求一个小数的近似数
求一个小数的近似数

2.04
十百 分分 位位
≈ 2.0
(保留一位小数) 精确到十分位
求整数的近似数,可以用 “四舍五入”法。求小数的近似 数,也可以用“四舍五入”法。
想:要保留整数,就要省略个
位后面的尾数。看十分位,十分位上 不满5,直接舍去。
2.04
十百 分分 位位
1、求下面的小数的近似数。 (1)0.256 (2)3.72 12.006 0.58 1.0987(精确到百分位) 9.0548(精确到十分位)
2、按要求写出表中小数的近似数
保留整数 9.956
0.905
精确到 十 分 位
保 留 两位小数
10
1 1
10.0
0.9 1.5
9.96
0.91 1.46
≈ 2
(保留整数) 精确到个位
想:要保留一位小数,就要省略十分位后面的 尾数。看百分位,百分位上满5,省略尾数后, 向十分位进1。
0 保留一位小数) 0.984 ≈1. ____(
大于5,向前一位进1。
1 0.984≈____(保留整数 )
十 分 十分位上满5,就向个位进1 位
议一议:求得的近似数1.0和1一样吗?
1.463
求下面小数的 近似数。 (1) 1.956 20.098 (保留两位小数)
(2)
(3)
7.816
1.234
13.974
25.519
(保留一位小数)
(保留整数)
一个两位小数,保留一位小数的近似数 是10.0,在“四舍五入”前,这个数最大 可能是多少?最小可能是多少?
同学们,今天你 有何收获?
四年级数学下册
小学数学四年级《求一个小数的近似数》优质教学设计教案

求一个小数的近似数(一)一、教学目标1.知识与技能:掌握用四舍五入的方法求小数的近似数的方法。
并能利用所学知识解决一些实际问题。
2.过程与方法:学生利用已有知识和迁移类推的方法,探索用”四舍五入:法求小数近似数的方法。
培养学生的探索能力、迁移能力和抽象概括能力。
3.情感态度价值观:感受近似数在生活中的应用。
培养学生细致、认真的学习习惯。
二、教学重点求小数近似数的方法。
三、教学难点对精确度的理解及对四舍五入后小数末尾“0”的处理。
四、教学具准备课件五、教学过程(一)创设情境引入课件出示:小明妈妈昨天去菜市场买水果,鸭梨1.25元1斤,挑了几个鸭梨,称得的重量是3.7斤,商贩用计算器算得的结果是4.625,妈妈应付给商贩多少元?生:4.63元师:为什么要付4.63元?看来在生活中解决一些问题时,需要求一个小数的近似值,今天我们就来学习求小数的近似值。
(二)教学求近似值的方法1.学习保留两位小数的方法(1)刚才你们是怎样求出4.625的近似值的?谁再来讲一讲你的方法。
用四舍五入的方法,4.625保留两位小数,看千分位的5,比4大,就向百分位进1。
4.625 4.63(2)师小结:求一个小数的近似数一般都要用“四舍五入法”(3)巩固:将下面小数四舍五入保留两位小数:2.582 12.807 0.849(4)怎样将一个小数四舍五入保留两位小数?看千分位上的数,千分位上的数大于4,就向百分位进1;千分位上的数小于或等于4,就将百分位后面的数舍去。
2.自主探究保留一位小数的方法(1)但是最后小商贩说零分钱不要了,妈妈又该付他多少元呢?学生回答:将4.625保留一位小数,看百分位的2,比4小就舍去。
4.625≈4.6(2)巩固。
将下面小数四舍五入保留一位小数:2.582 12.807 0.849(3)说一说怎样将一个小数四舍五入保留一位小数?看百分位上的数,百分位上的数大于4,就向十分位进1;百分位上的数小于或等于4,就将十分位后面的数舍去。
求一个小数的近似数

