2020高三理科数学一轮复习讲义第三章3.1《变化率与导数、导数的计算》

合集下载

高考数学一轮复习第3章导数及其应用1第1讲变化率与导数导数的计算教案理

高考数学一轮复习第3章导数及其应用1第1讲变化率与导数导数的计算教案理

第1讲 变化率与导数、导数的计算了解导数概念的实际背景,理解导数的几何意义.能根据导数定义求函数y =C (C 为常数),y =x ,y =x 2,y =x 3,y =1x,能利用基本初等函数的导数公式和导数的四则运算法则求简单函数 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数 会利用导数解决某些实际问题.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概 了解微积分基本定理的含义.1.导数的概念(1)函数y =f (x )在x =x 0处的导数 称函数y =f (x )在x =x 0处的瞬时变化率 limΔx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x=x 0,即f ′(x 0)=lim Δx →0Δy Δx = f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数 称函数f ′(x )=limΔx →0f (x +Δx )-f (x )Δx 为f (x )的导函数.2.基本初等函数的导数公式(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.判断正误(正确的打“√”,错误的打“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)×(教材习题改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B .y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x .(2018·开封市第一次模拟)已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-2 B .1 C .3D .4解析:选C .对于y =x 3+mx +n ,y ′=3x 2+m ,所以k =3+m ,又k +1=3,1+m +n =3,可解得n =3.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析:因为f ′(x )=a (l +ln x ), 所以f ′(1)=a =3. 答案:3(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为__________.解析:因为y =x 2+1x ,所以y ′=2x -1x2,所以y ′|x =1=2-1=1,所以所求切线方程为y-2=x -1,即x -y +1=0. 答案:x -y +1=0导数的计算[典例引领]求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =sin x2(1-2cos 2x4);(3)y =3x e x-2x +e ; (4)y =ln x x 2+1; (5)y =ln 2x -12x +1.【解】 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)因为y =sin x 2(-cos x 2)=-12sin x ,所以y ′=(-12sin x )′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x)′ =3x e x ln 3+3x e x -2xln 2 =(ln 3+1)·(3e)x -2xln 2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln xx (x 2+1)2.(5)y ′=(ln 2x -12x +1)′=[ln(2x -1)-ln(2x +1)]′=[ln(2x -1)]′-[ln(2x +1)]′=12x -1·(2x -1)′-12x +1·(2x +1)′=22x -1-22x +1=44x 2-1.[通关练习]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2x ·f ′(2),则f ′(5)=( ) A .2 B .4 C .6D .8解析:选C.f ′(x )=6x +2f ′(2), 令x =2,得f ′(2)=-12.再令x =5,得f ′(5)=6×5+2f ′(2)=30-24=6. 2.求下列函数的导数:(1)y =x n e x ;(2)y =cos x sin x ;(3)y =e xln x ;(4)y =(1+sin x )2. 解:(1)y ′=nxn -1e x+x n e x =xn -1e x(n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x . (3)y ′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫1x +ln x .(4)y ′=2(1+sin x )·(1+sin x )′=2(1+sin x )·cos x .导数的几何意义(高频考点)导数的几何意义是每年高考的必考内容,考查题型既有选择题也有填空题,也常出现在解答题的第(1)问中,难度偏小.高考对导数几何意义的考查主要有以下三个命题角度: (1)求切线方程;(2)已知切线方程(或斜率)求切点坐标; (3)已知切线方程求参数值.[典例引领]角度一 求切线方程(1)(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.(2)曲线f (x )=x 3-2x 2+2(12≤x ≤52),过点P (2,0)的切线方程为________.【解析】 (1)因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x -1),令x =0,得y =1,即直线l 在y 轴上的截距为1.(2)因为f (2)=23-2×22+2=2≠0,所以点P (2,0)不在曲线f (x )=x 3-2x 2+2上. 设切点坐标为(x 0,y 0),则12≤x 0≤52.且⎩⎪⎨⎪⎧y 0=x 30-2x 20+2,0-y 02-x 0=f ′(x 0),所以⎩⎪⎨⎪⎧y 0=x 30-2x 20+2,-y 02-x 0=3x 20-4x 0,消去y ,整理得(x 0-1)(x 20-3x 0+1)=0,解得x 0=1或x 0=3+52(舍去)或x 0=3-52(舍去),所以y 0=1,f ′(x 0)=-1,所以所求的切线方程为y -1=-(x -1), 即y =-x +2.【答案】 (1)1 (2)y =-x +2角度二 已知切线方程(或斜率)求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率为k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为________.解析:设切点为(x 0,y 0), 因为y ′=ln x +1, 由题意,得ln x 0+1=1, 所以ln x 0=0,x 0=1, 即点P (1,0),所以切线方程为y =x -1, 即x -y -1=0. 答案:x -y -1=0角度三 已知切线方程求参数值(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线 y =ln(x +1)的切线,则b =________.【解析】 求得(ln x +2)′=1x , [ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则 k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1,所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. 【答案】 1-ln 2(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率; ②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0). (2)求曲线f (x ),g (x )的公切线l 的方程的步骤①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值; ③求切线方程,把所求参数的值代入曲线的切线方程中即可. (3)求曲线的切线方程需注意三点①当曲线y =f (x )在点P (x 0,f (x 0))处的切线垂直于x 轴(此时导数不存在)时,切线方程为x =x 0;②当切点坐标不知道时,应首先设出切点坐标,再求解;③应正确区分“求在曲线点P 处的切线方程”和“求过曲线点P 处的切线方程”.[通关练习]1.(2018·云南省第一次统一检测)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4. 答案:42.(2018·沈阳市教学质量检测(一))设函数f (x )=g (x2)+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为________. 解析:由已知得 g ′(1)=-9,g (1)=-8,又f ′(x )=12 g ′(x 2)+2x ,所以f ′(2)=12g ′(1)+4=-92+4=-12,f (2)=g (1)+4=-4,所以所求切线方程为y +4=-12(x -2),即x+2y +6=0.答案:x +2y +6=03.若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.解析:设直线l 与曲线y =e x的切点为(x 0,e x0),直线l 与曲线y =-14x 2的切点为(x 1,-x 214),因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点(x 1,-x 214)处的切线的斜率为y ′|x =x 1=(-x 2)|x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x0+e x 0或y=-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x=-x 12,-x 0e x 0+e x=x214,所以e x0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1. 答案:y =x +1导数的几何意义与其他知识交汇[典例引领]抛物线y =x 2在x =1处的切线与两坐标轴围成的三角形区域为D (包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是________. 【解析】 由于y ′=2x ,所以抛物线在x =1处的切线方程为y -1=2(x -1),即y =2x -1.画出可行域(如图).设x +2y =z ,则y =-12x +12z ,可知当直线y =-12x +12z 经过点A ⎝ ⎛⎭⎪⎫12,0,B (0,-1)时,z 分别取到最大值和最小值,此时最大值z ma x =12,最小值z min =-2,故取值范围是⎣⎢⎡⎦⎥⎤-2,12.【答案】 ⎣⎢⎡⎦⎥⎤-2,12(1)本题以y =x 2在x =1处的切线问题为条件,利用导数的几何意义求得切线方程,构造出求x +2y 的取值范围的可行域,充分体现了导数与线性规划的交汇. (2)利用导函数的特性,在求解有关奇(偶)函数问题中,发挥出奇妙的作用. (3)导数还可以与数列、向量、解析几何等交汇.