B2∗n=x′1x′2⋯x′n y′1y′2⋯y′n{ []H 2∗6=a 00a 10a 01a 20a 11a 02b 00b 10b 01b 20b 11b 02A 6∗n =11⋯1x 1x 2⋯x n y 1y 2⋯y n x 21x 22⋯x 2n x 1y 1x 2y 2⋯x n y ny 21y 22⋯y 2n同名点对要求1. 数量多且分散2. 优先选择特征点直接法利⽤已知点坐标,根据x ′=h 1(x ,y )y ′=h 2(x ,y )⇒x =h ′1(x ′,y ′)y =h ′2(x ′,y ′)x =n ∑i =0n −i∑j =0a ′ij x ′i y′jy =n ∑i =0n −i∑j =0b ′ijx ′i y ′j解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,⽣成校正图像由于像素分布的不规则,导致出现像素挤压、疏密不均等现象,因此最后还需要进⾏灰度内插,⽣成规则图像间接法间接法通过假定⽣成图像的⽹格交叉点,从⽹格交叉点(x,y)出发,借助已知点求取未知参数,根据x ′=n ∑i =0n −i∑j =0a ij x i y jy ′=n ∑i =0n −i∑j =0b ij x i y j推算⽹格交叉点(x,y)对应畸变图像坐标(x',y'),由于对应坐标⼀般不为整数,因此需要通过畸变图像坐标周围点的灰度值内插求解,作为⽹格交叉点(x,y)的灰度值间接法相对直接法内插较为简单,因此常采⽤间接法作为⼏何校正⽅法像素灰度内插最近邻元法最近邻元法即根据四邻域中最近的相邻像素灰度决定待定点灰度值该⽅法效果较佳,算法简单,但是校正后图像存在明显锯齿,即存在灰度不连续性双线性内插法[][]{{双线性内插法是利⽤待求点四个邻像素的灰度在两个⽅向上作线性内插该⽅法相较最近邻元法更复杂,计算量更⼤,但是没有灰度不连续的缺点,且具有低通滤波性质,图像轮廓较为模糊三次内插法三次内插法利⽤三次多项式S(x)来逼近理论最佳插值函数sin(x)/xS(x)=1−2|x|2+|x|30≤|x|<1 4−8|x|+5|x|2−|x|31≤|x|<20|x|≥2该算法计算量最⼤,但是内插效果最好,精度最⾼{Processing math: 100%。

数字图像的几何运算

数字图像的几何运算

数字图像的几何运算数字图像的几何运算是指对图像进行平移、旋转、缩放和翻转等几何变换操作的过程。

这些几何运算可以改变图像的位置、方向、大小和形状,是数字图像处理中常用的操作之一。

本文将介绍几何运算的原理和应用,并讨论其在图像处理领域的重要性和作用。

一、几何运算的原理数字图像是由像素组成的二维矩阵,每个像素代表图像的一个点,包含了图像的颜色和位置信息。

几何运算是基于像素的位置信息对图像进行变换和调整的方法,可以通过修改像素的坐标来实现图像的平移、旋转、缩放和翻转等操作。

1. 平移平移是指将图像沿着水平和垂直方向进行移动,使得图像的位置发生变化。

平移操作可以通过修改像素的坐标来实现,将每个像素的坐标按照设定的平移量进行移动,从而改变图像的位置。

平移操作可以用以下公式表示:R’(x, y) = R(x-dx, y-dy)R(x, y)代表原始图像的像素,R’(x, y)代表平移后的图像像素,dx和dy分别代表水平和垂直方向的平移量。

