介观晶体综述

合集下载

五溴化磷离子晶体-概述说明以及解释

五溴化磷离子晶体-概述说明以及解释

五溴化磷离子晶体-概述说明以及解释1.引言1.1 概述五溴化磷(PBr5)是一种重要的无机化合物,其分子由一个磷原子和五个溴原子组成。

在化学领域,五溴化磷被广泛应用于有机合成反应中作为脱水剂和卤代试剂。

它具有强烈的氧化性和反应活性,常被用于引发化学反应或作为反应媒介。

本文将深入探讨五溴化磷的性质、合成方法以及在不同应用领域的应用情况。

通过研究文章,读者将能够更好地了解这种化合物的特性和潜在应用价值。

1.2 文章结构:本文将分为三个主要部分来探讨五溴化磷离子晶体。

首先,将介绍五溴化磷的性质,包括其物理化学特性、结构特征等。

接着,我们将探讨五溴化磷的合成方法,包括化学合成、物理合成等不同方法的比较。

最后,我们将讨论五溴化磷在不同应用领域的潜在价值和发展前景。

通过这些内容的分析和讨论,我们希望能够全面了解五溴化磷离子晶体的特性及其在科学研究和工业生产中的潜在应用价值。

1.3 目的五溴化磷离子晶体作为一种重要的无机化合物,在化学领域具有广泛的应用价值和研究意义。

本文旨在深入探讨五溴化磷离子晶体的性质、合成方法以及应用领域,以期为相关领域的研究工作者提供参考和启发。

同时,通过系统性地总结和分析五溴化磷离子晶体的相关知识,为未来的研究提供基础和方向,促进其在化学领域的更广泛应用和发展。

希望通过本文的研究,能够揭示五溴化磷离子晶体在材料科学、化学合成等方面的潜在价值,促进其在实际应用中的进一步推广和应用。

2.正文2.1 五溴化磷的性质五溴化磷是一种无机化合物,化学式为PBr5。

它是一种固体晶体,外观为白色至黄色的结晶体,具有刺激性气味。

五溴化磷在常温下具有较高的熔点和沸点,为室温下稳定的固体物质。

五溴化磷是一种强氧化剂,在空气中具有较强的腐蚀性。

它能够与水、酒精等多种物质发生剧烈反应,释放出有毒的磷化氢气体。

因此在处理五溴化磷时需要采取严格的防护措施,避免对人体和环境造成危害。

五溴化磷的分子结构呈正四面体构型,其中磷原子被五个溴原子包围。

纳米晶体和等轴晶体-概述说明以及解释

纳米晶体和等轴晶体-概述说明以及解释

纳米晶体和等轴晶体-概述说明以及解释1.引言1.1 概述纳米晶体和等轴晶体作为材料科学领域中重要的两个概念,对材料的性能和应用有着重要的影响。

纳米晶体是指晶粒尺寸在纳米级别的结晶材料,具有独特的物理和化学性质;而等轴晶体则是晶粒呈等轴形状的晶体结构,具有一定的结构特点和应用价值。

本文将从宏观和微观两个层面探讨纳米晶体和等轴晶体的定义、特点、制备方法、结构特征以及应用领域,通过比较两者的物理性质和工业应用,揭示它们之间的异同和互补关系。

同时,对纳米晶体和等轴晶体在材料科学领域的未来发展趋势进行展望,强调它们在材料应用中的重要性和研究方向。

愿本文能对读者对纳米晶体和等轴晶体有更深入的了解和认识。

文章结构部分应该包括以下内容:文章结构部分主要介绍本文的结构和内容安排。

首先,将简要概述各个章节的主要内容,以及各章节之间的逻辑关系和联系。

然后,说明各章节的目的和意义,以及读者在阅读完全文后能够获得的启示和收获。

最后,指引读者如何在整篇文章中找到所需信息,以提高阅读效率和理解深度。

文章结构部分应具备明晰的逻辑脉络,清晰地呈现出整篇文章的架构和走向,引导读者更好地理解和掌握文章内容。

写文章1.2 文章结构部分的内容1.3 目的本文旨在深入探讨纳米晶体和等轴晶体这两种材料的特性、制备方法、应用领域以及发展趋势。

通过对这两种晶体结构的比较分析,我们可以更好地了解它们在物理性质、工业应用以及未来发展方面的异同之处。

同时,本文还旨在为研究人员和工程师提供关于纳米晶体和等轴晶体的全面知识,以便他们在材料设计和工程实践中能够更准确地选择合适的材料,拓展应用领域,并提高材料的性能和应用效率。