保留一位小数(0.995求完近似数后约等于1.0,1.0为一位小数) 0.995 ≈1.0就是将0.995 精确到十分位(1.0的精确到了十分位) 省略十分位后面的( ≈1.0,十分位后面的都被省略了) Ps:因此我们看十分位后面的十分位上的9 0.995 ≈1.00就是将0.995 精确到百分位(1.00的精确到了百分位) 省略十分位后面的( ≈1.00,百分位后面的都被省略了) Ps:因此我们看百分位后面的千分位上的5
一个三位小数,保留一位小数是4.5,ห้องสมุดไป่ตู้个数最大是_______,最小是_____。
分析:原数三位小数,保 留一位小数, 我们要看小数部分的第二 位即百分位
●
≈ 4.5
5 9
千分位最大能填9 0——4
“四舍”可以约等于4.5, ● (原数比近似数大) (四舍那么百分位上为0到4) 四舍 “五入”可以约等于4.5, 十分位和整数肯定是4.5 (原数比近似数小) 推理见右,最大为4.549, ● 最小为4.450 (四舍那么百分位上为5到9) 五入 十分位和整数肯定是4.4
4 4
4
0
千分位最小能填0
5——9
保留两位小数(0.995求完近似数后约等于1.00,1.00为两位小数)
二、例题
例1
5.456 ≈ 5.456 ≈
1
5 ____ (保留整数)
分析:看整数后一位的十分位上的4 <5
求一个小数的近似数

2
四舍五入法:
四舍:不满“ ” 四舍:不满“5”(0,1,2,3,4)直接舍去 ) 五入:满“5”(5,6,7,8,9)舍去向前一 五入: ” ) 位进“ ” 位进“1”
青 衣
地球到太阳的距离是1.496亿千米。 精确到个位、十分位、百分位求出它的近似数各是 多少? 精确到个位:1.496亿千米≈ 1亿千米 精确到十分位:1.496亿千米≈ 1.5亿千米 精确到百分位:1.496亿千米≈ 1.50亿千米
青 衣 例1
议一 议
练习
练习 二
练习 1.求下面各数的近似数。 求下面各数的近似数。 求下面各数的近似数 3.781 ≈3.8 0.0726 ≈0.07 (保留一位小数) 保留一位小数) ( 精确到百分位)
2.在下表的空格里按照要求填出近似数
保 留整 数 4.380两位小数
保 留 三位小数
4
4.4
定义
4.38
4.381
按照“四舍五入法” 按照“四舍五入法”在下表中填写出 各数的近似值。 各数的近似值。
保 留 整 数 12.9542 3.0576 40.1237 青 65.3849 衣
保留一 位小数
保留两 位小数
保留三 位小数
有一个三位小数精确到百分位是3.65,原 原 有一个三位小数精确到百分位是 来的小数可能是( )。最大是 最大是( 来的小数可能是( )。最大是( )。 最小是( 最小是( )。 下面的数可能在哪两个整数之间?最接近 下面的数可能在哪两个整数之间? 哪个整数? 哪个整数? 4.83
青 衣
议一议: 议一议: 末尾的0可以去掉吗 (1)1.50末尾的 可以去掉吗?为 ) 末尾的 可以去掉吗? 什么? 什么? 2)求得的近似数1.50和1.5比较 比较, (2)求得的近似数1.50和1.5比较, 哪一个更精确一些,为什么? 哪一个更精确一些,为什么?
【精品】求一个小数的近似数讲义(5)(可编辑

求一个小数的近似数讲义(5)------------------------------------------作者------------------------------------------日期【人教版小四】:小数的意义及其性质适用学科数学适用年级四年级知识点求一个小数的近似数教学目标复习掌握小数单位的换算;学会求一个小数的近似数。
教学重点求小数的近似数教学难点求小数的近似数教学过程课前检测1、把10.258的小数点先向右移动两位,再向左移动三位,这个数是,原数就到它的.2、下面说法错误的是()A.0.8和0.80大小意义都相同B.7.4吨>7吨4千克C.3个是0.003D.2.56保留一位小数是2.63、(1)2.45245。
(2)30.04。
(3)一个小数的小数点先向右移动三位,再向左移动一位,这个小数倍。
4、单位变换7千米=( )米 400厘米=( ) 米6000千克=( )吨 3吨500千克=( )千克3.600千米=( )千米( )米 0.15千克=()克知识讲解一、填空题1、单位换算3.7平方分米=()平方毫米 5.80元=()元()角2吨100千克=( )吨 5千克700克=( )千克( )吨( )千克=4.08吨 9分米6厘米=( )米7.05米=()米()厘米 5.45千克=( )千克( )克3千米50米=( )千米 5.6公顷=()平方千米=()平方米3千克500克=( )千克 ( )时=2时45分2、比一比(1)7.2千米 7150米 7千米20米(2)465克 4.6千克 0.46千克(3)92厘米 1米31厘米 0.89米 1.28米(4)32角 1.5元 120分 25角3分3、仔细想,认真填。
(1)求一个小数的近似数可以用法。
(2)求近似数时,保留整数,表示精确到();保留一位小数,表示精确到()位;保留两位小数,表示精确到()位。
(3)3.978精确到十分位约是(),精确到百分位约是()。
四年级下册数学教案-求一个小数的近似数人教新课标