[通关练习]1.曲线f (x )=-x 3+3x 2在点(1,f (1))处的切线截圆x 2+(y +1)2=4所得的弦长为( ) A .4 B .2 2 C .2D. 2解析:选A.因为f ′(x )=-3x 2+6x ,则在点(1,f (1))处的切线的斜率k =6-3=3,又f (1)=2,故切线方程为y -2=3(x -1),即3x -y -1=0. 因为圆心C (0,-1)到直线3x -y -1=0的距离d =0,所以直线3x -y -1=0截圆x 2+(y +1)2=4所得的弦长就是该圆的直径4,故选A . 2.对正整数n ,设曲线y =(2-x )x n 在x =3处的切线与y 轴交点的纵坐标为a n ,则数列{a nn +2}的前n 项和等于________. 解析:因为y ′=2nxn -1-(n +1)x n.所以曲线y =(2-x )x n 在x =3处的切线的斜率为(-13n -1)3n .所以切线方程为y =(-13n -1)3n (x -3)-3n.令x =0,得a n =(n +2)·3n,所以a nn +2=3n. 所以数列{a nn +2}的前n 项和为31+32+33+ (3)=3(1-3n)1-3=3n +1-32.答案:3n +1-32导数运算的技巧(1)要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利用运算法则求导数.(2)对于不具备求导法则结构形式的,要适当恒等变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误.对数函数的真数是根式或者分式时,可用对数的运算性质将真数转化为有理式或整式,然后再求解比较方便;当函 数表达式含有三角函数时,可优先考虑利用三角公式进行化简后再求导.易误防范(1)利用公式求导时要特别注意不要将幂函数的求导公式(x n)′=nxn -1与指数函数的求导公式(a x )′=a xln a 混淆.(2)求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.1.(2018·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( ) A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2解析:选A.因为y =f (x )=x sin x ,所以f ′(x )=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sin π+πcos π=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.2.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B .f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.3. 函数g (x )=x 3+52x 2+3ln x +b (b ∈R )在x =1处的切线过点(0,-5),则b 的值为( )A.72B.52C.32D.12解析:选B.当x =1时,g (1)=1+52+b =72+b ,又g ′(x )=3x 2+5x +3x,所以切线斜率k =g ′(1)=3+5+3=11, 从而切线方程为y =11x -5,由于点⎝ ⎛⎭⎪⎫1,72+b 在切线上,所以72+b =11-5, 解之得b =52.故选B.4.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .3D .4解析:选B.由题图可知曲线y =f (x )在x =3处切线的斜率为-13,即f ′(3)=-13,又g (x )=xf (x ),g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.(2018·广州市综合测试(一))设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A .(0,0) B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D.由题易知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率为f ′(x 0)=3x 2+2ax 0,又切线方程为x +y =0,所以x 0≠0,且⎩⎪⎨⎪⎧3x 20+2ax 0=-1x 0+x 30+ax 20=0,解得a =±2,x 0=-a2.所以当⎩⎪⎨⎪⎧x 0=1a =-2时,点P的坐标为(1,-1);当⎩⎪⎨⎪⎧x 0=-1a =2时,点P 的坐标为(-1,1),故选D.6.若f (x )=(x 2+2x -1)e2-x,则f ′(x )=________.解析:f ′(x )=(x 2+2x -1)′e 2-x+(x 2+2x -1)(e2-x)′=(2x +2)e 2-x+(x 2+2x -1)·(-e 2-x)=(3-x 2)e2-x.答案:(3-x 2)e2-x7.(2018·昆明市教学质量检测)若函数f (x )=2cos(ωx +π4)的图象在x =0处的切线方程为y =-3x +1,则ω=________.解析:由题意,得f ′(x )=-2ωsin(ωx +π4),所以f ′(0)=-2ωsin π4=-ω=-3,所以ω=3. 答案:38.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a=-13x 3(x >0),故a ∈(-∞,0).答案:(-∞,0) 9.求下列函数的导数: (1)y =(3x 3-4x )(2x +1); (2)y =x +cos xx +sin x;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2; (4)y =ln (2x +3)x 2+1.解:(1)法一:因为y =(3x 3-4x )(2x +1)=6x 4+3x 3-8x 2-4x ,所以y ′=24x 3+9x 2-16x -4.法二:y ′=(3x 3-4x )′(2x +1)+(3x 3-4x )(2x +1)′=(9x 2-4)(2x +1)+(3x 3-4x )·2=24x 3+9x 2-16x -4.(2)y ′=(x +cos x )′(x +sin x )-(x +cos x )(x +sin x )′(x +sin x )2=(1-sin x )(x +sin x )-(x +cos x )(1+cos x )(x +sin x )2=-x cos x -x sin x +sin x -cos x -1(x +sin x )2. (3)因为y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2 =12x sin(4x +π)=-12x sin 4x , 所以y ′=-12sin 4x -12x ·4·cos 4x=-12sin 4x -2x cos 4x .(4)y ′=[ln (2x +3)]′(x 2+1)-(x 2+1)′ln (2x +3)(x 2+1)2=(2x +3)′2x +3·(x 2+1)-2x ln (2x +3)(x 2+1)2=2(x 2+1)-2x (2x +3)ln (2x +3)(2x +3)(x 2+1)2. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.1.(2018·成都市第二次诊断性检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( ) A .(-12,+∞)B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).2.过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条D .0条解析:选A.由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,利用点斜式方程可知切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令z =2x 30-6x 20+7,则z ′=6x 20-12x 0.由z ′=0得x 0=0或x 0=2.当x 0=0时,z =7>0;x 0=2时,z =-1<0.所以方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条.3.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则过切点且与该切线垂直的直线方程为__________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ). 则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1. 解得x 0=-1,a =-12,切点坐标为(-1,0).所以过切点且与该切线垂直的直线方程为y =-1·(x +1),即x +y +1=0.答案:x +y +1=04.(2018·山东青岛自主诊断)函数y =f (x )图象上不同两点A (x 1,y 1),B (x 2,y 2)处的切线的斜率分别是k A ,k B ,规定K (A ,B )=|k A -k B ||AB |(|AB |为线段AB 的长度)叫作曲线y =f (x )在点A 与点B 之间的“近似曲率”.设曲线y =1x上两点A ⎝ ⎛⎭⎪⎫a ,1a ,B ⎝ ⎛⎭⎪⎫1a ,a (a >0且a ≠1),若m ·K (A ,B )>1恒成立,则实数m 的取值范围是______.解析:因为y ′=-1x2,所以k A =-1a2,k B =-a 2.又|AB |=⎝ ⎛⎭⎪⎫a -1a 2+⎝ ⎛⎭⎪⎫1a -a 2=2⎪⎪⎪⎪⎪⎪1a -a , 所以K (A ,B )=|k A -k B ||AB |=|a 2-1a 2|2|1a-a |=1a +a 2,因为a >0且a ≠1,所以a +1a >2a ·1a =2,即1K (A ,B )<22.由m ·K (A ,B )>1恒成立得,m >1K (A ,B ),即m ≥22.答案:⎣⎢⎡⎭⎪⎫22,+∞ 5.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值. 解:对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. 所以(2x 0-2)·(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0,① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b , ⇒2x 20-(a +2)x 0+2-b =0.②由①②消去x 0,可得a +b =52.6.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)设点P 的坐标为(x 1,y 1), 则y 1=kx 1,①y 1=-x 21+92x 1-4,②①代入②得,x 21+⎝ ⎛⎭⎪⎫k -92x 1+4=0.因为P 为切点,所以Δ=⎝ ⎛⎭⎪⎫k -922-16=0,得k =172或k =12. 当k =172时,x 1=-2,y 1=-17.当k =12时,x 1=2,y 1=1.因为P 在第一象限, 所以所求的斜率k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.③ 将③代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4.精美句子1、善思则能“从无字句处读书”。