最终,我们希望通过这篇文章的撰写,能够为相关领域的学术研究和工程实践提供有益的参考和指导,促进纳米晶体和等轴晶体等新材料的进一步发展与应用。

2.正文2.1 纳米晶体2.1.1 定义和特点纳米晶体是一种晶粒尺寸在纳米级范围内的晶体结构。

通常情况下,纳米晶体的晶粒尺寸在1到100纳米之间,具有相比于传统晶体更高的比表面积和较大的表面能量。

闪烁晶体材料的研究进展

闪烁晶体材料的研究进展

闪烁晶体材料的研究进展一、本文概述随着科技的飞速发展和人类对物质世界认识的深入,闪烁晶体材料作为一种独特的功能材料,其在诸多领域的应用潜力逐渐显现。

闪烁晶体材料,因其具有将高能辐射转化为可见光的能力,被广泛应用于核物理、高能物理、医学成像、安全检查等领域。

本文旨在全面综述近年来闪烁晶体材料的研究进展,包括其制备技术、性能优化、应用领域等方面的最新成果和发展趋势。

通过对这些内容的梳理和分析,期望能够为相关领域的科研工作者和从业人员提供有价值的参考信息,推动闪烁晶体材料的研究和应用取得更大的突破。

二、闪烁晶体材料的基本性质闪烁晶体材料是一类具有独特光学性质的材料,它们能够在高能粒子的作用下发出闪烁光。

这种闪烁光可以被光电倍增管等光电探测器所接收,从而实现对高能粒子的探测和成像。

闪烁晶体材料的基本性质主要包括以下几个方面:高发光效率:闪烁晶体在高能粒子作用下,能够将吸收的能量高效地转化为可见光,这是闪烁晶体作为探测器材料的基础。

发光效率的高低直接决定了探测器的灵敏度和成像质量。

快速响应:闪烁晶体应具有快速的发光响应速度,以便在高能粒子通过后能够迅速发出闪烁光。

这对于实现高速、高分辨率的粒子探测至关重要。

高辐射硬度:由于闪烁晶体在工作过程中需要承受大量的高能粒子轰击,因此要求其具有高的辐射硬度,即能够在长时间、高强度的辐射环境下保持稳定的性能。

良好的光学性能:闪烁晶体应具有高的透光性,以便让尽可能多的闪烁光从晶体中逸出并被探测器接收。

同时,晶体还应具有均匀的折射率,以避免光在传播过程中出现折射和散射。

易于加工和封装:为了满足实际应用的需求,闪烁晶体材料应易于加工成各种形状和尺寸,并能够方便地与其他光学元件和探测器集成。

晶体还应具有良好的化学稳定性和热稳定性,以确保在封装和使用过程中不会发生性能退化。

闪烁晶体材料的基本性质涵盖了发光效率、响应速度、辐射硬度、光学性能以及加工和封装等方面。

这些性质共同决定了闪烁晶体在粒子探测和成像领域的应用潜力。

从纳米晶到三维超晶格结构

从纳米晶到三维超晶格结构

[综合评述]03-0429-08收稿日期:2010-10-12.基金项目:国家重大科学研究计划项目(批准号:2011CB932401)和国家自然科学基金创新研究群体项目(批准号:20921001)资助.联系人简介:李亚栋,男,博士,教授,博士生导师,主要从事纳米材料的合成及应用研究.E-mail :ydli@mail.tsinghua.edu.cn 彭卿,男,博士,副教授,主要从事无机半导体纳米材料的制备及性能研究.E-mail :pengqing@mail.tsinghua.edu.cn在过去的20年间,晶态胶体粒子的制备技术有了长足的发展[1 9].人们在不断获得各类新型纳米晶的同时,也一直致力于探寻它们的功能性质,特别是希望在一定尺度上实现其规模化应用.将纳米晶作为构建单元,组装成三维有序的高级结构(组装体),并发挥整体的集合性能,被认为是由微观材料向介观甚至宏观器件模块迈进的一条可能的途径.胶体纳米晶三维有序组装体是纳米晶按照一定的规则立体堆积而形成的周期结构.这种结构往往与晶体中原子的长程有序阵列有很多相似性,也被人们称为纳米晶的“超结构”或者“超晶格”.其中规模较大的(尺寸不小于微米量级)、块状的纳米晶超晶格又被称为“超晶体”或“胶体晶体”.超晶格的构筑主要依靠纳米晶本身或者其表面修饰分子之间存在的范德华力、电性力、磁作用力、分子表面作用和熵驱动作用等,Grzybowski 等[10]已经就此作出了较为全面的论述(表1).Table 1Interaction potentials for nanocrystals (spherical models )[10]Interaction type FormulaRange1纳米晶三维有序组装体的研究价值目前,许多具有晶体学周期堆垛方式的纳米晶组装体已经被成功构建.研究表明,这些组装体在一定程度上具有“晶化”和“生长”行为,同样也有位错[11]和孪晶[12]等典型的晶体学特征.甚至准晶结构也可以由纳米晶组装而成[13].既然纳米晶三维有序组装体的构造模式与原子晶格结构非常接近,就不妨将这种人造的超晶格作为研究晶体构成、演化和表现的直观模型.从比较研究的角度讲,大家一面力求依据现有的晶体学理论来指导制备超晶格,预测其性质;另外也致力于借助纳米晶超结构来更好地认识晶体.纳米晶超结构受到学界的广泛关注,不仅因为它们有作为晶体学模型的研究价值,还因为它们会体现出孤立纳米晶所不具备的集合性能,即纳米晶的个体属性并未改变,但在整体上却产生了新的应用性能.集合性能主要来自3个方面:(1)有序排列的相邻纳米晶在电、磁等作用下彼此互相影响,使自身原本的性质发生变化[14,15].例如,Bawend 和Murray 等[16]很早就发现,由于粒子间的耦合效应,半导体量子点的光致发光谱会出现红移现象.(2)由于组装体的周期性有序结构而产生的新性质,比如形成某种特定尺寸的有序孔道(介孔特性)[17]以及构造出光子带隙(光子晶体特性)[18].(3)不同功能的纳米晶通过二元或二元以上组装形成复合材料,使其整体表现出各独立组元的综合特性.2纳米晶三维有序组装体的几类制备方法2.1胶体溶液蒸发法通常,单分散胶体纳米晶的形貌和尺寸控制是借助于活性剂分子在晶体粒子表面的吸附包裹行为来实现的.活性剂分子之间存在着相互作用场(以范德华力为最普遍形式),故而在一定条件下纳米晶粒子会受到热力学驱动而自发地进行有序组装.作为一种形成有序纳米晶组装结构的传统方法,胶体溶液蒸发法遵循了上述的原理.该方法和晒Fig.1Schematic illustration of the solvent evaporation method [19]Nanocrystal superlattices are deposited on a solid substrate bycontrolling evaporation of the solvent of colloidal solution.制无机盐的过程类似,即将预先制得的由长链有机分子包裹的纳米晶粒子分散于适当溶剂中形成胶体溶液,随着溶剂的蒸发,胶体溶液的浓度逐渐增大,导致纳米晶粒子从液相中“结晶”析出至容器壁或者预置衬底上(如图1所示).这种方法应用的重要前提是作为组装基元的纳米晶要具有高度均匀的尺寸,此外胶体溶液的浓度和溶剂挥发速率等因素也会影响组装产物的有序度和规模[11,19 21].Fig.2Ag nanocrystal superlattice [22]近年来,有若干研究小组采用胶体溶液蒸发法在纳米晶的立体组装方面做出了有价值的工作.比如,Yang 等[22]将Ag 纳米晶组装成“等离子体晶体”(图2),在可见光波段实现了频率选择性响应;Wang和Chen 等[23]用几种均一而不同形貌的Au 纳米晶在硅衬底上构建了单构和双构的三维有序结构,并发现有序堆积使得Au 纳米棒的双光子激发性能有所增强;Korgel 等[24]则将衬底斜置于Fe 2O 3纳米晶(A )和Au 纳米晶(B )共混的胶体溶液中,得到了AB 2型的二元类晶体结构,并034高等学校化学学报Vol.32对产物的结构缺陷加以探讨.不过总的来说,由于沉积物对基底的平面依附效应,直接蒸发溶剂的方法就制备块状超晶体而言并无优势,多被用于获得连续的层状组装结构[25,26].2.2不良溶剂扩散法如果一种溶剂能有效地分散纳米晶并形成胶体溶液,那么我们就将其称为纳米晶的良溶剂,反之则称为不良溶剂.例如,对于长链有机分子包裹的纳米晶,弱极性溶剂通常为良溶剂,而极性溶剂通常为不良溶剂.事实上,在早期人们以挥发溶剂的方法组装纳米粒子时,已经尝试过在弱极性体系中加入少量极性溶剂,收到了很好的效果.1995年,Bawendi 和Murray 等[16]将CdSe 量子点分散于含90%辛烷和10%辛醇的混配溶剂中,在一定条件下低沸点的辛烷优先挥发,使胶体溶液的浓度不断增大,同时极性溶剂辛醇的百分含量也逐渐上升,从而得到了CdSe 胶体晶体.2001年,Rogach 和Talapin 等[27]进一步发展出了一种不良溶剂扩散法(图3),其原理是将纳米晶分散在其良溶剂中,然后向体系中加入不良溶剂,随着不良溶剂向良溶剂中缓慢地扩散,在原分散相和非溶剂层的接合部,纳米晶的“溶解度”会比加入不良溶剂前大大降低,这样就形成了局部过饱和的胶体溶液环境,于是纳米晶组装体便得以析出.如果引入适当的第三溶剂,在不良溶剂层和良溶剂层之间设置一个缓冲层,降低不良溶剂扩散的速度,则会使纳米晶组装得更为缓慢,形成的有序结构的质量也会更高.这类方法已经被成功地用于制备CdSe[27,28],FePt [29],CoPt 3[28],PbS [12,28],Ni [21]和Au [30]等多种纳米晶超结构,但操作起来耗时较长,往往少则一周,多则数月.Fig.3Scheme of the non-solvent diffusion method [27](A )and microscopy images of PbS nanocrystals and their 3Dassemblies [28][(B )—(E )](B )TEM image of PbS nanocrystals ;(C )optical microscopy ;(D )SEM images of a supercrystal ;(E )high-resolution SEM imageof tightly packed surface of PbS supercrystal.2.3胶束引导法胶体溶液蒸发法和不良溶剂扩散法都是依赖于有机液相来完成纳米晶组装的.为了在含水介质中实现类似的过程,人们不断探索,形成了一种胶束引导有序集聚的策略.采用该方法时,首先把有机相分散的粒子体系移入表面活性剂(如长链烷基磺酸钠或长链烷基三甲基溴化铵)的水溶液中,而后挥发掉有机溶剂,使粒子包裹于形成的胶束之中,再利用胶束的引导作用通过后续不同的处理工艺得到超晶格组装体.Fig.4Formation of water-soluble gold nanocrystal-micelles through surfactant /lipid encapsulationand their self-assembly [31](A )and a representative transmission electron micrograph of3D gold nanocrystal-micelle superlattice (B )Fan 等[31,32]将前驱体胶束溶液直接脱水沉积于衬底表面,制备了Au 等纳米晶的立方结构三维有序阵列(图4).本课题组[17,33]利用胶束微乳液中的油相液滴为模板,获得了一系列单质和化合物的有134No.3孟令镕等:从纳米晶到三维超晶格结构Fig.5Scheme of the emulsion-based bottom-up self-assembly method[33]Fig.6Typical TEM images of the colloidal spheres[33]of BaCrO4(A,B)and Ag2Se(C,D)序“胶体球”结构(图5和图6),并对双组元纳米晶复合功能材料的组装进行了初步的尝试[34].Cao 等[35 37]则将Fe3O4和CdSe/CdS纳米晶胶束注入乙二醇体系中,靠改变溶剂环境的极性使纳米晶聚集成球团,再经液相退火使球团状聚集体最终“晶化”成有序结构.2.4一些其它方法2.4.1氢键连接法氢键连接法是又一种制备亲水性纳米晶三维超结构的方法,操作流程是先在晶体粒子表面修饰上含大电负性元素的分子,然后利用水分子中的H和修饰分子上的大电负性原子形成氢键,从而将纳米粒子连接组装在一起.Kimura课题组[38 42]在这方面做了许多工作,他们制备了Au、Ag纳米晶的超晶体,并就其功能化展开了一些有益的研究(图7).值得注意的是,目前氢键连接法主要适用于强酸性体系,这就要求被组装的纳米粒子必须耐酸.Fig.7Water molecule connect with carbonyl groups from different gold particles that passivated by mercaptosuccin-ic acid(MSA),resulting in aggregation of gold particles in a humid condition[40](A)and microscope imagesof gold particle supercrystals(B)(Inset:low-angle electron diffraction from one superlattice)2.4.2静电聚集法这种方法的思路是先通过表面修饰使纳米晶粒子带上电荷,然后将电性相反的234高等学校化学学报Vol.32粒子在液相中混合,使它们凭借彼此间的静电作用力有序地结合在一起,形成自组装体.静电聚集法应用的前提是对纳米晶粒子尺寸和所带电荷的精确调控.Grzybowski 等[43]用等尺寸的受HS (CH 2)10·COO -包裹的Au 粒子(带负电)和受HS (CH 2)11NMe +3包裹的Ag 粒子(带正电)组装出了闪锌矿结构的超晶体(图8),被认为是一宗经典案例[44].Fig.8Au-Ag binary supercrystals [43](A —C )SEM images ;(D )scheme of an AB unit cell and the projections of supercrystal planes.2.4.3DNA 导向法众所周知,DNA 上的碱基具有固定的互补配对规律,于是,一些研究小组考虑将适当的DNA 修饰到纳米粒子表面,然后通过其配对行为引导粒子有序组装[如图9(A )所示].这种方法先是用于构建纳米晶的二维阵列,但被认为难于实现三维组装[44,45].2008年,Gang 等和Mirkin 等[45 47]在同一期的Nature 杂志上分别报道了利用该方法制备金纳米粒子三维立方超结构的工作,虽然产物的“结晶度”有待提高,但还是带给人们以新的希望[图9(B )].Fig.9Scheme of DNA linkages between nanoparticles (A )and representative SEM image ofnanoparticles after DNA-guided assembly at room temperature (B )[47]Fig.10Ag 2S tetrahedral superlattice and a schematic illustration of the plausible formation mechanism [48]2.4.4“水-油”界面辅助机制2007年,我们课题组[48,49]构思了一种利用“水-油(有机相)”界面辅助制备半导体硫化物纳米晶并实现其原位自组装的途径(图10):首先,金属离子水溶液(如银氨溶液或铜盐溶液)与硫醇(或含有硫醇的有机相)在“水-油”界面处反应,生成硫醇金属离子配合物前驱体;而后,硫醇金属离子配合物热分解,源源不断地产生金属硫化物(如Ag 2S 、Cu 2S )纳米晶;最终,纳米晶在极性-弱极性两相邻接区部分自组装成有序结构.2.4.5外场辅助法一些文献也报道了外场引导组装纳米晶的方法.如Alivisatos 等[50]在直流电场下334No.3孟令镕等:从纳米晶到三维超晶格结构蒸发CdS 纳米棒胶体溶液,制备了轴向垂直于衬底的三维纳米棒阵列;Cheon 等[51]以钴纳米粒子为基元,在磁场引导下制备了具有取向性的面心立方堆积超结构(图11);Song 和Clays 等[18]则在椭球形Fe 2O 3/SiO 2核壳粒子的对流自组装过程中施加磁场,得到了粒子长轴平行于衬底的三斜型超结构光子晶体.