有理数乘除法练习题小条
七年级上册数学同步练习题库:有理数的乘除法(简答题:一般)

有理数的乘除法(简答题:一般)1、用简便方法计算:2、计算(1)简便计算:(2)计算:(3)先化简再求值:,其中x=,y=23、规定一种新的运算:a★b=a×b-a-+1.例如:3★(-4)=3×(-4)-3-+1.请用上述规定计算下面各式:(1)2★5;(2)(-2)★(-5).4、阅读材料题:式子“1×2×3×4×5×…×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5×…×100”表示为n,这里“π”是求积符号.例如:1×3×5×7×9×…×99,即从1开始的100以内的连续奇数的积,可表示为(2n﹣1),又如13×23×33×43×53×63×73×83×93×103可表示为n3,通过对以上材料的阅读,请解答下列问题:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为;(2)1×××…×用求积符号可表示为;(3)计算:(1﹣).5、在某地区,高度每升高100米,气温下降0.8 ℃.若在该地区的山脚测得气温为15 ℃,在山顶测得气温为-5 ℃,你能求出从山顶到山脚的高度吗?6、探索规律:将连续的偶2,4,6,8,…,排成如下表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.7、已知:是最小的正整数,是最大的负整数,是的倒数.(1)直接写出:,,;(2)求的值.8、计算(1)(2)(3)(4)9、(1)计算(2)(3)(4)(用简便方法)10、已知,m、n互为相反数,p、q互为倒数,的绝对值为,求的值.11、阅读材料:对于任何数,我们规定符号的意义是.例如:. (1)按照这个规定,请你计算的值.(2)按照这个规定,请你计算当时,值.12、某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2g,现记录如下:(2)若标准质量为100g/袋,则这次抽样检测的总质量是多少克?13、小刚在课外书中看到这样一道有理数的混合运算题:计算:她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题。
有理数的乘除法(知识点、例题、练习)

第一章有理数1.4 有理数的乘除法一、知识考点知识点1【有理数的乘法】1、有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同 0 相乘,都得 0;(3)多个有理数相乘:、a:只要有一个因数为 0,则积为 0。
b:几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数,则积为负,当负因数的个数为偶数,则积为正。
(奇负偶正)2、乘法运算律:(1)乘法交换律:两个数相乘交换因数的位置,积不变,即ab = ba ;(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即(ab)c=a(bc);/(3)乘法分配律:一个数同两个数的和相乘,等于这个数分别同两个数相乘,再把积相加,即a(b + c) = ab + bc 或a(b −c) = ab −ac 。
3、倒数(1)乘积为1的两个数互为倒数。
(2)0没有倒数,1的倒数是它本身。
;若ab=1,则a、b互为倒数(3)若a≠0,那么a的倒数是1a|相关题型:【例题 1】、【例题 2】、【例题 3】知识点2【有理数的除法】1、有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数。
(b≠0)a÷b=a·1b2、确定符号:两数相除,同号得正,异号得负,并把绝对值相除。
*3、0 除以任何一个不等于0的数,都得 0。
(0 不能作除数)相关题型:【例题 4】知识点3【乘除混合运算】乘除混合运算方法:先把乘除混合运算转化成乘法,然后确定积的符号,最后求结果相关题型:【例题 5】<知识点4【加减乘除混合运算】先算乘除后算加减,有括号的先算括号,有时也可以用简便算法.相关题型:【例题 6】二、例题与解题思路汇总。
【例题 1】(1)(-5)×(-3)(2)(-7)×4〖解析〗考察对有理数乘除法计算规则的探究,由此可推理出有理数乘法的运算规则是同号得正,异号得负〖答案〗(1)(-5)×(-3) (两个乘数同号)解:原式=+(5×3)(积取+号,把绝对值相乘)=15^(2)(-7)×4(两个乘数异号)解:原式=- (7×4) (积取-号,把绝对值相乘)=-28【例题 2】计算下列各式,并找出积的符号有什么规律?(1)-10×0.1×1×2×3×4=_________(2)-10×(-0.1)×1×2×3×4=_________^(3)-10×(-0.1)×(-1)×2×3×4=_________(4)-10×(-0.1)×(-1)×(-2)×3×4=_________(5)-10×(-0.1)×(-1)×(-2)×(-3)×4=_________(6)-10×(-0.1)×(-1)×(-2)×(-3)×(-4)=_________(7)7.8×(-8.1) ×0×(-19.6)=_________〖解析〗①一般地,几个不等于 0 的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有理数乘除法及乘方经典例题和课后练习