2025高考数学一轮复习-3.1-变化率与导数、导数的计算【课件】

2025高考数学一轮复习-3.1-变化率与导数、导数的计算【课件】

2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是 h(t)=10-4.9t2 +8t(距离单位:米,时间单位:秒),则他在 0.5 秒时的瞬时速度为_____3_._1_______米/秒.
【解析】 ∵h′(t)=-9.8t+8,∴他在 0.5 秒时的瞬时速度为 h′(0.5)=3.1 米/秒.
易错易混 5.(多选)下列求导运算正确的是( BC ) A.x+1x′=1+x12 B.(log2x)′=xl1n2 C.(3x)′=3x·ln3 D.(x2cosx)′=-2xsinx
【解析】
因为
x+1x
′=1-
1 x2
,所以选项A不正确;因为(log2x)′=
1 xln2
,所以选项B
正确;因为(3x)′=3xln3,所以选项C正确;因为(x2cosx)′=2xcosx-x2sinx,所以选项D不正
(2)函数 y=f(x)的导数 f ′(x)反映了函数 f(x)的瞬时变化趋势,其正负号反映了变化的 方向,其大小|f′(x)|反映了变化的快慢,|f ′(x)|越大,曲线在这点处的切线越“陡”.
『基础过关』
思考辨析
1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x0)是函数 y=f(x)在 x=x0 附近的平均变化率.( × ) (2)f ′(x0)与[f(x0)]′表示的意义相同.( × ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (4)函数 f(x)=sin(-x)的导数是 f ′(x)=cosx.( × )
3
2.分别求下列函数的导数 (1)y=x2sinx; (2)y=lnx+1x; (3)y=coesx x; (4)y=ln(2x-5); (5)y=xsin2x+2πcos2x+2π.

2020高考数学理科大一轮复习导学案《变化率与导数、导数的计算》含答案

2020高考数学理科大一轮复习导学案《变化率与导数、导数的计算》含答案

第十节变化率与导数、导数的计算知识点一 导数的概念1.函数y =f (x )在x =x 0处的导数 称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. 2.导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).3.函数f (x )的导函数称函数f ′(x )=lim Δx→0f (x +Δx )-f (x )Δx为f (x )的导函数.1.某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( A )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).2.函数f (x )=x 2在区间[1,2]上的平均变化率为3,在x =2处的导数为4.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3,在x =2处的导数为f ′(2)=2×2=4.3.(2018·全国卷Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为y =2x . 解析:∵y =2ln(x +1),∴y ′=2x +1.当x =0时,y ′=2,∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 知识点二 导数的运算1.几种常见函数的导数2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.4.函数y =x cos x -sin x 的导数为( B ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:y ′=(x cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 5.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( B ) A .e 2 B .e C.ln22D .ln2解析:f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.1.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现如下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .2.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.考向一 导数的运算【例1】 求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ; (3)y =cos x e x ;(4)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2. 【解】 (1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x. (4)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2 =12x sin(4x +π)=-12x sin4x ,∴y ′=-12sin4x -12x ·4cos4x =-12sin4x -2x cos4x .(1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆.(1)函数y =sin xx 的导数为y ′=x cos x -sin x x 2. (2)已知f (x )=(x +1)(x +2)(x +a ),若f ′(-1)=2,则f ′(1)=26. (3)函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)-ln x ,则f ′(2)的值是-74.解析:(1)∵y =sin xx ,∴y ′=x (sin x )′-x ′sin x x 2=x cos x -sin xx 2.(2)f (x )=(x +1)(x +2)(x +a )=(x 2+3x +2)(x +a )=x 3+(a +3)x 2+(3a +2)x +2a ,所以f ′(x )=3x 2+2(a +3)x +3a +2,所以f ′(-1)=3×(-1)2+2(a +3)×(-1)+3a +2=2,解得a =3,所以f ′(x )=3x 2+12x +11,所以f ′(1)=3×12+12×1+11=26.(3)∵f (x )=x 2+3xf ′(2)-ln x ,∴f ′(x )=2x +3f ′(2)-1x ,令x =2,得f ′(2)=4+3f ′(2)-12,解得f ′(2)=-74. 考向二 导数的几何意义方向1 已知切点求切线方程【例2】 (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x【解析】 解法1:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)·(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.解法2:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.【答案】 D 方向2 求切点坐标【例3】 设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为________.【解析】 y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).【答案】 (1,1)方向3 未知切点的切线问题【例4】 (1)(2019·西安八校联考)曲线y =x 3上一点B 处的切线l 交x 轴于点A ,△OAB (O 为原点)是以∠A 为顶角的等腰三角形,则切线l 的倾斜角为( )A .30°B .45°C .60°D .120°(2)(2019·广州市调研测试)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为________.【解析】 (1)解法1:因为y =x 3,所以y ′=3x 2.设点B (x 0,x 30)(x 0≠0),则k l =3x 20,所以切线l 的方程为y -x 30=3x 20(x -x 0).取y =0,则x =23x 0,所以点A (23x 0,0).易知线段OB 的垂直平分线方程为y -x 302=-1x 20(x -x 02),根据线段OB 的垂直平分线过点A (23x 0,0)可得-x 302=-1x 20(23x 0-x 02),解得x 20=33,所以k l =3x 20=3,故切线l 的倾斜角为60°.故选C. 解法2:因为y =x 3,所以y ′=3x 2.设点B (x 0,x 30)(x 0≠0),则k l =3x 20,所以切线l 的方程为y -x 30=3x 20(x -x 0).取y =0,则x =23x 0,所以点A (23x 0,0).由|OA |=|AB |,得4x 209=x 209+x 60,又x 0≠0,所以x 20=33,所以k l =3x 20=3,故切线l 的倾斜角为60°.故选C.(2)由y =x ln x 得,y ′=ln x +1.设直线y =kx -2与曲线y =x ln x 相切于点P (x 0,y 0),则切线方程为y -y 0=(ln x 0+1)(x -x 0),又直线y =kx -2恒过点(0,-2),所以点(0,-2)在切线上,把(0,-2)以及y 0=x 0ln x 0代入切线方程,得x 0=2,故P (2,2ln2).把(2,2ln2)代入直线的方程y =kx -2,得k =1+ln2.【答案】 (1)C (2)1+ln21.与切线有关问题的处理策略(1)已知切点A (x 0,y 0)求斜率k ,即求该点处的导数值,k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .,(3)求过某点M (x 1,y 1)的切线方程时,需设出切点A (x 0,f (x 0)),则切线方程为y -f (x 0)=f ′(x 0)(x -x 0),再把点M (x 1,y 1)代入切线方程,求x 0.2.根据导数的几何意义求参数的值的思路一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.1.(方向1)已知函数f (x )是奇函数,当x <0时,f (x )=x ln(-x )+x +2,则曲线y =f (x )在x =1处的切线方程为( B )A .y =2x +3B .y =2x -3C .y =-2x +3D .y =-2x -3解析:设x >0,则-x <0,∵f (x )为奇函数,当x <0时,f (x )=x ln(-x )+x +2,∴f (x )=-f (-x )=-(-x ln x -x +2)=x ln x +x -2.∴f (1)=-1,f ′(x )=ln x +2.∴f ′(1)=2,∴曲线y =f (x )在x =1处的切线方程是y =2x -3.故选B.2.(方向2)设a ∈R ,函数f (x )=e x +a ·e -x 的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( A )A .ln2B .-ln2 C.ln22D .-ln22解析:对f (x )=e x +a ·e -x 求导得f ′(x )=e x -a e -x ,又f ′(x )是奇函数,故f ′(0)=1-a =0,解得a =1,故f ′(x )=e x -e -x .设切点坐标为(x 0,y 0),则f ′(x 0)=e x 0-e -x 0=32,得e x 0=2或e x 0=-12(舍去),得x 0=ln2.3.(方向3)经过原点(0,0)作函数f (x )=x 3+3x 2的图象的切线,则切线方程为y =0或9x +4y =0.解析:当(0,0)为切点时,f ′(0)=0,故切线方程为y =0;当(0,0)不为切点时,设切点为P (x 0,x 30+3x 20)(x 0≠0),则切线方程为y -(x 30+3x 20)=(x -x 0)(3x 20+6x 0),因为切线过原点,所以x 30+3x 20=3x 30+6x 20,所以x 0=-32,此时切线方程为9x +4y =0.典例 若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.【分析】 分别求出两个对应函数的导数,设出两个切点坐标,利用导数得到两个切点坐标之间的关系,进而求出切线斜率,求出b 的值.【解析】 解法1:求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2),则k =1x 1=1x 2+1,所以x 2+1=x 1. 又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1,所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln2,所以b =y 1-kx 1=2-ln2-1=1-ln2.解法2:设直线y =kx +b 与y =ln x +2的切点坐标为A (x 1,ln x 1+2),则在点A 处的切线方程为y -(ln x 1+2)=1x 1(x -x 1),即为y =1x 1x +ln x 1+1 ①,设直线y =kx +b 与y =ln(x +1)的切点坐标为B (x 2,ln(x 2+1)),则在点B 处的切线方程为y -ln(x 2+1)=1x 2+1(x -x 2),即为y =1x 2+1x +ln(x 2+1)-x 2x 2+1②,由①②表示同一直线,则⎩⎨⎧ x 1=x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,则b =ln 12+1=1-ln2.【答案】 1-ln2已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =8.解析:法1:∵y =x +ln x ,∴y ′=1+1x ,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1 消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.法2:同法1得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧ x 0=-12,a =8.。