外场辅助法的优势是可以通过场的作用来调控纳米晶组装体的向性生长,但该法只能应用于对外场有特定响应的材料.Fig.11Schematic of Co supercrystal formation via magnetic field induced assembly (A );unit cell struc-ture (B );low (C )and high (D )magnification TEM images ;[001]SL (E )and [111]SL (F )pro-jections of fcc-structured supercrystals [51]SL :Superlattice.Fig.12Fe 3O 4octahedral supercrystals [52]Low (A )and high (B )magnification SEM images ;TEM images of the superlattice structure (C ,D );3D schematic model of the supercrystals (E ).2.4.6表面活性剂浓度控制的一步法溶剂热自组装最近,我们[52]设计了一种一步法实现纳米晶制备及原位组装的工艺,即在封闭的溶剂热体系中,通过改变脂肪酸活性剂的浓度,来调节新生成纳米晶的表面修饰分子偶极作用强度,以达到促使粒子聚集“晶化”的目的.实验取得了初步进展,在几小时内制备出了具有规则八面体外形且无衬底依赖的微米级Fe 3O 4超晶体(图12).434高等学校化学学报Vol.323结论在公元前2500 2600年间,古埃及人就用巨石建造出了雄伟的金字塔[53].几千年之中,形形色色的人工建筑物让世界的面貌和人类的生活都为之巨变,然而在微观世界里,我们的建筑工作才刚刚起步.虽然人们在纳米晶超结构组装方面已取得了上述的进展,但是在这一领域内还存在着无法回避的挑战.首先,对于目前的人工纳米晶三维组装体,材料物质的种类还很有限,多为几类金属(如Ag ,Au )或半导体(如硫化物,硒化物).而且,在工艺上,纳米晶的制备和组装往往是两步完成的,整个流程所需步骤较多,耗时较长,有时还要消耗大量的有机试剂,不利于大规模生产.不仅如此,迄今为止纳米晶组装体超结构的规模还较为有限,形态也多不规则,结构稳定性亦有待提高,同时也没有完全解除对衬底的依赖.今后,科研工作者必将拓宽研究对象的范围,在改进和创新的基础上,寻找环境友好、简便经济、普便适用的组装方法,力争能早日按照实用需求“量体裁衣”,可按地制备出具有较大尺寸与统一规格的组装产品.参考文献[1]Cushing B.L.,Kolesnichenko V.L.,O ’Connor C.J..Chem.Rev.[J ],2004,104(9):3893—3946[2]Wang X.,Zhuang J.,Peng Q.,Li Y.D..Nature [J ],2005,437(7055):121—124[3]Wang X.,Peng Q.,Li Y.D..Acc.Chem.Res.[J ],2007,40(8):635—643[4]Wang X.,Li Y.D..Chem.Commun.[J ],2007,(28):2901—2910[5]Kwon S.G.,Hyeon T..Acc.Chem.Res.[J ],2008,41(12):1696—1709[6]Wang D.S.,Xie T.,Li Y.D..Nano Res.[J ],2009,2(1):30—46[7]ZHANG Hao (张皓),YANG Bai (杨柏).Chem.J.Chinese Universities (高等学校化学学报)[J ],2008,29(2):217—229[8]WANG Ding-Sheng (王定胜),PENG Qing (彭卿),LI Ya-Dong (李亚栋).Sci.China Ser.G ,Phys.Mech.Astron.(中国科学G 辑:理学,力学,天文学)[J ],2008,38(11):1434—1454[9]PENG Qing (彭卿),LI Ya-Dong (李亚栋).Sci.China Ser.B ,Chem (中国科学B 辑:化学)[J ],2009,39(10):1028—1052[10]Bishop K.J.M.,Wilmer C.E.,Soh S.,Grzybowski B.A..Small [J ],2009,5(14):1600—1630[11]Wang Z.L..Adv.Mater.[J ],1998,10(1):13—30[12]Rupich S.M.,Shevchenko E.V.,Bodnarchuk M.I.,Lee B.,Talapin D.V..J.Am.Chem.Soc.[J ],2010,132(1):289—296[13]Talapin D.V.,Shevchenko E.V.,Bodnarchuk M.I.,Ye X.C.,Chen J.,Murray C.B..Nature [J ],2009,461(7266):964—967[14]Murray C.B.,Kagan C.R.,Bawendi M.G..Annu.Rev.Mater.Sci.[J ],2000,30:545—610[15]Talapin D.V.,Lee J.S.,Kovalenko M.V.,Shevchenko E.V..Chem.Rev.[J ],2010,110(1):389—458[16]Murray C.B.,Kagan C.R.,Bawendi M.G..Science [J ],1995,270(5240):1335—1338[17]Wang D.,Xie T.,Peng Q.,Li Y..J.Am.Chem.Soc.[J ],2008,130(12):4016—4022[18]Ding T.,Song K.,Clays K.,Tung C.H..Adv.Mater.[J ],2009,21(19):1936—1940[19]Shevchenko E.V.,Talapin D.V.,Murray C.B.,O'Brien S..J.Am.Chem.Soc.[J ],2006,128(11):3620—3637[20]Pileni M.P..Acc Chem.Res.[J ],2007,40(8):685—693[21]Park J.,Kang E.,Son S.U.,Park H.M.,Lee M.K.,Kim J.,Kim K.W.,Noh H.J.,Park J.H.,Bae C.J.,Park J.G.,Hyeon T..Adv.Mater.[J ],2005,17(4):429—434[22]Tao A.R.,Ceperley D.P.,Sinsermsuksakul P.,Neureuther A.R.,Yang P..Nano Lett.[J ],2008,8(11):4033—4038[23]Ming T.,Kou X.S.,Chen H.J.,Wang T.,Tam H.L.,Cheah K.W.,Chen J.Y.,Wang J.F..Angew.Chem.Int.Ed.[J ],2008,47(50):9685—9690[24]Smith D.K.,Goodfellow B.,Smilgies D.M.,Korgel B.A..J.Am.Chem.Soc.[J ],2009,131(9):3281—3290[25]Shevchenko E.V.,Talapin D.V.,Kotov N.A.,O'B rien S.,Murray C.B..Nature [J ],2006,439(7072):55—59[26]Urban J.J.,Talapin D.V.,Shevchenko E.V.,Kagan C.R.,Murray C.B..Nature Mater.[J ],2007,6(2):115—121[27]Talapin D.V.,Shevchenko E.V.,Kornowski A.,Gaponik N.,Haase M.,Rogach A.L.,Weller H..Adv.Mater.[J ],2001,13(24):1868—1871[28]Podsiadlo P.,Krylova G.,Lee B.,Critchley K.,Gosztola D.J.,Talapin D.V.,Ashby P.D.,Shevchenko E.V..J.Am.Chem.Soc.[J ],2010,132(26):8953—8960[29]Shevchenko E.,Talapin D.,Kornowski A.,Wiekhorst F.,Kotzler J.,Haase M.,Rogach A.,Weller H..Adv.Mater.[J ],2002,14(4):287—290534No.3孟令镕等:从纳米晶到三维超晶格结构634高等学校化学学报Vol.32[30]Zheng N.,Fan J.,Stucky G.D..J.Am.Chem.Soc.[J],2006,128(20):6550—6551[31]Fan H.Y.,Leve E.,Gabaldon J.,Wright A.,Haddad R.E.,Brinker C.J..Adv.Mater.[J],2005,17(21):2587—2590[32]Fan H.Y..Chem.Commun.[J],2008,(12):1383—1394[33]Bai F.,Wang D.S.,Huo Z.Y.,Chen W.,Liu L.P.,Liang X.,Chen C.,Wang X.,Peng Q.,Li Y.D..Angew.Chem.Int.Ed.[J],2007,46(35):6650—6653[34]Li P.,Peng Q.,Li Y.D..Adv.Mater.[J],2009,21(19):1945—1948[35]Zhuang J.,Wu H.,Yang Y.,Cao Y.C..J.Am.Chem.Soc.[J],2007,129(46):14166—14167[36]Zhuang J.Q.,Wu H.M.,Yang Y.G.,Cao Y.C..Angew.Chem.Int.Ed.[J],2008,47(12):2208—2212[37]Zhuang J.Q.,Shaller A.D.,Lynch J.,Wu H.M.,Chen O.,Li A.,Cao Y.C..J.Am.Chem.Soc.[J],2009,131(17):6084—6085[38]Kimura K.,Sato S.,Yao H..Chem.Lett.[J],2001,(4):372—373[39]Wang S.H.,Sato S.,Kimura K..Chem.Mat.[J],2003,15(12):2445—2448[40]Wang S.H.,Yao H.,Sato S.,Kimura K..J.Am.Chem.Soc.[J],2004,126(24):7438—7439[41]Nishida N.,Shibu E.S.,Yao H.,Oonishi T.,Kimura K.,Pradeep T..Adv.Mater.[J],2008,20(24):4719—4723[42]Shibu E.S.,Muhammed M.A.H.,Kimura K.,Pradeep T..Nano Res.[J],2009,2(3):220—234[43]Kalsin A.M.,Fialkowski M.,Paszewski M.,Smoukov S.K.,Bishop K.,Grzybowski B.A..Science[J],2006,312(5772):420—424[44]Velev O.D..Science[J],2006,312(5772):376—377[45]Richert C.,Meng M.,Muller K.,Heimann K..Small[J],2008,4(8):1040—1042[46]Park S.Y.,Lytton-Jean A.,Lee B.,Weigand S.,Schatz G.C.,Mirkin C.A..Nature[J],2008,451(7178):553—556[47]Nykypanchuk D.,Maye M.M.,van der Lelie D.,Gang O..Nature[J],2008,451(7178):549—552[48]Zhuang Z.B.,Peng Q.,Wang X.,Li Y.D..Angew.Chem.Int.Ed.[J],2007,46(43):8174—8177[49]Zhuang Z.B.,Peng Q.,Zhang B.,Li Y.D..J.Am.Chem.Soc.[J],2008,130(32):10482—10483[50]Ryan K.M.,Mastroianni A.,Stancil K.A.,Liu H.T.,Alivisatos A.P..Nano Lett.[J],2006,6(7):1479—1482[51]Park J.I.,Jun Y.W.,Choi J.S.,Cheon J..Chem.Commun.[J],2007,(47):5001—5003[52]Meng L.,Chen W.,Tan Y.,Zou L.,Chen C.,Zhou H.,Peng Q.,Li Y..Nano Res.[J],DOI10.1007/s12274-010-0091-8[53]Spence K..Nature[J],2000,408:320—324Self-assembly of3D Nanocrystal-superlatticesMENG Ling-Rong1,PENG Qing1,2*,ZHOU He-Ping1,LI Ya-Dong1,2*(1.State Key Laboratory of New Ceramics and Fine Processing,2.Department of Chemistry,Tsinghua University,Beijing100084,China)Abstract The assembly of nanocrystals into various ordered structures is key to their future applications.In this article,we describe the recent progresses in the assembly routes and mechanisms of the three-dimensional superlattices of nanocrystals.This review focuses on the techniques of nanocrystal assembly based on solvent evaporation of colloidal solutions,non-solvent diffusion,micelle-induced aggregation,hydrogen bonding linkage,electrostatic interactions,DNA base-pairing,external field-assistance,and oil-water interface templating.The existing challenges and future development of nanocrystals assembly are also discussed.Keywords Nanocrystal;Self-assembly;3D superlattice;Supercrystal;Collective property(Ed.:M,G)。