一、有理数乘法1. 有理数乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.例1: (1)(—3)X 9(2)(-12)X(-2)(3)3 591654(4) 56 4 1(5)(-2012)X(+ 8)X 0X(-5 40.5 )X( - 1999)2、倒数(1) 定义:乘积为1的两个有理数数互为倒数。
倒数不能独立存在。
1(2) 若a^0,则a的倒数是匚,0没有倒数;a若a、b互为倒数,则ab=1;倒数为本身的数是土 1.(一个数的倒数与原数的符号是一致的).例2:倒数是3的数是 ____ ; a+b (a+b M 0)的倒数是.例3: a与b互为相反数,x与y互为倒数,c的绝对值等于2,求a|b +xy- 1c.3、有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定•当负因数有奇数个时,积为负;当负因数有偶数个时,积为正•再把绝对值相乘.(2)几个有理数相乘,有一个因数为0,积就为0.注意:进行有理数乘法运算时先定符号后定值; 第一个因数是负数时,可省略括 号.例如:判断下列算式积的符号并计算结果:(1)3 X (-5) X (-2) ;(2)3 X (-5) X (-2)X (-4);(3) -3 X (-5) X (-2) X (-4) X (-3) X (-6) ; (4)(-2) X (-3) X 0X (-4);4、有理数的乘法运算律小学学习的乘法运算律(交换律、结合律、分配律)都适用于有理数乘法.计算 下列式子比较可以说明:(1) 5 X (-6) ,(-6) X 5;(2)[ 3X (-4) ]X (-5) ,3X[ (-4) X (-5) ];(3)5 X[ 3+(-7)], 5X 3+5X (-7)11 6 + 12 ) X (-24)⑶ 5 X (-11 )-(-6) X (-11 )-1 172二、有理数的除法有理数的除法法则:(1)除以一个不等于0的数等于乘以这个数的倒数,即 a 十例 4.(1)4 X (- 0.17) X( -25)⑵( 1361b=a x (b^ 0)b(2)两数相除,同号得正,异号得负,并把绝对值相除.(3)0除以任何一个不为0的数,都得0.注意:1.0不能做除数;2.做有理数的除法运算时,一般的,不能整除的情况下, 应用法则(1),能整除时,应用法则(2); 3.有理数的除法是有理数的乘法的逆运算。
有理数的乘除法练习题

有理数的乘除法练习题一、选择题(每题2分,共20分)1. 下列哪个选项是正确的有理数乘法运算结果?A. -3 × 2 = -6B. 5 × (-4) = -20C. 0 × 8 = 8D. -2 × 0 = 22. 两个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定3. 一个正数与一个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定4. 下列哪个选项是正确的有理数除法运算结果?A. -12 ÷ 3 = 4B. 24 ÷ (-6) = -4C. 0 ÷ 8 = 0D. -18 ÷ (-9) = 25. 两个有理数相除,如果除数是负数,商的符号与:A. 被除数相同B. 被除数相反C. 除数相同D. 除数相反6. 如果一个数除以1,其结果是:A. 该数的相反数B. 该数本身C. 零D. 无法确定7. 一个数除以它的相反数的结果是:A. 1B. -1C. 0D. 无法确定8. 下列哪个选项是错误的有理数乘除法运算结果?A. -5 × 2 = -10B. 6 ÷ (-2) = -3C. 0 × 0 = 0D. -8 ÷ 4 = 29. 两个数相除,如果被除数和除数都是正数,商的符号是:A. 正数B. 负数C. 零D. 无法确定10. 一个数除以它本身(不为零),其结果是:A. 1B. -1C. 0D. 无法确定二、填空题(每题2分,共20分)11. 计算:(-4) × 5 = ______12. 计算:(-3) ÷ 3 = ______13. 计算:0 × (-7) = ______14. 计算:9 ÷ (-6) = ______15. 计算:(-2) × (-3) = ______16. 计算:(-12) ÷ 4 = ______17. 计算:(-1) × 0 = ______18. 计算:7 ÷ 1 = ______19. 计算:(-5) ÷ (-5) = ______20. 计算:(-8) × 8 = ______三、计算题(每题5分,共30分)21. 计算下列表达式的值:-3 × 4 + 2 × (-5)22. 计算下列表达式的值:(-6) ÷ 2 - 3 × 223. 计算下列表达式的值:0 × (-7) + 5 ÷ (-1)24. 计算下列表达式的值:(-4) × (-3) ÷ 12 - 225. 计算下列表达式的值:(-2) × 3 + 4 ÷ (-2)26. 计算下列表达式的值:(-5) ÷ 5 × 10 - 3四、解答题(每题10分,共30分)27. 一个数的相反数是-15,求这个数。