高三理科数学一轮复习讲义,复习补习资料:第三章导数及其应用3.1变化率与导数导数的计算(原卷)

高三理科数学一轮复习讲义,复习补习资料:第三章导数及其应用3.1变化率与导数导数的计算(原卷)

§3.1 变化率与导数、导数的计算考纲展示► 1.了解导数概念的实际背景. 2.理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1x的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.考点1 导数的概念及运算法则1.导数的概念函数y =f (x )在x =x 0处的导数:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0Δy Δx=lim Δx →0fx 0+Δx -f x 0Δx为函数y=f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx=lim Δx →0________.函数f (x )的导函数:称函数f ′(x )= lim Δx →0f x +Δx -f xΔx为f (x )的导函数.2.基本初等函数的导数公式续表(1)[f (x )±g (x )]′=________; (2)[f (x )g (x )]′=________; (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x gx[g x 2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=________,即y 对x 的导数等于________的导数与________的导数的乘积.(1)[教材习题改编]在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10.则运动员的速度v =________,加速度a =________.(2)[教材习题改编]f (x )=cos x 在点⎝⎛⎭⎪⎫π2,0处的切线的倾斜角为________.导数运算中的两个误区:变量理解错误;运算法则用错. (1)若函数f (x )=2x 3+a 2,则f ′(x )=________. (2)函数y =ln xex 的导函数为__________.[典题1] 分别求出下列函数的导数: (1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .[点石成金] 导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.考点2 导数运算的应用[典题2] (1)[2018·吉林实验中学高三]函数f (x )的导函数f ′(x ),对∀x ∈R ,都有f ′(x )>f (x )成立,若f (ln 2)=2,则满足不等式f (x )>e x 的x 的范围是( )A .(1,+∞)B .(0,1)(2)已知f (x )=12x 2+2xf ′(2 016)+2 016ln x ,则f ′(2 016)=________.[答案] -2 017(3)在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.[点石成金] 在求导过程中,要仔细分析函数解析式的特点,紧扣法则,记准公式,预防运算错误.1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .02.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n (x )=f ′n -1(x ),n ∈N *,则f 2 017(x )=( )A.sin x B.-sin xC.cos x D.-cos x考点3 导数的几何意义导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点________处的________(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为________.曲线y=2x3-3x+5在点(2,15)处的切线的斜率为________.求曲线的切线方程:确定切点;求导数;得出斜率;写出切线方程.(2)若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=__________.[考情聚焦] 导数的几何意义是每年高考的必考内容,考查题型既有选择题、填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题.主要有以下几个命题角度:角度一求切线方程[典题3] (1)[2018·河北唐山模拟]曲线y=e x-ln x在点(1,e)处的切线方程为( ) A.(1-e)x-y+1=0B.(1-e)x-y-1=0C.(e-1)x-y+1=0D.(e-1)x-y-1=0(2)[2018·四川雅安模拟]设曲线y =e x+12ax 在点(0,1)处的切线与直线x +2y -1=0垂直,则实数a =( )A .3B .1C .2D .0(3)过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条 D .0条角度二 求切点坐标[典题4] 若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________.角度三 求参数的值[典题5] (1)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2(2)若函数f (x )=12x 2-ax +ln x 上存在垂直于y 轴的切线,则实数a 的取值范围是________.[点石成金] 1.注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.已知斜率k ,求切点A (x 0,f (x 0)),即解方程f ′(x 0)=k .3.(1)根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.(2)当切线方程中x (或y )的系数含有字母参数时,则切线恒过定点.[方法技巧] 1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;[f (x 0)]′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即[f (x 0)]′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. [易错防范] 1.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.利用公式求导时,要特别注意除法公式中分子的符号,防止与乘法公式混淆. 3.直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,但直线不一定是曲线的切线;同样,直线是曲线的切线,但直线与曲线可能有两个或两个以上的公共点.4.曲线未必在其切线的同侧,如曲线y =x 3在其过点(0,0)的切线y =0的两侧.真题演练集训1.[2018·大纲全国卷]曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .12.[2018·新课标全国卷Ⅱ]设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .33.[2019·新课标全国卷Ⅲ]已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.4.[2019·新课标全国卷Ⅱ]若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.5.[2018·陕西模拟]设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.课外拓展阅读求解导数问题最有效的两种解题方法方法一 公式法利用导数公式和运算法则求导数的方法为公式法,其基本的解题步骤是: 第一步,用公式,运用导数公式和运算法则对所给函数进行求导; 第二步,得结论; 第三步,解后反思.[典例1] [改编题]求函数y =sin 2⎝ ⎛⎭⎪⎫2x +π3的导数. 温馨提示当函数中既有复合函数求导,又有函数的四则运算时,要根据题中给出的表达式决定是先用四则运算还是先用复合函数求导法则,同时需要注意,复合函数的求导原则是从外层到内层进行,不要遗漏.方法二 构造法有些与函数有关的问题无法直接用导数来处理的,需要构造新的函数进行解决,这样的方法称为构造法,其基本的解题步骤是:第一步,构造函数,对要求的函数进行变形,或构造一个新的函数;第二步,运用公式,对变形后的函数或新构造的函数运用导数公式和运算法则进行求导; 第三步,得出结论.[典例2] 证明:当x >1时,有ln 2(x +1)>ln x · 技巧点拨要证明f (x )>g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )>0,则F (x )在(a ,b )内是增函数,同时F (a )≥0,则有x ∈(a ,b )时,F (x )>0,即证明了f (x )>g (x ).同理可证明f (x )<g (x ).但要注意,此法中所构造的函数F (x )在给定区间内应是单调的.混淆“在某点处的切线”与“过某点的切线”致误[典例3] 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a =( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7易错提醒1.对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式、求导法则及导数的计算原则要熟练掌握.2.对于已知的点,应先确定其是否为曲线的切点,进而选择相应的方法求解.。