介孔及介观结构材料掺杂有机染料的研究进展

介孔及介观结构材料掺杂有机染料的研究进展
运输 和维 护 , 并且 液 态 染 料 的泄 漏 会 对 工 作 人 员 和 环境 造成 很 大 的危 害 , 而使 其 应 用 受 到 限 制 。 固 从
态基 质具 有 一定 的 刚性及 较 好 的机 械性 能 , 无 毒 、 且
敏感) 。处 于不 同化 学环 境 间 的染料 分 子 的状 态 不 同 , 光学 性 能也会 产 生显 著 的差异 。另外 , 其 模板剂
物, 能够通过 自 身颜色的改变对温度 、 机械压力、 化 学因素的刺激作出响应 , 很适合制备成传感器应用 于环 境监 测等 领域 。 1 3 合 成前 染料 与硅 源前躯体 共 价键连 . 在合 成前 将 染 料 与硅 源 共 价结 合 后 , 表 面 活 与 性剂 共组装 形成 介孔 复合 物 ; 后 , 用溶 剂萃 取法 之 利 去除表 面 活性剂 , 形成 染料/ - - 氧化硅 复合 物 。此种
炔 等作 模 板 , 代 昂贵 的表 面活性 剂 合成 介 孔材 替
料 , 仅节 省成本 , 且使 这种 复合材 料具 有 了特殊 不 而
2 1 年 6月 0 1
畅 通 。 孑 及 介 观 结 构 材 料 掺 杂 有 机 染 料 的 研 究 进 展 介 L
・ 5・ 2
原有 的光 学性 能 。这种 块 状完 整且 透 明 的光学 功 能
1 一步 合成 法制备介观 复合物