四年级下册数学教案求一个小数的近似数教学目标1. 理解求小数近似数的基本概念和方法。
2. 学会运用四舍五入法求小数的近似数。
3. 能够在实际情境中运用求小数近似数的方法,解决实际问题。
教学内容1. 求小数近似数的基本概念。
2. 四舍五入法求小数的近似数。
3. 求小数近似数在实际情境中的应用。
教学重点与难点重点1. 掌握四舍五入法求小数的近似数。
2. 能够在实际情境中运用求小数近似数的方法。
难点1. 理解四舍五入法的原理和应用。
2. 在实际情境中灵活运用求小数近似数的方法。
教具与学具准备1. 教具:PPT,教学视频,示例题。
2. 学具:练习本,计算器。
教学过程1. 导入:通过一个实际情境引入求小数近似数的概念。
2. 新课:讲解求小数近似数的基本概念和方法,重点讲解四舍五入法。
3. 示例:通过示例题展示如何运用四舍五入法求小数的近似数。
4. 练习:让学生进行练习,巩固所学知识。
5. 应用:通过实际情境题,让学生运用求小数近似数的方法解决实际问题。
板书设计1. 板书求小数的近似数2. 板书内容:求小数近似数的基本概念,四舍五入法的步骤,示例题,练习题。
作业设计1. 基础题:求给定小数的近似数。
2. 提高题:在实际情境中运用求小数近似数的方法解决问题。
3. 挑战题:探索求小数近似数的其他方法。
课后反思通过本节课的学习,学生应该能够掌握求小数近似数的基本方法,并能够在实际情境中运用。
在教学过程中,我注重了理论与实践的结合,让学生在实际操作中理解四舍五入法的原理和应用。
在作业设计中,我设置了不同难度的题目,以满足不同学生的学习需求。
在课后,我将对学生的作业进行批改和反馈,及时纠正他们的错误,帮助他们巩固所学知识。
四舍五入法求小数的近似数四舍五入法的原理例如,如果要将3.4567保留到小数点后两位,我们需要看小数点后第三位的数字,即6。
因为6大于5,所以我们在小数点后第二位的数字4上加1,得到3.46,这就是3.4567保留到小数点后两位的近似数。
求一个小数的近似数教案

《求一个小数的近似数》教学设计教学目标:1.学生能根据要求准确地使用“四舍五入法”求一个小数的近似数。
2.使学生初步理解求一个小数的近似数时表示的精确水准,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。
3.进一步培养学生使用知识迁移和类比推理的水平。
在知识的探索与交流中,增进学生对数学的理解和应用数学的信心。
教学重难点:重点:能准确使用“四舍五入法”求一个小数的近似数。
难点:怎样准确的求一个小数的近似数。
教具准备:小黑板、课件教学过程:一、创设情景,生成问题师:我们已经学过求一个整数的近似数,请大家回忆一下:22906省略万后面的尾数约是多少?省略千后面的尾数约是多少?学生做完后,让学生说一说是怎么想的。
“四舍五入”是什么意思?有时我们和爸爸妈妈一起到商店买菜,电子称上显示价钱是7.53元,不过商店阿姨只收我们7.5元,这是为什么呢?其实在实际生活中我们往往只需要一个小数的近似数就能够了,那如何求一个小数的近似数呢?今天我们就一起来学习这个内容。
板书课题二、探索交流,解决问课件出例如1情境图:从图中你得到了哪些数学信息?小组内讨论、汇报。
生:豆豆的身高是0.984米,她的身高的约是0.98米和1米。
师:同一个小数根据不同的需要它有不同的说法即小数的近似数,那我们该如何求小数的近似数呢?生思考。
师:求一个小数的近似数,同求一个整数的近似数相似,都能够根据“四舍五入法”保留一定的小数位数.师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?师提出要求:0.984保留两位小数保留一位小数保留整数生试着在练习本上做一做,然后在小组内实行交流,看一看有没有争议的地方。
留充足的时间,让生独立完成集体订正,引导学生按顺序实行汇报。
1. 将0.984保留两位小数学生汇报保留两位小数求近似数的思维过程。
教师让生独立思考:保留两位小数要看哪一位上的数?小组交流引导学生归纳:要保留两位小数,精确到百分位,就要省略百分位后面的数,要看千分位上的数。
求一个小数的近似数