二、几何运算的应用几何运算在数字图像处理中具有重要的应用价值,能够实现图像的位置、方向、大小和形状的调整,为图像处理提供了丰富的操作手段。

以下是几何运算的一些常见应用:1. 图像校正对于拍摄时出现的倾斜、扭曲等问题,可以通过旋转操作对图像进行校正,使得图像恢复到正常的状态。

图像校正能够提高图像的质量和美观度,减少图像处理时的误差和影响。

2. 图像增强通过缩放操作对图像进行放大或缩小,可以改变图像的大小和细节,使得图像更加清晰和细致。

图像增强能够提高图像的清晰度和可视性,使得图像更加逼真和吸引人。

3. 图像合成通过平移操作将多个图像进行位置调整,可以实现多个图像的合成和叠加,融合不同图像的信息和特点,生成新的图像内容。

图像合成能够实现图像的复杂处理和创意设计,为图像处理提供了更多的可能性。

4. 图像镜像通过翻转操作对图像进行镜像处理,可以改变图像的对称性和形状,生成镜像对称的图像。

数字图像处理课件第6章图像的几何变换

数字图像处理课件第6章图像的几何变换
由点的齐次坐标(Hx, Hy, H)求点的规范化齐次坐标(x, y, 1),可按下式进行:
x Hx H
y Hy H
第6章 图像的几何变换
齐次坐标的几何意义相当于点(x, y)落在3D空间H=1
的平面上,如图6-2所示。如果将xOy平面内的三角形abc的 各顶点表示成齐次坐标(xi, yi, 1)(i=1, 2, 3)的形式,就变成H =1平面内的三角形a1b1c1的各顶点。
图6-2 齐次坐标的几何意义
第6章 图像的几何变换
齐次坐标在2D图像几何变换中的另一个应用是:如某 点S(60 000,40 000)在16位计算机上表示,由于大于32767 的最大坐标值,需要进行复杂的处理操作。但如果把S的坐 标形式变成(Hx, Hy, H)形式的齐次坐标,则情况就不同了。 在齐次坐标系中,设H=1/2,则S(60 000,40 000)的齐次坐 标为(x/2,y/2,1/2),那么所要表示的点变为(30 000, 20 000,1/2),此点显然在16位计算机上二进制数所能表示 的范围之内。
(图像上各点的新齐次坐标)
(图像上各点的原齐次坐标)
第6章 图像的几何变换 设变换矩阵T为
a b p
T c
d
q
l m s
则上述变换可以用公式表示为
=
T
Hx1' Hy1'
Hx2' Hy2'
Hxn' Hyn'
x1 x2 xn
T
y1
y2
yn
H H H 3n
1 1 1 3n
第6章 图像的几何变换
6.4 图像镜像
6.4.1 图像镜像变换 图像的镜像(Mirror)变换不改变图像的形状。 镜像变换分为两种:一种是水平镜像,另外一种是垂直镜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)会出现许多的空洞点。 我们来看一个旋转图像的画面效果。 空洞点
新图像中的空洞可以采用插值方法填充
插值方法有两种方式: 一、近邻插值法 二、均值插值法
一、近邻插值法
对于判断为空洞点的像素,用其同一 行(或列)中的相邻像素值来填充。
二、均值插值法
对于空洞的像素,用其相邻四个像素 的平均颜色来填充。
例题: 缩小6×6的图像,设k1=2/3, k2=3/4; 板书计算
原图像f(i, j)=f i j
新图像大小:k1M×k2N =4×5
f1f11f112f12f13f1f314f1f415f1f516f16
f2f12f122f22f23f2f324f2f425f2f526f26 采样间隔: Δi=3/2 f3f13f132f32f33f3f334f3f435f3f536f36 ,Δj=4/3
注意:i与j是原图像的像素坐标,i’与j’是平移后 的图像像素坐标。
4.1.1 图像的平移
将图像进行平移, 取Δi=1与Δj=2
板书计算
photoshop演示
画布没有扩大 画布扩大
平移后的图像内容没有变化。
但“画布”一定要扩大,否则就会丢失信息。
4.1.2 图像的镜像(翻转)
镜像分为水平镜像和垂直镜像 一、水平镜像(水平翻转)
f61 f63 f64 f65 f66
根据:g(i,j)=f(Δi×i, Δj×j) 对于:i=1,j=1 → g(1,1)=f (1×3/2, 1×4/3)=f 21 对于:i=2,j=1 → g(2,1)=f (2×3/2, 1×4/3)=f 31
……………………………
注意:不按比例 缩小会导致几何 畸变。