化学环境 ( 所周知 , 料对所 处的化学环境 十分 众 染
步合 成 法 制 备 介 观 复 合 物 的 具 体 方 法 有 3
收 稿 日期 :0 l0 -0 2 1 -32
种 :) 1 将染料分子直接 溶解 到模板剂 中间相 中, 制
备染 料/ 模 板剂 复 合 物 , 硅/ 这也 是 人 们 最 早 使 用 的 方法 ; )使用 两 亲性 染料 分子 为模 板 剂 , 2 制备 染 料/

赵东元Nature子刊综述:介孔材料在能量转换与存储中的应用

赵东元Nature子刊综述:介孔材料在能量转换与存储中的应用

赵东元Nature子刊综述:介孔材料在能量转换与存储中的应用近期,复旦大学的赵东元院士(通讯作者)及李伟研究员(第一作者)联合美国西北太平洋国家实验室的刘俊教授(通讯作者)共同在国际顶刊Nature Reviews Materials上发表题为“Mesoporous materials forenergy conversion and storage devices”的综述,从有序介孔材料的合成方法和有序介孔材料在能源器件中的主要应用进展两大板块进行了阐述,系统地介绍了介孔材料在能量转换及存储中的最新研究进展,为我们了解介孔材料的最新研究成果提供了非常客观的阅读材料。

下面,针对该综述,小编将从以下四大方面进行概述:1)研究背景2)介孔材料的相关介绍3)介孔材料在能源器件中的应用4)总结从左到右依次为:赵东元院士、刘俊教授和李伟研究员1 研究背景当前,全球80%的能源消耗源于不可再生性的化石能源,包括了煤、石油和天然气。

而使用这些化石能源就不可避免地会产生导致当前全球气候变暖的主要的温室气体——CO2,当然,也同时会产生一些其他的危险气体,如CO、CH4等。

诚然,减缓能源危机的任务十分艰巨,但是研究的核心还是努力构建可持续发展的能源结构。

然而,为实现这些技术的成本与效益的平衡,科学家们还需作进一步的努力,但是,纵观新能源技术的发展过程,发展功能材料具有不可替代的核心作用。

在功能材料中,多孔材料又是这一领域中一颗最闪亮的星星。

根据国际纯粹与应用化学联合会(IUPAC)的定义,多孔材料可以分为三种,分别是:微孔材料(孔径<2 nm)、介孔材料(2="">2><><50 nm)和大孔材料(孔径="">50 nm)。

其中,自从20世纪90年代首次报道介孔材料以来,各种各样的介孔材料层出不穷,而其中基于介孔材料的各项科学技术更是呈现了爆发式增长。

纳米结构中的介观现象——弹道输运

纳米结构中的介观现象——弹道输运

特征长度 相位弛豫时间(τφ)

类比于动量弛豫时间,有 其中αφ表示破坏相位的单个碰撞的效应 相位比动量更容易受到破坏 更仔细的讨论要求对不同的散射过程定义不同 的散射因子αφ
特征长度


影响特征长度的因素
这三个特征长度与材料和外界条件有关: 金属和半导体中均存在缺陷、晶格不完整性、 晶粒边界、空位和掺杂等因素引起的不规则性 电子与这些不规则的晶格势能相互作用,从而 导致特征长度随材料的不同也不尽相同。 它们也随着系统的温度(声子)和是否有外磁 场而改变
特征长度 相位弛豫时间与相位弛豫长度的关系

高迁移率半导体的情况,相位弛豫时间与动量 弛豫时间同一数量级或者小于后者 在弛豫时间内,电子不受散射,输运是弹道的 有 这一结果仅对高迁移半导体是正确的


特征长度



但是对于低迁移率半导体或者多晶金属薄膜动量弛 豫时间远比相位弛豫时间短,即,τφ>>τm 超过相位相干时间的电 子运动是非弹道的 经过时间间隔τm速度完 全是随机化的,所以电 子在时间τφ内的轨迹 可以视为若干个 (=τm/τφ)长度为 ~Vfτm短轨迹之和。
特征长度 费米波长的作用
在低温条件下,电流主要是能量接近费米面的 电子所负载,因此相关的电子波长就是费米波 长。 其他能量低于费米能的电子具有较长的波长, 它们对电导没有贡献。 当系统的尺度接近费米波长时,粒子的量子涨 落非常强。而当尺度远远小于费米波长时,粒 子的能量涨落相对较弱。 因此,它的量子相干性容易受破坏。
欧姆导体 欧姆导体的长度应远大于一下

三个特征长度:
电子的德布罗意波长——与电 子的动量有关 平均自由程——电子初始动量 破坏之前电子运动的距离。 相位弛豫长度——电子的初始 相位破坏之前运动的距离。