有理数的乘除法练习题(含答案)

第一章有理数1.4 有理数的乘除法1.计算12–12×3的结果是A.0 B.1 C.–2 D.–1 2.若等式–2□(–2)=4成立,则“□”内的运算符号是A.+ B.–C.×D.÷3.计算1–(–2)×(–2)÷4的结果为A.2 B.54C.0 D.34-4.|–13|的倒数是A.13B.3 C.–13D.–35.–0.3的倒数是A.10.3B.−10.3C.103D.−1036.2×(–3)=__________.7.计算:523()12 1234+-⨯.8.计算:22 (7)()7-⨯-.9.计算:34(7)(2) 25-÷-⨯+.10.计算:236(3)2(4)-⨯-+⨯-.11.12()2⨯-的结果是A.–4 B.–1 C.14-D.3212.计算:740(16) 2.54÷--÷=A.–1.1 B.–1.8 C.–3.2 D.–3.9 13.下列各数中,与–2的积为1的是A.12B.–12C.2 D.–214.计算11(6)()666⨯-÷-⨯的值为A.1 B.36 C.1-D.+615.计算(1+14+56−12)×12时,下列可以使运算简便的是A.运用乘法交换律B.运用加法交换律C.运用乘法分配律D.运用乘法结合律16.在–3,–2,–1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是__________.17.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=__________.18.计算:5 (8)[7(3 1.2)]6-⨯-+-⨯.19.计算:11336()964⨯--.20.计算:11 (1)(9)()32-⨯-÷-.21.(–0.25)×(–79)×4×(–18).22.计算:12112 ()() 3031065-÷-+-.23.计算:(14+512–56)×(–60).24.阅读后回答问题:计算(–52)÷(–15)×(–115)解:原式=–52÷[(–15)×(–115)]①=–52÷1②=–52③(1)上述的解法是否正确?答:__________;若有错误,在哪一步?答:__________;(填代号)错误的原因是:__________;(2)这个计算题的正确答案应该是:25.(2018•陕西)–711的倒数是A.711B.−711C.117D.−11726.(2018•吉林)计算(–1)×(–2)的结果是A.2 B.1 C.–2 D.–3 27.(2018•遂宁)–2×(–5)的值是A.–7 B.7 C.–10 D.10 1.【答案】D【解析】111323===122222-⨯---,故选D.2.【答案】C【解析】–2×(–2)=4.故选C.3.【答案】C【解析】1–(–2)×(–2)÷4=1–4÷4=1–1=0,故选C.4.【答案】B【解析】|–13|=13,13的倒数是3,故选B.5.【答案】D【解析】–0.3=–310,故–0.3的倒数是−103.故选D.6.【答案】–6【解析】根据有理数的乘法法则可得2×(–3)=–6.9.【答案】3 5【解析】3431143(7)(2)()252755-÷-⨯+=-⨯-⨯=.10.【答案】33【解析】236(3)2(4)-⨯-+⨯-2318833=+-=.11.【答案】B【解析】2×(–12)=–(2×12)=–1.故选B.12.【答案】C【解析】原式=575242--÷=572245--⨯=2571010--=3210-=–3.2,故选C.13.【答案】B【解析】∵–2×12=–1,–2×(–12)=1,–2×2=–4,–2×(–2)=4,∴与–2的积为1的是–12.故选B.14.【答案】B【解析】首先确定积的符号,然后将除法转化为乘法再进行计算.原式=16×6×6×6=36.15.【答案】C【解析】∵算式符合乘法分配律的形式,∴运用乘法分配律可以使运算简便.故选C.16.【答案】30【解析】正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.最大乘积是:(–3)×(–2)×5=3×2×5=30.故答案为:30.19.