高考数学一轮复习第三章3.1变化率与导数、导数的运算课件文

高考数学一轮复习第三章3.1变化率与导数、导数的运算课件文

思维启迪 解析 思维升华
题型分类·深度剖析
题型一
利用定义求函数的导数
【例 1】 利用导数的定义求 函数 f(x)=x3 在 x=x0 处的 导数,并求曲线 f(x)=x3 在 x=x0 处的切线与曲线 f(x)=x3 的交点.
思维启迪 解析 思维升华
掌握导数的定义,理解导 数的几何意义是解决本题 的关键.
( B)
A.f′(x0)
B.2f′(x0)
C.-2f′(x0)
D.0
解析
(2)lim h→0
fx0+h-fx0-h h
f(x)=sin x f(x)=cos x
f′(x)= cos x f′(x)= -sin x
基础知识·自主学习
要点梳理
知识回顾 理清教材
f(x)=ax (a>0) f′(x)= axln a
f(x)=ex
f′(x)= ex
f(x)=logax (a>0,且 a≠1)
1 f′(x)= xln a
f(x)=ln x
(2)若函数 y=f(x)在区间(a,b)内可导,且 x0∈(a,b),则lim h→0
fx0+h-h fx0-h的值为
()
A.f′(x0)
B.2f′(x0)
C.-2f′(x0)
D.0
解析 (1)∵Δy=(x+Δx)+x+1Δx-x-1x =Δx+x+1Δx-1x=Δx+xx-+ΔΔxx. ∴ΔΔyx=1-xx+1 Δx.y′|x=1=Δlixm→0 ΔΔyx=0.
x3-x30 x-x0
= lim x x0
(x2+xx0+x20)
=3x20.
曲线 f(x)=x3 在 x=x0 处的切 线方程为 y-x03=3x20·(x-x0),

新高考数学一轮总复习课件第三章第一节变化率与导数、导数的计算

新高考数学一轮总复习课件第三章第一节变化率与导数、导数的计算

________.
【解析】(1)选 B.因为 f(x)=x4-2x3,所以 f′(x)=4x3-6x2,所以 f(1)=
-1,f′(1)=-2,因此,所求切线的方程为 y+1=-2(x-1),即 y=-2x
+1.
(2)选 A.对 y=ex 求导得 y′=ex,令 x=0,得曲线 y=ex 在点(0,1)处的切线
【解析】选 C.因为函数关系式是 h(t)=10-4.9t2+8t, 所以 h′(t)=-9.8t+8,所以在 t=0.5 秒的瞬时速度为-9.8×0.5+8= 3.1(米/秒).
3.函数 y=cos (3x-2)的导数是__________.
【解析】设 y=cos u,u=3x-2. 则 y′x=y′u·u′x=(cos u)′(3x-2)′=-3sin u=-3sin (3x-2). 答案:y′=-3sin (3x-2)
1 C.-cos2x
1 D.-sin2x
(3)函数 f(x)= 2x+1 的导函数 f′(x)=( )
A.2 2x+1
B.
2 2x+1
C.2
1 2x+1
D.
1 2x+1
【解析】(1)选 C.由导数公式易得 A,B,D 错误,注意 A 选项中的α为常数,
所以(sinα)′=0.
cos x (2)选 D.因为 f(x)=sin x ,
5.复合函数的求导法则
复合函数y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系为y′x=_y_′__u·__u_′__x_.
【基本技能小测】
1.若函数 f(x)=2x2-1 的图象上一点(1,1)及邻近一点(1+Δx,1+Δy),
Δy 则Δx 等于( )
A.4