介孔氧化铝及其前体的晶体结构与表面化学的研究进展

介孔氧化铝及其前体的晶体结构与表面化学的研究进展
[ Abstract] R esearch pro gresses in crystal structure and surface chem istry o f m esoporous a lum ina and its precurso r w ere rev iew ed. S tarting from the m ain synthet ic route s of m esoporous a lum ina, its con tro lled synthesis w as sy stem ically summ arized. In addit ion, new varieties o f m esoporous a lum ina w ith o rdered po res d ifferen t m orpho lo g ies and nano cry sta lline a lum ina a ssem blies w ere in troduced in detai.l T he crystal g row th and contro l strateg ies, and the surface a lum inum m icro env ironm en t and the surface hydroxy l groups w ere discussed in deta i.l H o t issue s and research opportunities in th is f ield w ere pro spected, and the sugg estion o f streng then ing re search in the a lum ina m eso lev el w as propo sed. [ K eywords] m esoporous alum ina; m esopo rous a lum ina precurso r; cry stal structure; surface chem istry
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cite this:Chem.Soc.Rev .,2011,40,5347–5360Mesocrystals:Syntheses in metals and applicationsJixiang Fang,*a Bingjun Ding a and Herbert Gleiter bReceived 16th February 2011DOI:10.1039/c1cs15043jSelf-assembly of nanoparticles has emerged as a powerful technique to integrate nanoparticles into well-defined ensembles with collective properties that are different from those of individual nanoparticles and bulk materials with the same chemical pared with the classical ion/molecule-mediated crystal growth,particle-mediated crystallographically ordered self-assembly is considered as ‘‘non-classical crystallization’’and the resultant product is termed a ‘‘mesocrystal’’.In this tutorial review ,we begin by summarizing the progresses of this field during last decade.Secondly,we outline developments in related fields such as grain rotation and oriented attachment as well as mesocrystals.Thridly,the recent progress in the syntheses ofmesocrystals particularly in metals,and the related properties are introduced.Finally,some of the current open questions are discussed.1.IntroductionNanomaterials,characterized by having at least one dimension between 1and 100nm,may display unique effects such as size effects,shape effects,surface effects,interface effects,structural effects,etc.Accordingly,they may exhibit a range of remark-able properties in catalysis,electronics,information storage,magnetism,etc.These novel properties and the resulting conceivable technological applications of nanomaterials are determined by a series of physical parameters that may include their size,shape,chemical composition,morphology,topo-graphy as well as their atomic structure (e.g.,their crystal-linity).In recent years,the successful synthesis of a great number of nanomaterials with a variety of well-defined physical parameters via various physicochemical routes has been reported.1Among these approaches to synthesize nano-materials,the solution-phase method is a very robust one to tailor physical parameters as mentioned above hence the related properties.The exact control of physical parameters is primarily achieved by means of a solution reaction via the soft or hard templates,reagent chemisorption,and minimization ofaState Key Laboratory for Mechanical Behavior of Materials,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter,School of Science,Xi’an Jiaotong University,Shaan Xi,710049,People’s Republic of China.E-mail:jxfang@;Tel:+86-29-82665995bKarlsruhe Institut fu ¨r Technologie (KIT),Institut fu ¨r Nanotechnologie,Karlsruhe 76021,GermanyJixiang FangJixiang Fang was born in 1976in LiaoNing,China.He received his PhD (2007,under the supervision of Professor B.J.Ding)in Materials Science at Xi’an Jiaotong University,China.He then spent one year as a postdoctoral fellow at the Institute of Nanotechnology (INT),Karlsruhe Institute of Technology (KIT)in Germany.In 2009,he worked with Prof.H.Gleiter as an Alexander-von-Humboldt scholar in INT (KIT).In 2010,he took up an appointment with a Professor ofMaterials Physics at Xi’an Jiaotong University.Now he is a ‘‘Tengfei’’chair professor.His research has involved crystal growth,electrochemical deposition,optical properties of nanocrystals and mechanical properties of nanoamorphous materials.Bingjun DingBingjun Ding was born in 1946.He received his BS and PhD in Materials Science and Engineering from Xi’an Jiaotong University in 1981and 1990,respectively.In 1993he worked in a High Temperature Laboratory at the University of Minnesota as a Senior Visiting Scholar.He was the Editor-in-Chief of the book entitled ‘‘Nanostructured Materials’’published by China Machine Press in 2004.Now he is a Professor for Advanced Materials in the State KeyLaboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Shaanxi Province,China.His research interests include electrical contact materials,vacuum arcs and their applications,plasma coatings and nanostructured materials.Chem Soc RevDynamic Article Links/csrTUTORIAL REVIEWD o w n l o a d e d b y D o n g h u a U n i v e r s i t y o n 30 D e c e m b e r 2011P u b l i s h e d o n 19 J u l y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15043JView Online / Journal Homepage / Table of Contents for this issuesurface energy of crystallographic facets (i.e.,by utilizing the Wulff’s theorem).In the previous literature,the resulting physical parameters,e.g.,the shape or the morphology of the crystallized structures were interpreted by means of the classical crystallization models.2The classical atom-mediated crystallization process starts from the aggregation of primary building blocks like atoms,ions or molecules,and forms so-called critical crystal nuclei.These nuclei grow further via classical atom-by-atom (or ion/molecule)attachment.The same materials can exhibit different crystal shapes or morphologies,albeit the shape of inorganic crystals is often related to the intrinsic nuclei structure.This feature is partially determined by different surface energies of crystal surfaces with different crystallo-graphic orientations.On the other hand,the growth condi-tions, e.g.,the growth rate of a crystal face,may also significantly influence the final morphology if the same growth mechanism applies.Crystal faces with high surface energies exhibit the fastest growth rates.As a consequence,they are minimized or even disappear in the final morphology.This is the classical Wulff’s rule which determines the equilibrium morphology of a crystal as being given by the minimum surface energy of all exposed crystal faces.3However,this purely thermodynamic model is not able to predict the correct crystal morphology in all cases,particularly in a kinetic driving system.Recently,a new growth mechanism,i.e.the non-classical particle-mediated crystallization pathway was deduced by Co lfenet al.from biomineralization processes.4This mechanism is based on an oriented attachment mechanism (OA)5and a grain rotation process.6This particle-by-particle growth process always involves the oriented attachment and/or grain rotation of the building units and results in the formation of so-called‘‘mesocrystals’’via the mesoscale transformation.Mesocrystals are ordered mesoscale superstructures composed of individual nanocrystals that are aligned along a common crystallographic direction,exhibiting scattering properties similar to the ones of a single crystal.7With the appearance of the mesocrystal concept,attention has been directed toward the investigations in various systems.The mesoscale transformation process seems to be relevant in many cases:for example,Ag 2O,8Cu 2O,9ZnO,10TiO 2,11AgInWO 412,13Calcium carbonate,14,15PdSe,16even in pure metals,Au 17and Ag.18,19In previous review papers,the syntheses of mesocrystals in oxides and various compounds had been reported.20–22However,the corresponding reviews for metallic materials and the related properties,in particular those originating from the mesostructures,were quite rare.In fact,owing to the unique structural characteristics,e.g.,the tunable surface roughness and topography,the small size of their building blocks (in the 10nm range)as well as the high level of internal porosity,mesocrystals are well suited for many applications such as catalysts,sensors,and optical devices.In sensor applications,the sensitivity of the materials may be modified by the packing style of atoms.For example,ZnO colloidal clusters,owing to abundant inter-cluster porosity and internal surface area,possess a high concentration of surface and subsurface oxygen vacancies,which result in a strong green-yellow emission and high sensitivity for humidity measure-ments at room temperature.10In this tutorial review,we briefly summarize the history of the particle-mediated meso -assembly,describe the recent advancements and achievements made on the syntheses of metallic mesocrystals,illustrate the properties and applications of the mesostructures,but not limited to metals owing to relative reports are just emerging,and finally discuss our predictions for further development in this field.2.History2.1Grains rotationIn the early 1970s,a considerable amount of experimental and theoretical evidence was presented,suggesting that the structures and properties of grain boundaries in metals depend on the orientation relationships between the boundaries and the boundary inclination.In particular,a number of special misorientations have been identified that result in boundaries with special properties such as low energy.These boundaries are frequently referred to as ‘‘special boundaries’’.To verify the existence of these special boundaries,several models 23on grain boundary and experimental evidences 24were reported.An experiment designed by Herrmann et al.was applied to validate the proposed grain boundary models by comparing the predicted and the experimentally observed boundaries of low energy.The experiment is displayed in Fig.1.24The energy–misorientation relationship of grain boundaries in copper and several other materials was measured by recording the rotation of a single crystal sphere of copper sintered on a flat single crystal (Fig.1a and b).The crystal lattices of the spheres and the plate were randomly misoriented at the initial stage.A rotation of the copper ball was achieved by the indicated diffusive flux of atoms,conveying a wedge shapedHerbert GleiterHerbert Gleiter was born in 1938.He obtained his PhD in 1966in physics from the Max Planck Institute of Materials Science and the University of Stuttgart.After working for several years as a research fellow at Harvard University and MIT,he accepted posi-tions as director of the Insti-tute of Materials Physics at the Universities of Bochum,Saarbru ¨cken,the ETH (Swiss Federal Institute of Technol-ogy)Zu ¨rich,and the Univer-sity of Hamburg–Harburg.In1994,the government of Germany appointed him to the Execu-tive Board of the Research Center Karlsruhe,Germany’s largest national laboratory.Four years later,he initiated (together with Noble Laureate J.M.Lehn and D.Fenske)the Institute of Nanotechnology (INT)at the