【答案】–29【解析】11311336()363636462729 964964⨯--=⨯-⨯-⨯=--=-.20.【答案】–24【解析】114(1)(9)()9224323-⨯-÷-=-⨯⨯=-.21.【答案】【解析】原式=–(14×79×4×18)=–14.22.【答案】1 10 -【解析】原式=14114()()30661010-÷+--=151()()3062-÷-=11()()303-÷=1()330-⨯=110-.23.【答案】10【解析】原式=14×(–60)+512×(–60)–56×(–60)=–15+(–25)+50=–40+50=10.24.【答案】(1)不正确;①;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)190.【解析】(1);不正确;错误在第①步;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;25.【答案】D【解析】–711的倒数是–117,故选D.26.【答案】A【解析】(–1)×(–2)=2.故选A.27.【答案】D【解析】(–2)×(–5)=+2×5=10,故选D.。
有理数乘除乘方练习题

一、有理数乘法1. 计算:3 × 42. 计算:5 × (2) × 33. 计算:(2) × (3) × (4)4. 计算:5 × (6) × 75. 计算:(3) × 4 × (2)6. 计算:5 × (2) × (3) × 47. 计算:(3) × (2) × (5) × 48. 计算:6 × (7) × 89. 计算:5 × (3) × 4 × (2)10. 计算:(2) × (3) × (4) × 5二、有理数除法1. 计算:6 ÷ 22. 计算:5 ÷ (3)3. 计算:(2) ÷ (4)4. 计算:6 ÷ (3)5. 计算:5 ÷ (2)6. 计算:(3) ÷ 47. 计算:6 ÷ (2)8. 计算:5 ÷ (3) ÷ 29. 计算:(2) ÷ (4) ÷ (3)10. 计算:6 ÷ (3) ÷ (2)三、有理数乘方1. 计算:(2)^32. 计算:(3)^23. 计算:(4)^34. 计算:(5)^45. 计算:(6)^26. 计算:(7)^37. 计算:(8)^48. 计算:(9)^29. 计算:(10)^310. 计算:(11)^4四、混合运算1. 计算:3 × (2) ÷ 4 + 52. 计算:6 ÷ (3) × (2) 43. 计算:(3)^2 × (2) ÷ 4 + 54. 计算:6 ÷ (3) × (2) ÷ (4) + 75. 计算:(3)^3 ÷ (2) × (4) 56. 计算:6 ÷ (3) × (2) × (4) ÷ (5) + 67. 计算:(3)^2 ÷ (2) × (4) ÷ (5) 78. 计算:6 ÷ (3) × (2) × (4) × (5) + 89. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) + 910. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) + 10一、有理数乘法11. 计算:(7) × 8 × (9)12. 计算:5 × (3) × (2) × 413. 计算:(6) × (5) × 7 × (2)14. 计算:4 × (3) × (2) × 515. 计算:(2) × 7 × (8) × (9)16. 计算:5 × (4) × (3) × 217. 计算:(6) × (7) × 8× (9)18. 计算:3 × 2 × (5) × 419. 计算:(2) × (3) × 6 × (7)20. 计算:5 × (4) × (3) × (2)二、有理数除法21. 计算:12 ÷ (6) ÷ 322. 计算:9 ÷ 3 ÷ (2)23. 计算:(4) ÷ (2) ÷ (3)24. 计算:6 ÷ (3) ÷ (2)25. 计算:5 ÷ 5 ÷ (3)26. 计算:(2) ÷ (4) ÷ (5)27. 计算:8 ÷ (2) ÷ (4)28. 计算:7 ÷ 7 ÷ (3)29. 计算:(3) ÷ (2) ÷ (6)30. 计算:9 ÷ (3) ÷ (2)三、有理数乘方31. 计算:(8)^232. 计算:(5)^333. 计算:(4)^434. 计算:(3)^535. 计算:(2)^636. 计算:(7)^737. 计算:(6)^838. 计算:(5)^939. 计算:(4)^1040. 计算:(3)^11四、混合运算41. 计算:2 × (3) ÷ 4 + 5 × (2)42. 计算:4 ÷ (2) × (3) 6 ÷ 343. 计算:(5)^2 × (3) ÷ 2 + 744. 计算:6 ÷ (3) × (2) ÷ (4) 845. 计算:(3)^3 ÷ (2) × (4) + 546. 计算:6 ÷ (3) × (2) × (4) ÷ (5) 647. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 748. 计算:6 ÷ (3) × (2) × (4) × (5) + 849. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 950. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) 10一、有理数乘法51. 计算:(10) × (5) × 652. 计算:7 × (3) × (2) × 453. 计算:(8) × (9) × 7 × (2)54. 计算:4 × 5 × (3) × 255. 计算:(2) × 7 × (8) × 956. 计算:5 × (4) × 3 × (2)57. 计算:(6) × (7) × 8 × (9)58. 计算:3 × 2 × (5) × 459. 计算:(2) × (3) × 6 × 760. 计算:5 × (4) × (3) × (2)二、有理数除法61. 计算:15 ÷ (5) ÷ 362. 计算:9 ÷ 3 ÷ (2)63. 计算:(4) ÷ (2) ÷ (3)64. 计算:6 ÷ (3) ÷ (2)65. 计算:5 ÷ 5 ÷ (3)66. 计算:(2) ÷ (4) ÷ (5)67. 计算:8 ÷ (2) ÷ (4)68. 计算:7 ÷ 7 ÷ (3)69. 计算:(3) ÷ (2) ÷ (6)70. 计算:9 ÷ (3) ÷ (2)三、有理数乘方71. 计算:(9)^272. 计算:(6)^373. 计算:(5)^474. 计算:(4)^575. 计算:(3)^676. 计算:(8)^777. 计算:(7)^878. 计算:(6)^979. 计算:(5)^1080. 计算:(4)^11四、混合运算81. 计算:3 × (2) ÷ 4 + 6 × (2)82. 计算:4 ÷ (2) × (3) 9 ÷ 383. 计算:(5)^2 × (3) ÷ 2 + 1084. 计算:6 ÷ (3) × (2) ÷ (4) 1285. 计算:(3)^3 ÷(2) × (4) + 15. 计算:6 ÷ (3) × (2) × (4) ÷ (5) 1887. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 2188. 计算:6 ÷ (3) × (2) × (4) × (5) + 2489. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 2790. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) 30一、有理数乘法91. 计算:(12) × (6) × 592. 计算:8 × (3) × (2) × 493. 计算:(9) × (7) × 8 × (2)94. 计算:5 × 4 × (3) × 295. 计算:(2) × 7 × (8) × 996. 计算:5 × (4) × 3 × (2)97. 计算:(6) × (7) × 8 × (9)98. 计算:3 × 2 × (5) × 499. 计算:(2) × (3) × 6 × 7100. 计算:5 × (4) × (3) × (2)二、有理数除法101. 计算:18 ÷ (9) ÷ 3102. 计算:12 ÷ 3 ÷ (2)103. 计算:(6) ÷ (2) ÷ (3)104. 计算:9 ÷ (3) ÷ (2)105. 计算:10 ÷ 5 ÷ (3)106. 计算:(4) ÷ (2) ÷ (5)107. 计算:16 ÷ (4) ÷ (2)108. 计算:14 ÷ 7 ÷ (3)109. 计算:(5) ÷ (2) ÷ (6)110. 计算:15 ÷ (5) ÷ (2)三、有理数乘方111. 计算:(10)^3112. 计算:(7)^4113. 计算:(6)^5114. 计算:(5)^6115. 计算:(4)^7116. 计算:(3)^8117. 计算:(8)^9118. 计算:(7)^10119. 计算:(6)^11120. 计算:(5)^12四、混合运算121. 计算:4 × (3) ÷ 4 + 7 × (2)122. 计算:5 ÷ (2) × (3) 12 ÷ 3123. 计算:(6)^2 × (3) ÷ 2 + 14124. 计算:9 ÷ (3) × (2) ÷ (4) 18125. 计算:(4)^3 ÷ (2) × (4) + 21126. 计算:8 ÷ (3) × (2) × (4) ÷ (5) 24127. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 27128. 计算:7 ÷ (3) × (2) × (4) × (5) + 30129. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 33 130. 计算:8 ÷ (3) × (2) × (4) × (5) × (6) 36答案一、有理数乘法1. 122. 303. 244. 605. 246. 1207. 3608. 969. 12010. 60二、有理数除法1. 32. 5/34. 25. 1/36. 1/57. 3/58. 29. 1/310. 3三、有理数乘方1. 82. 1253. 2564. 2435. 646. 21877. 40968. 5314419. 5904910. 16777216四、混合运算1. 12. 13. 14. 16. 17. 18. 19. 110. 1。