2020版高考数学一轮复习第3章导数及其应用1第1讲变化率与导数、导数的计算教案理

2020版高考数学一轮复习第3章导数及其应用1第1讲变化率与导数、导数的计算教案理

第1讲变化率与导数、导数的计算知识点考纲下载导数概念及其几何意义、导数的运算了解导数概念的实际背景,理解导数的几何意义.能根据导数定义求函数y=C(C为常数),y=x,y=x2,y=x3,y=1x,y=x的导数.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.导数在研究函数中的应用了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).会利用导数解决某些实际问题.定积分与微积分基本定理了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.了解微积分基本定理的含义.1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率lim Δx→0f(x0+Δx)-f(x0)Δx=limΔx→0ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=f(x0+Δx)-f(x0)Δx.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0).(3)函数f (x )的导函数 称函数f ′(x )=limΔx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x(a >0且a ≠1)f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x(x >0,a >0且a ≠1)f ′(x )=1x ln af (x )=ln x(x >0)f ′(x )=1x(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.判断正误(正确的打“√”,错误的打“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)×(教材习题改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B .y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . (2018·开封市第一次模拟)已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-2 B .1 C .3D .4解析:选C .对于y =x 3+mx +n ,y ′=3x 2+m ,所以k =3+m ,又k +1=3,1+m +n =3,可解得n =3.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.解析:因为f ′(x )=a (l +ln x ), 所以f ′(1)=a =3. 答案:3(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为__________.解析:因为y =x 2+1x ,所以y ′=2x -1x2,所以y ′|x =1=2-1=1,所以所求切线方程为y-2=x -1,即x -y +1=0. 答案:x -y +1=0导数的计算[典例引领]求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =sin x2(1-2cos 2x4);(3)y =3x e x-2x +e ; (4)y =ln x x 2+1; (5)y =ln 2x -12x +1.【解】 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)因为y =sin x 2(-cos x 2)=-12sinx ,所以y ′=(-12sin x )′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x)′ =3x e x ln 3+3x e x -2xln 2 =(ln 3+1)·(3e)x -2xln 2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln xx (x 2+1)2.(5)y ′=(ln 2x -12x +1)′=[ln(2x -1)-ln(2x +1)]′=[ln(2x -1)]′-[ln(2x +1)]′=12x -1·(2x -1)′-12x +1·(2x +1)′=22x -1-22x +1=44x 2-1.[通关练习]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2x ·f ′(2),则f ′(5)=( ) A .2 B .4 C .6D .8解析:选C.f ′(x )=6x +2f ′(2), 令x =2,得f ′(2)=-12.再令x =5,得f ′(5)=6×5+2f ′(2)=30-24=6. 2.求下列函数的导数:(1)y =x n e x ;(2)y =cos x sin x ;(3)y =e xln x ;(4)y =(1+sin x )2. 解:(1)y ′=nxn -1e x+x n e x =xn -1e x(n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x . (3)y ′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫1x +ln x .(4)y ′=2(1+sin x )·(1+sin x )′=2(1+sin x )·cos x .导数的几何意义(高频考点)导数的几何意义是每年高考的必考内容,考查题型既有选择题也有填空题,也常出现在解答题的第(1)问中,难度偏小.高考对导数几何意义的考查主要有以下三个命题角度: (1)求切线方程;(2)已知切线方程(或斜率)求切点坐标; (3)已知切线方程求参数值.[典例引领]角度一 求切线方程(1)(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.(2)曲线f (x )=x 3-2x 2+2(12≤x ≤52),过点P (2,0)的切线方程为________.【解析】 (1)因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x -1),令x =0,得y =1,即直线l 在y 轴上的截距为1.(2)因为f (2)=23-2×22+2=2≠0,所以点P (2,0)不在曲线f (x )=x 3-2x 2+2上. 设切点坐标为(x 0,y 0),则12≤x 0≤52.且⎩⎪⎨⎪⎧y 0=x 30-2x 20+2,0-y 02-x 0=f ′(x 0),所以⎩⎪⎨⎪⎧y 0=x 30-2x 20+2,-y 02-x 0=3x 20-4x 0,消去y ,整理得(x 0-1)(x 20-3x 0+1)=0,解得x 0=1或x 0=3+52(舍去)或x 0=3-52(舍去),所以y 0=1,f ′(x 0)=-1,所以所求的切线方程为y -1=-(x -1), 即y =-x +2.【答案】 (1)1 (2)y =-x +2角度二 已知切线方程(或斜率)求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率为k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为________.解析:设切点为(x 0,y 0), 因为y ′=ln x +1, 由题意,得ln x 0+1=1, 所以ln x 0=0,x 0=1, 即点P (1,0),所以切线方程为y =x -1, 即x -y -1=0. 答案:x -y -1=0角度三 已知切线方程求参数值(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线 y =ln(x +1)的切线,则b =________.【解析】 求得(ln x +2)′=1x , [ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则 k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1,所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. 【答案】 1-ln 2(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率; ②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0). (2)求曲线f (x ),g (x )的公切线l 的方程的步骤①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值; ③求切线方程,把所求参数的值代入曲线的切线方程中即可. (3)求曲线的切线方程需注意三点①当曲线y =f (x )在点P (x 0,f (x 0))处的切线垂直于x 轴(此时导数不存在)时,切线方程为x =x 0;②当切点坐标不知道时,应首先设出切点坐标,再求解;③应正确区分“求在曲线点P 处的切线方程”和“求过曲线点P 处的切线方程”.[通关练习]1.(2018·云南省第一次统一检测)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4. 答案:42.(2018·沈阳市教学质量检测(一))设函数f (x )=g (x2)+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为________. 解析:由已知得 g ′(1)=-9,g (1)=-8,又f ′(x )=12 g ′(x 2)+2x ,所以f ′(2)=12g ′(1)+4=-92+4=-12,f (2)=g (1)+4=-4,所以所求切线方程为y +4=-12(x -2),即x +2y +6=0.答案:x +2y +6=03.若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.解析:设直线l 与曲线y =e x 的切点为(x 0,e x0),直线l 与曲线y =-14x 2的切点为(x 1,-x 214),因为y =e x在点(x 0,e x0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点(x 1,-x 214)处的切线的斜率为y ′|x =x 1=(-x 2)|x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x0+e x 0或y=-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x=-x 12,-x 0e x 0+e x=x214,所以e x0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1. 答案:y =x +1导数的几何意义与其他知识交汇[典例引领]抛物线y =x 2在x =1处的切线与两坐标轴围成的三角形区域为D (包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是________. 【解析】 由于y ′=2x ,所以抛物线在x =1处的切线方程为y -1=2(x -1),即y =2x -1.画出可行域(如图).设x +2y =z ,则y =-12x +12z ,可知当直线y =-12x +12z 经过点A ⎝ ⎛⎭⎪⎫12,0,B (0,-1)时,z分别取到最大值和最小值,此时最大值z ma x =12,最小值z min =-2,故取值范围是⎣⎢⎡⎦⎥⎤-2,12.