Research Center Karlsruhe.Today,the INT is Germany’s largest research institute in the area of nanotechnology.He is a member of the National Academy of Sciences of Germany,the United States National Academy of Engineering,the American Academy of Arts and Sciences,the European Academy of Sciences,and the Indian National Academy of Engineering.D o w n l o a d e d b y D o n g h u a U n i v e r s i t y o n 30 D e c e m b e r 2011P u b l i s h e d o n 19 J u l y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15043Jpiece of material from the left part of the boundary into the right part (Fig.1c).The results suggested that low-energy boundaries may exist at non-high-coincidence orientation relationships.The shape of the energy–misorientation curve in the vicinity of an energy cusp might have the shape of a trough or a ‘‘V’’with an obtuse angle at the tip (Fig.1d).The observations supported a grain boundary model based on a periodic arrangement of structural units.23In the following decades,grain-boundary curvature-driven grain growth in polycrystalline materials was extensively studied,contributing to a new growth mechanism:grain-rotation-induced grain coalescence.25According to this mechanism,the rotation of grains among neighboring grains results in a coherent grain–grain interface (the grains share the same crystallographic orientation),which leads to the coalescence of neighboring grains via the elimination of common grain boundaries,thus forming a single larger grain.It is noted that a similar experiment with the one designed by H.Gleiter’s group (Fig.1)was carried out by Yeadon et al.in 1998on a length scale of several orders of magnitude smaller for Ag nanoparticles (5–20nm in diameter)deposited onto clean Cu.26They observed a process called ‘‘contact epitaxy’’.The Ag nanocrystals were initially randomly oriented but subsequently aligned epitaxially with the substrate.Once aligned with the substrate,the nanocrystals were also aligned with each other.In a series of simulations,Averback et al.showed that the process may occur as follows.26After the nanocrystals have ‘‘landed’’on the substrate,the stress between the nanocrystals and the substrate creates a dislocation within the nanoparticle.As this dislocation moves toward thenanocrystal surface,the particle ‘‘rotates’’,resulting in full alignment with the substrate.2.2Oriented attachmentThe understanding of the physics involved in the formation of a nanocrystal is of fundamental interest.According to the traditional models,individual atoms or molecules are added or subtracted as the crystal grows or shrinks.Crystal coarsening has been described in terms of the growth of large particles at the expense of small particles,driven by surface energy reduction.This is called Ostwald ripening (OR).In 1998,based on the observations of coarsening processes during the hydrothermal synthesis of anatase TiO 2nanocrystals,27Penn and Banfield proposed a new class of crystallization mechanism,in which the natural minerals also grow through a process of ‘‘oriented attachment’’(OA)of nanocrystals.The so-called oriented attachment mechanism describes the spontaneous self-organization of adjacent particles,so that they share a common crystallographic orientation,followed by the joining of these particles at a planar interface.The process is parti-cularly relevant in the nanocrystalline regime,where bonding between the nanoparticles reduces the overall energy by decreasing the surface energy associated with unsatisfied bonds.This observation is very important for the creation of advanced artificial materials.2.2.1OA and OR.Since the classical OR model of particle coagulation was renewed by the proposal of OA growth mechanism to explain deviations between experimental results and theoretical models,several studies have been devoted to investigate their correlations during the coarsening of nano-particles.For example,kinetic models were developed for various systems such as multistep models or collision models in liquid suspension,air,or vacuum or on free surfaces.Although the resulting theoretical models cannot yet account for all experimental observations,the proposed process seems to be common to most experiments.By means of calculating the average particle sizes and the observation via the transmission electron microscopy (TEM),Huang 28and coworkers found that OA and OR crystal growth mechanisms occurred simultaneously.29In the early stages of the crystal growth,OA mechanism may occur predominantly.With an extended reaction time,OR can,to some extent,play an important role to assist the process of OA in forming final single crystals.These results are consistent with the observation in our previous experiments upon the conversion from silver dendritic mesocrystals to single crystals.30The morphologies and structures of the products depend on the different operating mechanisms of OA or OR.Twins,dislocations and stacking faults are frequently observed when a growth process is dominated by the OA mechanism.The growth of these defects is in line with the predicaton in OA-based growth involving the assembly of microstructurally different particles.In addition to the structural defects,OA may also result in irregular and rough surfaces owing to particle-by-particle aggregation,while OR prefers to remove the irregula-rities arising from OA and hence tends to yield rounded and smooth particles if it operates simultaneously with OA.30Furthermore,after the OA step,the loose ‘‘raw’’structuresFig.1(a)SEM image showing the lateral arrangement of the single crystal copper balls on the single crystal copper plate.(b)An indivi-dual ball sintered onto the plate.(c)Schematic diagram showing a grain boundary formed by sintering a ball onto a plate.The crystal lattices of the ball and the plate are misorientated initially.A rotation of the ball may be achieved by the indicated diffusive flux of atoms removing a wedge shaped piece of material from the left part of the boundary and inserting it into the right part.(d)Schematic curve of the grain boundary energy per unit area versus tilt angle.Ref.24,copyright 1976,reproduced with permission from Elsevier.D o w n l o a d e d b y D o n g h u a U n i v e r s i t y o n 30 D e c e m b e r 2011P u b l i s h e d o n 19 J u l y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15043Jaggregated via the OA mechanism may also be further crystal-lized and gradually transformed into densely packed ones through OR processes.In addition,with the assistance of surfactants or the intrinsic crystal structure,the OA mechanism can be a more effective way of producing anisotropic morpho-logies.In contrast,OR seems to create the isotropic structures by the dissolution/precipitation of ions in solution.2.2.2OA and grain rotation.As described above,grain-rotation-induced grain coalescence in polycrystalline bulk materials has been widely investigated up to now.In fact,grain rotation in nanometre-sized grains in solution may be significantly easy in comparison to the same process in poly-crystalline bulk material.In a bulk polycrystalline material,the rotation of one grain may be restricted by neighboring grains.The grain rotation has been shown to play a crucial role in grain growth processes.Moreover,it was shown that the grain rotation may be coupled with grain boundary migration.If the growth process occurs in a liquid medium via a particle-by-particle mode,freely standing nanoparticles could easily arrange themselves into the form of elongated single crystals.For example,nanocrystal growth based on grain rotation among neighboring grains was frequently observed in the case of colloidal nanocrystal systems such as PbSe (Fig.2a),31SnO 2,32CdSe 33and ZnS.34In all cases the process was reported to result in a coherent grain–grain interface by eliminating common boundaries,so that neigh-boring grains coalesce and thereby form larger nanocrystals.Recently,Moore et al.35designed a two-dimensional colloidal system to directly observe the process of grain rotation-induced grain coalescence during heating as shown in Fig.2b.The average time required for the annealing process was found to be in good agreement with theoretical predictions.Except for grain-rotation-induced formation of single crystals,a crystal-lization process of the amorphous phase may also occur.For instance,sea urchin spine calcite forms via a crystallization process of amorphous calcium carbonate phase 36(Fig.2c).Similarly,Ag crystals formed by the crystallization of amor-phous matrix were found to rotate,realign and finally form a single crystalline nanostructure.37Several different interpretations have been suggested to explain the driving force for the nanoparticle rotation.For example,in the case of the highly dispersed nanocrystals,the realignment of different nanoparticles was found to occur by collision processes.32These processes were observed in liquid as well as in gaseous environments.In fact,two kinds of collisions were found to play a role:collisions between crystals with different or the same crystallographic orientations.In the former case,coalescence does not occur and the process seems purely elastic.In the latter,a new single crystal is resulted.On the other hand,the realignment of particles in contact can be much more effective than oriented collision-induced attachments.38In this situation,the grain rotation induced grain coalescence is directly related to the reduction of interfacial energy.The energy reduction upon particle align-ment was calculated and experimentally confirmed.39In fact,the energy of grain boundaries is well established to increase rapidly with increasing angle of misorientation in the range of 0–151.Boundaries with an angular mismatch of more than 151have practically the same energy as randomly oriented poly-crystals.These results are in good agreement with the experi-mental results reported by H.Gleiter’s group,as shown in Fig. 1.23,24Additionally,imperfect oriented attachment coupled with interparticle forces,e.g.,electrostatic interactions or polarization forces,can also result in the small angle grain rotation.31,332.2.3Artificial syntheses of nanocrystals via OA mechanism.Since Lee and Banfield presented this new crystal growth mechanism,termed as ‘‘oriented attachment’’,this process has been utilized in several studies to synthesize nanocrystalline materials.Fig.3summarizes the formation of nanowires,nanorods and nanoplates through 0D1D,0D2D,1D1D or 1D2D self-assembly plex 3D architectures have also been explored by this self-assembly mechanisms through various assembly routes,for instance,hollow octahedra through 0D2D3D,‘dandelion’-like spheres through 1D2D3D as well as ellipsoidal nanoparticles through 0D3D methods.15,40However,most of the earlier reports of the synthesized nano-crystals via the OA process were performed by an empirical approach in the sense that materials were synthesized first and subsequently the OA mechanisms were suggested.Therefore,an intentional design to artificially synthesize nanocrystals via the OA process is quite rare.It should be pointed out,however,that examples of the other approach exist as well.Huang et al.employed mercapto-ethanol or NaOH as a strong adsorbent to ZnS nanocrystals and hindered the OR growth process,and thus finally obtained the nanocrystals via OA-dominated growth,containing a large number of internal lattice defects.41Recently,usingFig.2(a)Representation of the mechanism via a grain rotation induced grain coalescence.Arrows in the second block illustrate the rotation between grains.Ref.31,copyright American Chemical Society.Adapted with permission.