图像旋转时,为了避免信息的丢失,应当扩 大画布,并将旋转后的图像平移到新画布上。
图像的旋转例题
板书:计算像素(1,1) 的旋转新坐标
结论:按照图像旋转计算 公式获得的结果与想象中 的差异很大。
图像旋转之后,出现了两个问题:
1) 因为相邻像素之间只能有8个方向,而 旋转方向却是任意的,使得像素的排列不是 完全按照原有的相邻关系。
二、基于局部均值的的图像缩小方法
由于基于等间隔采样的方法无法反映未被采样的像素信息。为 此可采用基于局部均值的图像缩小方法,其实现步骤如下: (1) 计算新图像的大小,计算采样间隔Δi=1/k1,Δj=1/k2 (2) 对新图像的像素g(i, j),计算其在原图像中对应的子块f (i, j):
(3)根据下式求出缩小的图像:
例题:k1=0.7, k2=0.6 → Δi=1.4, Δj=1.7
新图像g(i, j)
f21 f23 f24 f25 f26
f4f14f142f42f43f4f344f4f445f4f546f46
f31 f33 f34 f35 f36
f5f15f152f52f53f5f354f5f455f5f556f56
f51 f53 f54 f55 f56
f6f16f162f62f63f6f364f6f465f6f566f66
以图像垂直中轴线为中心,交换图像的左右 两部部分。假设图像的大小为M×N,水平镜像 计算公式为:
其中,(i, j)为原图像某个像素的坐标,(i’, j’)为该像素在新图像中的坐标。
123 1
123 1
2
2
3
3
4.1.2 图像的镜像
二、垂直镜像(垂直翻转)
以图像水平中轴线为中心,交换图像 的上下两部分。设图像的大小为M×N,垂 直镜像的计算公式为:
(0,128,0) (255,0,0)
计算平均颜色
(102,204,254)
(89,109,127)
(0,102,254)
经过插值处理之后,图像效果就变得自然。
Photoshop演 示镜像与旋转
4.2 图像的形状变换
所谓图像的形状变换是指图像 的形状发生了变化,主要包括放大
、缩小、错切等。
4.2.1 图像的缩小
数字图像处理几何变换
第四章 图像的几何变换
数字图像的几何变换就是对图像进行 如下处理:改变图像的几何位置、几何形 状、几何尺寸等几何特征。
几何变换的特点是:改变图像像素的 空间位置,而不改变像素灰度值。
本章主要内容: 4.1 位置变换:图像的平移、镜像、旋转 4.2 形状变换:图像的缩放、错切 4.3 仿射变换:图像几何变换一般表示方法
其中,(i, j)为原图像某个像素的坐标,(i’, j’)为该像素在新图像中的坐标。
123
123
1
1
2Leabharlann 233photoshop演示
4.1.3 图像的旋转
图像的旋转:以图像中的某一点为原点,按 照顺时针或逆时针旋转一定的角度。图像逆 时针旋转的计算公式如下:
• 这个计算公式计算出的值为小数,而坐标值为正整数。 • 计算结果中的新坐标值可能超过原图像所在的空间范围。
4.1 图像的位置变换
图像的位置变换是指图像的尺寸和 形状不发生变化,只是将图像进行平 移,或者作镜像变换,或者进行旋转 。 图像的位置变换的一个应用实例: 目标配准。
4.1.1 图像的平移
目的:改变图像在画布上的位置。 方法:将图像的所有像素都按要求进行垂 直
或者水平移动。 设图像的任一像素坐标为( i, j ), 图像在画布 上沿行方向与列方向分别移动Δi与Δj。假设 平移后的像素坐标为(i’, j’)。则平移计算公 式为:
图像缩小有按比例缩小和不按比例缩小两种情况。 图像缩小之后,像素的个数减少,承载的信息量小 了,画布可相应缩小。 图像缩小方法有两种:(1)基于等间隔采样的缩 小方法;(2)基于局部均值的缩小方法。
(a) 按比例缩小
(b) 不按比例缩小
一、基于等间隔采样的图像缩小方法
原理:该方法通过对原图像的均匀采样,等间隔地 选取一部分像素,从而获得小尺寸图像的数据,并 且尽量保持原有图像特征不丢失。
6×6
3×3
算法描述:设原图像大小为M×N,缩小为 k1M×k2N,(k1<1,k2<1)。算法步骤如下: 1)设旧图像是f (i, j),i=1, 2,…,M, j=1,2, …, N. 新图像是g (i, j), i=1,2,…,k1M, j=1,2,…,k2N. 2)计算采样间隔Δi=1/k1,Δj=1/k2 3)g (i, j)=f (Δi×i, Δj×j)
相关文档
最新文档