【答案】 ⎣⎢⎡⎦⎥⎤-2,12(1)本题以y =x 2在x =1处的切线问题为条件,利用导数的几何意义求得切线方程,构造出求x +2y 的取值范围的可行域,充分体现了导数与线性规划的交汇. (2)利用导函数的特性,在求解有关奇(偶)函数问题中,发挥出奇妙的作用. (3)导数还可以与数列、向量、解析几何等交汇.[通关练习]1.曲线f (x )=-x 3+3x 2在点(1,f (1))处的切线截圆x 2+(y +1)2=4所得的弦长为( ) A .4 B .2 2 C .2D. 2解析:选A.因为f ′(x )=-3x 2+6x ,则在点(1,f (1))处的切线的斜率k =6-3=3,又f (1)=2,故切线方程为y -2=3(x -1),即3x -y -1=0.因为圆心C (0,-1)到直线3x -y -1=0的距离d =0,所以直线3x -y -1=0截圆x 2+(y +1)2=4所得的弦长就是该圆的直径4,故选A . 2.对正整数n ,设曲线y =(2-x )x n在x =3处的切线与y 轴交点的纵坐标为a n ,则数列{a nn +2}的前n 项和等于________.解析:因为y ′=2nx n -1-(n +1)x n.所以曲线y =(2-x )x n 在x =3处的切线的斜率为(-13n -1)3n.所以切线方程为y =(-13n -1)3n (x -3)-3n.令x =0,得a n =(n +2)·3n,所以a nn +2=3n. 所以数列{a nn +2}的前n 项和为31+32+33+ (3)=3(1-3n)1-3=3n +1-32.答案:3n +1-32导数运算的技巧(1)要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利用运算法则求导数.(2)对于不具备求导法则结构形式的,要适当恒等变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误.对数函数的真数是根式或者分式时,可用对数的运算性质将真数转化为有理式或整式,然后再求解比较方便;当函 数表达式含有三角函数时,可优先考虑利用三角公式进行化简后再求导.易误防范(1)利用公式求导时要特别注意不要将幂函数的求导公式(x n)′=nx n -1与指数函数的求导公式(a x)′=a xln a 混淆.(2)求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.1.(2018·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( ) A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2解析:选A.因为y =f (x )=x sin x ,所以f ′(x )=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sin π+πcos π=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.2.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B .f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.3. 函数g (x )=x 3+52x 2+3ln x +b (b ∈R )在x =1处的切线过点(0,-5),则b 的值为( )A.72B.52C.32D.12解析:选B.当x =1时,g (1)=1+52+b =72+b ,又g ′(x )=3x 2+5x +3x,所以切线斜率k =g ′(1)=3+5+3=11, 从而切线方程为y =11x -5,由于点⎝ ⎛⎭⎪⎫1,72+b 在切线上,所以72+b =11-5, 解之得b =52.故选B.4.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .3D .4解析:选B.由题图可知曲线y =f (x )在x =3处切线的斜率为-13,即f ′(3)=-13,又g (x )=xf (x ),g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.(2018·广州市综合测试(一))设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A .(0,0) B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D.由题易知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率为f ′(x 0)=3x 2+2ax 0,又切线方程为x +y =0,所以x 0≠0,且⎩⎪⎨⎪⎧3x 20+2ax 0=-1x 0+x 30+ax 20=0,解得a =±2,x 0=-a2.所以当⎩⎪⎨⎪⎧x 0=1a =-2时,点P的坐标为(1,-1);当⎩⎪⎨⎪⎧x 0=-1a =2时,点P 的坐标为(-1,1),故选D.6.若f (x )=(x 2+2x -1)e2-x,则f ′(x )=________.解析:f ′(x )=(x 2+2x -1)′e 2-x+(x 2+2x -1)(e2-x)′=(2x +2)e 2-x+(x 2+2x -1)·(-e 2-x)=(3-x 2)e2-x.答案:(3-x 2)e2-x7.(2018·昆明市教学质量检测)若函数f (x )=2cos(ωx +π4)的图象在x =0处的切线方程为y =-3x +1,则ω=________.解析:由题意,得f ′(x )=-2ωsin(ωx +π4),所以f ′(0)=-2ωsin π4=-ω=-3,所以ω=3. 答案:38.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a=-13x 3(x >0),故a ∈(-∞,0).答案:(-∞,0) 9.求下列函数的导数: (1)y =(3x 3-4x )(2x +1); (2)y =x +cos xx +sin x;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2; (4)y =ln (2x +3)x 2+1.解:(1)法一:因为y =(3x 3-4x )(2x +1)=6x 4+3x 3-8x 2-4x ,所以y ′=24x 3+9x 2-16x -4.法二:y ′=(3x 3-4x )′(2x +1)+(3x 3-4x )(2x +1)′=(9x 2-4)(2x +1)+(3x 3-4x )·2=24x 3+9x 2-16x -4.(2)y ′=(x +cos x )′(x +sin x )-(x +cos x )(x +sin x )′(x +sin x )2=(1-sin x )(x +sin x )-(x +cos x )(1+cos x )(x +sin x )2=-x cos x -x sin x +sin x -cos x -1(x +sin x )2. (3)因为y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2 =12x sin(4x +π)=-12x sin 4x , 所以y ′=-12sin 4x -12x ·4·cos 4x=-12sin 4x -2x cos 4x .(4)y ′=[ln (2x +3)]′(x 2+1)-(x 2+1)′ln (2x +3)(x 2+1)2=(2x +3)′2x +3·(x 2+1)-2x ln (2x +3)(x 2+1)2=2(x 2+1)-2x (2x +3)ln (2x +3)(2x +3)(x 2+1)2. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1. 所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.1.(2018·成都市第二次诊断性检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( ) A .(-12,+∞)B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).2.过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条D .0条解析:选 A.由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,利用点斜式方程可知切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令z =2x 30-6x 20+7,则z ′=6x 20-12x 0.由z ′=0得x 0=0或x 0=2.当x 0=0时,z =7>0;x 0=2时,z =-1<0.所以方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条.3.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则过切点且与该切线垂直的直线方程为__________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ). 则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1. 解得x 0=-1,a =-12,切点坐标为(-1,0).所以过切点且与该切线垂直的直线方程为y =-1·(x +1),即x +y +1=0.答案:x +y +1=04.(2018·山东青岛自主诊断)函数y =f (x )图象上不同两点A (x 1,y 1),B (x 2,y 2)处的切线的斜率分别是k A ,k B ,规定K (A ,B )=|k A -k B ||AB |(|AB |为线段AB 的长度)叫作曲线y =f (x )在点A 与点B 之间的“近似曲率”.设曲线y =1x上两点A ⎝ ⎛⎭⎪⎫a ,1a ,B ⎝ ⎛⎭⎪⎫1a ,a (a >0且a ≠1),若m ·K (A ,B )>1恒成立,则实数m 的取值范围是______.解析:因为y ′=-1x2,所以k A =-1a2,k B =-a 2.又|AB |=⎝ ⎛⎭⎪⎫a -1a 2+⎝ ⎛⎭⎪⎫1a -a 2=2⎪⎪⎪⎪⎪⎪1a -a , 所以K (A ,B )=|k A -k B ||AB |=|a 2-1a 2|2|1a-a |=1a +a 2,因为a >0且a ≠1,所以a +1a >2a ·1a =2,即1K (A ,B )<22.由m ·K (A ,B )>1恒成立得,m >1K (A ,B ),即m ≥22.答案:⎣⎢⎡⎭⎪⎫22,+∞ 5.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值. 解:对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. 所以(2x 0-2)·(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0,① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b , ⇒2x 20-(a +2)x 0+2-b =0.②由①②消去x 0,可得a +b =52.6.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)设点P 的坐标为(x 1,y 1), 则y 1=kx 1,①y 1=-x 21+92x 1-4,②①代入②得,x 21+⎝ ⎛⎭⎪⎫k -92x 1+4=0.因为P 为切点,所以Δ=⎝ ⎛⎭⎪⎫k -922-16=0,得k =172或k =12. 当k =172时,x 1=-2,y 1=-17.当k =12时,x 1=2,y 1=1.因为P 在第一象限, 所以所求的斜率k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.③ 将③代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4.。