(b)A typical annealing process,showing the two grains with different orientations merging to form a gain boundary,before rotation to form a crystal with a single orienta-tion.Ref.35,copyright American Chemical Society.Reproduced with permission.(c)Evolution of the crystalline structure inside the amorphous phase assembly of polystyrene spheres.Reprinted with permission from ref.36.Copyright 2007,American Chemical Society.D o w n l o a d e d b y D o n g h u a U n i v e r s i t y o n 30 D e c e m b e r 2011P u b l i s h e d o n 19 J u l y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15043Jdifferent concentrations of surface-capped CdS quantum dots (QDs)as a precursor,they created the OA or OR dominated growth processes.Although the factors that determine the appearance of the OA or OR growth mechanism are compli-cated and not simply attributed to the initial concentration of QDs,they suggested that,in the high-concentration system,the density of the surfactant on CdS QDs was high,thus the OA process was more favored than the OR.42The application of agents attaching to the free surfaces seems to be an effective approach to achieve the artificial syntheses of 2D OA nanostructures.Recently,Schliehe et al.synthesized ultrathin PbS nanosheets by a 2D oriented attachment mechanism.The selectively dense packing of oleic acid ligands on {100}facets of PbS resulted in the oriented aggregation of 2D network of PbS nanoparticles and finally the ultrathin nanosheets via the particle–particle fusion process.43The schematic illustration of the formation of large nanosheets and the corresponding TEM images of ultrasmall PbS nanosheets are indicated in Fig.4.Huang et al.synthe-sized freestanding hexagonal Pd nanosheets that were less than ten atomic layers in thickness by a CO-confined growth method.44The use of CO is critical for the growth of ultrathin palladium nanosheets.Without CO,the products contain only twinned nanoparticles.Although the importance of surfactants such as poly(vinylpyrrolidone)(PVP)in producing Pd nanosheets has been suggested in previous literature,researchers believe that the strong adsorption of CO mole-cules on the basal (111)planes of Pd nanosheets prevents the growth along the [111]direction and directs the formation of the sheet-like nanostructures.2.3Nanoparticle superlatticeBefore introducing the concept of mesocrystals and meso-superstructures,we would like to briefly describe another single crystal-like superstructure—the nanoparticle (NP)superlattice,which exhibits similar structural characteristicsto mesocrystals.The crystallization of matter on any length scale,from atoms and ions to biomolecules to nano-and microparticles,is of great interest for the development of new materials with potential applications in many areas such as optoelectronics,high-density data storage,catalysis,molecular electronic architectures,and biological sensing.45To date,methods for the crystallization of 2D and 3D NP superlattices have been explored utilizing the differences in sizes of component particles and the interparticle interactions via attractive forces such as van der Waals forces,the entropic effect,electrostatic forces,steric repulsion,polarization forces,hard-sphere interactions,Debye screening,small-molecule or polymer capping,hydrogen bonding,and even DNA linking strategies.45However,a major challenge still remains:the inability to prepare NP superlattices with well-defined sizes and shapes.46This is mainly attributed to the fact that the intricate fundamentals of the attractive interactions between nanoparticles in a crystal are still not understood in depth.Along these lines the following achievements should be noted.Kalsin et al.investigated self-assembly of charged,equally sized metal nanoparticles of two types (gold and silver)and obtained large,diamond-like crystals with various morphologies—including octahedral,truncated tetrahedral,truncated and twinned octahedral,and triangular,which are identical to those observed for their macroscopic diamond or sphalerite (ZnS)counterparts (Fig.5).47It was found that the formation of these non-closed-packed structures was a con-sequence of electrostatic effects specified to the nanoscale,where the thickness of the screening layer was commensurate with the dimensions of the assembling objects.By utilizing the electrostatic stabilization of larger particles aggregated by smaller ones,better-quality crystals can be obtained from more polydisperse nanoparticle solutions.Similarly,other shapes of NP superlattices have also been obtained in different materials such as Au triangles 48and AuAg core-shells.49According to the observations reported so far,the atom-mediated and nanoparticle-mediated assembly seems to beFig.3Various organizing schemes for self-construction of nano-structures by oriented attachment mechanism.Fig.4Schematic formation of large-particle PdS nanosheets ref.43,copyright 2010,.Reproduced with permission.D o w n l o a d e d b y D o n g h u a U n i v e r s i t y o n 30 D e c e m b e r 2011P u b l i s h e d o n 19 J u l y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15043Jbased on similar physical principles.This argument is further supported by a recent study reported by Rupich et al.50Twinning in atomic-mediated clusters and crystals has been a subject of intense study during the past few decades.In Rupich’s work,NP superlattices aggregated by small (o 4nm)PbS nanocrystals exhibited no twins.On the other hand,owing to the twinning energy in a nanocrystal super-lattice the twin density is strongly size-dependent.In fact,superlattices of large (47nm)PbS nanocrystals form multiply twinned face-centered cubic structures with decahedral and icosahedral symmetry,exhibiting crystallographically forbidden five-fold symmetry elements.2.4Mesocrystal and mesotransformationMesocrystals represent a separate group of colloidal crystals formed via the particle-mediated non-classical crystallization pathway,the so-called mesoscale transformation process.Despite the numerous studies carried out so far,there are currently still many open questions.For example,what is the actual internal structure of various materials?Different systems possess different driving forces that result in different final structures:single crystals,mesocrystals or polycrystals.On the other hand,a strong driving force can also accelerate the crystallographic fusion of the oriented nanocrystalline building units and promote the transition from mesocrystals to single crystals.Recently,a comprehensive review article was presented by Song et al.,51in which the ‘‘mesocrystals’’were defined as 3D ordered nanoparticle superstructures.In fact,mesocrystals should not be only restricted into 3D structures.The 2D or 1D mesostructures with single crystallographic characteristics may equally well be summarized as 2D or 1Dmesocrystals.Although several reasons explaining the mutual alignment of nanoparticles to a mesocrystal have been reported,51the formation mechanisms of 3D mesocrystals are largely unexplored.Hence,2D or 1D mesocrystals may be useful model systems to understand the 3D ordered align-ment processes.In addition,similar to the artificial syntheses of nanocrystals via the OA mechanism,artificial syntheses of mesocrystals with controllable dimensions and well-defined shapes or morphologies are still very difficult on the basis of our current existing knowledge.Therefore,a systematic strategy to investigate the growth mechanism,artificially synthetic conditions and novel properties of mesocrystals needs to be proposed in the future efforts.2.4.1Structural characteristics of mesocrystals.Mesocrystals usually demonstrate some intrinsic features such as rough surface,high internal porosity,small size of building block,single crystalline structure,high densities of crystalline defects and complex morphologies.However,these characteristics may vary depending on the chemical composition of materials and reaction environments.In this regard,it seems to open the way to numerous opportunities for tailoring the structures and hence all structure-dependent properties of mesocrystals.Nanoparticles,as the building units,can also aggregate into mesocrystals with different shapes such as spheres,plates,wires or hierarchical morphologies,even within the same materials.For example,well-defined hexagonal twinned plate-like ZnO mesocrystal is built by the stacking of nanoplates.52The irregularly edged nanoplates can adjust themselves to each other throughout the microcrystal,resulting in a roughly hexagonal edge.From TEM and HRTEM images of the hexagonal ZnO mesocrystal,three levels of hierarchies have been deduced:nanoparticles with particle size around 20nm,nanoplates consisting of nanoparticles and hexagonal ‘‘single crystals’’formed by the stacking of well-aligned nano-plates.One can find that the self-assembly process results in microvoids.In fact,during the nanoparticle mediated trans-formation process,some structural features such as the size of building block,internal porosity and defects may be different even if the primary nanoparticles are initially not connected.Crystallographic fusion of nanoparticles rather than a dissolution–recrystallization mechanism is suggested to be responsible for the final porous nature of the single crystalline domains,which would not occur upon redissolution-reprecipitation in the absence of a porogen.Although the structures of mesocrystals have been charac-terized in recent years by different approaches for various reaction systems,it is still an open question to understand how reaction environments influence the structures of mesocrystals and how the structural features vary during the coarsening process.In the future,this could be a critical work because these structural parameters determine the practical applica-tions of mesocrystals.2.4.2Meso-intermediates transformation from mesocrystals to single crystals.The existing results imply that a mesocrystal is more a kinetic,metastable intermediate than a thermo-dynamically stable product.This may be one of the reasons why mesocrystals were only discovered rather recently althoughFig.5Different morphologies of the AuMUA-AgTMA crystals.Ref.47copyright 2006,.Reproduced with permission.D o w n l o a d e d b y D o n g h u a U n i v e r s i t y o n 30 D e c e m b e r 2011P u b l i s h e d o n 19 J u l y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15043J。

相关文档
最新文档