求一个小数的近似数在日常生活和数学运算中,我们经常会遇到需要对小数进行近似的情况。
无论是为了简化计算,还是为了更好地进行表示和理解,寻找一个小数的近似数都是很有必要的。
本文将介绍几种寻找小数近似数的方法和技巧。
1. 四舍五入法四舍五入法是最常见且简单的一种近似小数的方法。
在四舍五入法中,我们根据小数位的后一位数字来进行判断。
如果后一位数字小于5,则舍去;如果后一位数字大于等于5,则进位。
下面是一个用四舍五入法近似小数的示例:例:将小数3.14159近似为两位小数步骤:1. 定位到小数第三位(百分位),即4。
2. 根据后一位数字(百分位后一位)的大小,判断是否进位。
因为后一位数字5大于等于5,所以进位。
3. 进位后,将小数第三位及之后的数字都置为0,得到近似的小数3.14。
四舍五入法是一种比较常用且简便的近似方法,但它并不一定能够给出最精确的近似结果。
2. 小数点移动法小数点移动法是另一种常见的求小数近似数的方法。
通过移动小数点的位置,可以得到较大或较小的近似数。
具体的步骤如下:2.1 向右移动小数点如果需要得到小数的一个较大近似数,可以将小数点向右移动。
移动的位数由需要的近似精度决定。
例如,将小数3.14159近似为一个整数,可以将小数点向右移动到个位所在的位置。
移动的位数为四位,则得到近似数31。
2.2 向左移动小数点如果需要得到小数的一个较小近似数,可以将小数点向左移动。
同样,移动的位数由需要的近似精度决定。
例如,将小数3.14159近似为一位小数,可以将小数点向左移动到十分位所在的位置。
移动的位数为一位,则得到近似数3.1。
小数点移动法可以根据需要进行小数的近似,但要注意移动的位数和所产生的近似数是否符合实际情况。
3. 连分数法连分数法是一种特殊的近似数表示方法。
它将一个小数表示为一个连分数的形式,其中整数部分为首项,其余部分为连续的倒数项。
连分数法可以给出较为精确的近似数,但也需要一定的计算和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编制:浙江省教育技术中心 浙江省教育厅教研室 出版:浙江出版集团数字传媒有限公司 时间: 2011-11-20
98000 312000058 398010
58741 50047 148700000
请付8.95 元。
请付8.95 元
为什么售货员阿姨要把 8.952元取近似数为,我们 应该怎样做? 0.984米≈( ) (保留两位小数) 100
90
0.984米
9.956 0.905 1.463
(1)3.56精确到十分位是4。
(
)
) ) ) )
(2)6.05和6.0599保留一位小数都是6.1。 ( (3)近似数是6.32的三位小数不止一个。 ( (4)5.29在自然数5和6之间,它近似于5。 ( (5)0.596保留两位小数是0.6。 (
课堂小结
策划:屠元成 斯苗儿 郑少艾 制作:陈霞芳 审核:斯苗儿 责编:王 卉 徐梁昱 资源引用:人民教育出版社 浙江教育资源网()
100
90
0.984米
求一个小数的近似值时:保留
整数,就是精确到个位;保留
一位小数,就是精确到十分位; 保留两位小数,就是精确到百
分位„„
同学们已经掌握了求一个小数
的近似数的方法,下面请同学们想 一想:对于1和1.0有什么争议吗?
近似数1.0末尾的0能去掉吗?为什
么?
求下面小数 的近似数。
保留整数 保 留 一位小数 保 留 两位小数
浙江省农村中小学现代远程教育工程资源
小学数学(人教版)四年级下册第四单元
求一个小数的近似数
嘉兴市实验小学 陈霞芳
课件说明
● 创设情境,铺垫孕伏(第3—4页) ● 创设情境,探究新知(第6—11页) ● 拓展深化(第12—14页)
● 总结(第15页)
复
习
把下面各数省略万或亿后面的 尾数,求出它们的近似数。
求整数的近似数,可以用“四舍 五入”法。求小数的近似数,也 可以用“四舍五入”法。
0.984 ≈0.98
小于5,舍去。 如果保留两位小 数,就要第三位 数省略。
想一想:
0.984≈____(保留一位小数) 0.984≈____(保留整数)
观察上面三道题,你能利 用自己的知识总结出求一 个小数近似数的方法吗?