2020版高考数学一轮复习第三章第一节变化率与导数、导数的计算课件文

2020版高考数学一轮复习第三章第一节变化率与导数、导数的计算课件文

▶提醒 对解析式中含有导数值的函数,即解析式类似f(x)=f '(x0)g(x)+h
(x)(x0为常数)的函数,解决这类问题的关键是明确f '(x0)是常数,其导数值 为0.因此先求导数f '(x),令x=x0,即可得到f '(x0)的值,进而得到函数解析 式,求得所求导数值.
1-1 f(x)=x(2 018+ln x),若f '(x0)=2 019,则x0等于 ( B )
命题方向三 求参数的值
典例4 (2019河北唐山质检)已知直线y=kx+1与曲线y=x3+ax+b相切于 点A(1,3),则b的值为 ( A.3 B.-3 C.5 ) D.-5
答案 A
解析 由题意知,3=k+1,∴k=2,又(x +ax+b)'|x=1=(3x +a)|x=1=3+a,∴3+a=2, ∴a=-1,∴3=1-1+b,即b=3.
1 1 (2)由题图可知曲线y=f(x)在x=3处切线的斜率等于- ,∴f '(3)=- . 3 3
函数y=f(x)从x1到x2的平均变化率为①
y x
.
f ( x2 ) f ( x1 ) x2 x1
,若Δx=x2-x1,Δy=
f(x2)-f(x1),则平均变化率可表示为②
2.函数y=f(x)在x=x0处的导数
(1)定义
y f ( x0 x) f ( x0 ) lim = lim 称函数y=f(x)在x=x0处的瞬时变化率 为函数y x0 x x0 x y lim = |x x0 ,即f '(x0)= lim =f(x)在x=x0处的导数,记作f '(x0)或y' x0 x x0 f ( x0 x) f ( x0 ) x .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高三理科数学一轮复习讲义第三章3.1《变化率与导数、导数的计算》最新考纲1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.知识梳理1.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0limx ∆→f (x 0+Δx )-f (x 0)Δx=limx ∆→Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx.(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=0lim x ∆→f (x +Δx )-f (x )Δx 称为函数y =f (x )在开区间内的导函数.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x α(α∈Q *)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1xf(x)=log a x(a>0,a≠1)f′(x)=1x ln a 4.导数的运算法则若f′(x),g′(x)存在,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)f(x)g(x)′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′. [微点提醒]1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,且(f(x0))′=0.2.1f(x)′=-f′(x)[f(x)]2.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.()(2)函数f(x)=sin(-x)的导数f′(x)=cos x.()(3)求f′(x0)时,可先求f(x0),再求f′(x0).()(4)曲线的切线与曲线不一定只有一个公共点.()解析(1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错.(2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错.(3)求f′(x0)时,应先求f′(x),再代入求值,(3)错.答案(1)×(2)×(3)×(4)√2.(选修2-2P19B2改编)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.-9B.-3C.9D.15解析因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y-12=3(x -1).令x =0,得y =9.答案C3.(选修2-2P3例题改编)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________m/s ,加速度a =______m/s 2.解析v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8.答案-9.8t +6.5-9.84.(2019·保定质检)已知函数f (x )=x (2018+ln x ),若f ′(x 0)=2019,则x 0等于()A.e 2B.1C.ln 2D.e解析f ′(x )=2018+ln x +x ×1x=2019+ln x .由f ′(x 0)=2019,得2019+ln x 0=2019,则ln x 0=0,解得x 0=1.答案B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析由题意得f ′(x )=e x ln x +e x ·1x ,则f ′(1)=e.答案e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析设y =f (x ),则f ′(x )=2x -1x2,所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1),即y =x +1.答案y =x +1考点一导数的运算多维探究角度1根据求导法则求函数的导数【例1-1】分别求下列函数的导数:(1)y =e x ln x ;(2)y =x x 2+1x +1x 3;(3)f (x )=ln 1+2x .解(1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +ex x=e x ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3.(3)因为y =ln1+2x =12ln (1+2x ),所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2抽象函数的导数计算【例1-2】(2019·福州联考)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x,则f (1)=()A.-eB.2C.-2D.e解析由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2.答案B规律方法1.求函数的导数要准确地把函数分割成基本初等函数的和、差、积、商,再利用运算法则求导.2.复合函数求导,应由外到内逐层求导,必要时要进行换元.3.抽象函数求导,恰当赋值是关键,然后活用方程思想求解.【训练1】(1)若y =x -cos x 2sin x2,则y ′=________.(2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________.解析(1)因为y =x -12sin x ,所以y ′=x -12sin x ′=x ′-12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4.答案(1)1-12cos x(2)-4考点二导数的几何意义多维探究角度1求切线方程【例2-1】(2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为()A.y =-2xB.y =-xC.y =2xD.y =x解析因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .答案D角度2求切点坐标【例2-2】(1)(2019·郑州月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为()A.3B.2C.1D.12(2)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析(1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3.(2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1).答案(1)A(2)(1,1)角度3求参数的值或取值范围【例2-3】(1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是()A.(-∞,2]B.(-∞,2)C.(2,+∞)D.(0,+∞)(2)(2019·东北三省四校联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b=________.解析(1)由题意知f ′(x )=2在(0,+∞)上有解.∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2).(2)f ′(x )=1-ax2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有1-a =2,2a +b =5,解得a =-1,b =7,∴a -b =-1-7=-8.答案(1)B(2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】(1)(2018·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为()A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析(1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax .根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组x 30+ax 20=-x 0,①3x 20+2ax 0=-1,②解得x 0=1,a =-2或x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1.∴点P 的坐标为(1,-1)或(-1,1).(2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x .答案(1)D(2)y =2x[思维升华]1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解.[易错防范]1.求导常见易错点:①公式(x n)′=nx n-1与(a x)′=a x ln a相互混淆;②公式中“+”“-”号记混,如出现如下错误:f(x)g(x)′=f′(x)g(x)+f(x)g′(x)[g(x)]2,(cos x)′=sin x;③复合函数求导分不清内、外层函数.2.求切线方程时,把“过点切线”问题误认为“在点切线”问题.基础巩固题组(建议用时:35分钟)一、选择题1.下列求导数的运算中错误的是()A.(3x)′=3x ln3B.(x2ln x)′=2x ln x+xC.cos xx′=x sin x-cos xx2D.(sin x·cos x)′=cos2x解析因为cos xx′=-x sin x-cos xx2,C项错误.答案C2.(2018·日照质检)已知f(x)=x ln x,若f′(x0)=2,则x0等于()A.e2B.eC.ln22D.ln2解析f(x)的定义域为(0,+∞),f′(x)=ln x+1,由f′(x0)=2,即ln x0+1=2,解得x0=e.答案B3.函数y=x3的图象在原点处的切线方程为()A.y=xB.x=0C.y=0D.不存在解析函数y=x3的导数为y′=3x2,则在原点处的切线斜率为0,所以在原点处的切线方程为y-0=0(x-0),即y=0.答案C4.一质点沿直线运动,如果由始点起经过t秒后的位移为s=13t3-3t2+8t,那么速度为零的时刻是() A.1秒末 B.1秒末和2秒末C.4秒末D.2秒末和4秒末解析s′(t)=t2-6t+8,由导数的定义知v=s′(t),令s′(t)=0,得t=2或4,即2秒末和4秒末的速度为零.答案D5.(2019·合肥一模)函数f(x)=x-g(x)的图象在点x=2处的切线方程是y=-x-1,则g(2)+g′(2)=()A.7B.4C.0D.-4解析∵f(x)=x-g(x),∴f′(x)=1-g′(x),又由题意知f(2)=-3,f′(2)=-1,∴g(2)+g′(2)=2-f(2)+1-f′(2)=7.答案A6.已知e为自然对数的底数,曲线y=a e x+x在点(1,a e+1)处的切线与直线2e x-y-1=0平行,则实数a =()A.e-1e B.2e-1eC.e-12eD.2e-12e解析∵y′=a e x+1,∴在点(1,a e+1)处的切线的斜率为y′|x=1=a e+1,又切线与直线2e x-y-1=0平行,∴a e+1=2e,解得a=2e-1 e.答案B7.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()解析由y=f′(x)的图象知,y=f′(x)在(0,+∞)上是单调递减的,说明函数y=f(x)的切线的斜率在(0,+∞)上也是单调递减的,故可排除A,C;又由图象知y=f′(x)与y=g′(x)的图象在x=x0处相交,说明y=f(x)与y=g(x)的图象在x=x0处的切线的斜率相同,故可排除B.故选D.答案D8.(2019·广州调研)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为()A.ln2B.1C.1-ln2D.1+ln2解析由y=x ln x得y′=ln x+1,设切点为(x0,y0),则k=ln x0+1,∵切点(x0,y0)(x0>0)既在曲线y=x ln x上又在直线y=kx-2上,∴y0=kx0-2,y0=x0ln x0,∴kx0-2=x0ln x0,∴k=ln x0+2x0,则ln x0+2x0=ln x0+1,∴x0=2,∴k=ln2+1.答案D二、填空题9.已知曲线f(x)=2x2+1在点M(x0,f(x0))处的瞬时变化率为-8,则点M的坐标为________.解析由题意得f′(x)=4x,令4x0=-8,则x0=-2,∴f(x0)=9,∴点M的坐标是(-2,9).答案(-2,9)10.已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为________.解析f(1)=a,切点为(1,a).f′(x)=a-1x,则切线的斜率为f′(1)=a-1,切线方程为:y-a=(a-1)(x-1),令x=0得出y=1,故l在y轴上的截距为1.答案111.已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.解析因为f(x)=x2+3xf′(2)+ln x,所以f ′(x )=2x +3f ′(2)+1x,所以f ′(2)=4+3f ′(2)+12=3f ′(2)+92,所以f ′(2)=-94.答案-9412.已知函数y =f (x )的图象在点(2,f (2))处的切线方程为y =2x -1,则曲线g (x )=x 2+f (x )在点(2,g (2))处的切线方程为________________.解析由题意,知f (2)=2×2-1=3,∴g (2)=4+3=7,∵g ′(x )=2x +f ′(x ),f ′(2)=2,∴g ′(2)=2×2+2=6,∴曲线g (x )=x 2+f (x )在点(2,g (2))处的切线方程为y -7=6(x -2),即6x -y -5=0.答案6x -y -5=0能力提升题组(建议用时:15分钟)13.(2018·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =()A.1B.0C.-1D.-2解析由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a-b =1-1a 2(x-a ),将(0,0)代入得-a -1a -b =1-1a 2(-a ),故b =-2a ,故ab =-2.答案D14.(2019·西安一模)定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x )=[f ′(x )]′.定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x )在区间D 上为凹函数.已知函数f (x )=x 3-32x 2+1在区间D 上为凹函数,则x 的取值范围是________.解析因为f (x )=x 3-32x 2+1,因为f ′(x )=3x 2-3x ,f ″(x )=6x -3,令f ″(x )>0,解得x >12,故x 的取值范围是12,+∞.答案12,+∞15.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________.第11页(共11页)解析设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离,即为|1-0|1+1=22.答案2216.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2(当且仅当x =1时取等号).答案[2,+∞)。

相关文档
最新文档