部编数学七年级上册专题04有理数的乘除法(专题测试)(解析版)含答案

专题04 有理数乘除法(专题测试)满分:100分时间:90分钟一、选择题(每小题3分,共30分)1.(2022•张家界)﹣2022的倒数是( )A.2022B.﹣C.﹣2022D.【答案】B【解答】解:﹣2022的倒数是:﹣.故选:B.2.(2022•邢台模拟)计算﹣1的结果是( )A.1B.﹣1C.D.﹣【答案A】【解答】解:原式=(﹣)=1.故选:A.3.一个数的倒数等于﹣,这个数是( )A.﹣2B.C.2D.﹣【答案】A【解答】解:﹣的倒数是﹣2,故选:A.4.(2021秋•青田县期末)若等式♦(﹣3)=1成立,则“♦”内的运算符号是( )A.+B.﹣C.×D.÷【答案】C。
【解答】解:∵,∴A选项不符合题意,∵,∴B选项不符合题意,∵﹣,∴C选项符合题意.故选:C.5.(2021秋•兴山县期末)a,b在数轴上对应的点如图,下列结论正确的是( )A.b﹣a<0B.a+b>0C.ab<0D.ab>0【答案】C【解答】解:根据数轴图知:a<0<b,|a|>|b|.∴b﹣a>0,故选项A不符合题意.a+b<0,故选项B不符合题意.ab<0,故选项C符合题意,选项D不符合题意.故选:C.6.(2021秋•临高县期末)若a+b>0,且ab<0,则以下正确的选项为( )A.a,b都是正数B.a,b异号,正数的绝对值大C.a,b都是负数D.a,b异号,负数的绝对值大【答案】B【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值大,故选:B.7.(2021秋•银川校级期末)已知|x|=3,|y|=7,且x﹣y>0,xy<0,则x+y的值为( )A.﹣10B.﹣4C.﹣10或﹣4D.4【答案】B【解答】解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵x﹣y>0,xy<0,∴x=3,y=﹣7,∴x+y=3+(﹣7)=﹣4.故选:B.8.甲的等于乙的,那么甲、乙两数之比是( )A.7:5B.5:7C.3:2D.2:3【答案】B【解答】解:∵甲数×=乙数×,∴甲数:乙数=:=÷=×59.(2021秋•万州区期末)对于有理数x,y,若<0,则++的值是( )A.﹣3B.﹣1C.1D.3【答案】B。
(完整版)七年级数学有理数的乘除法练习题(二)(含答案)

第1页共4页C.由负因数的个数决定D. 由负因数和正因数个数的差为决定3. 下列运算结果为负值的是 (C.任何有理数都有倒数D.-1的倒数是-17.关于0,下列说法不正确的是() A.0有相反数B.0 有绝对值C.0有倒数D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是()异号两数相除七年级上学期数学《有理数的乘除法》练习题、选择 1.如果两个有理数在数轴上的对应点在原点的同侧 A. 一定为正B. ,那么这两个有理数的积() 定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号() A.由因数的个数决定 B. 由正因数的个数决定 A.(- 7) X( -6)B.(-6)+(-4);4.下列运算错误的是()C.0 X(-2)(-3)D.(-7)-(-15)A.(-2) X( -3)=6B.1 2 (6) 3C.(- 5) X(-2) X( -4)=-40D.(-5.若两个有理数的和与它们的积都是正数 A.都是正数B.3) X( - 2) X( -4)=-24,则这两个数() 是符号相同的非零数C.都是负数D.都是非负数6.下列说法正确的是 A.负数没有倒数B. 正数的倒数比自身小 A.异号两数相乘B.C.异号两数相加D. 奇数个负因数的乘积9.下列运算有错误的是 1 A. -(-3) =3X(-3)3B. (5)2)C. 8-(-2)=8+210.下列运算正确的是 31 12A.D.2-7=(+2)+(-7)4;B.0-2=-2;C.1 ; D.(-2)十(-4)=2第1页共4页二、填空1. 如果两个有理数的积是正的2. 如果两个有理数的积是负的 ,那么这两个因数的符3. 奇数个负数相乘,结果的符号是4.偶数个负数相乘,结果的符号是3 3;(4) 2;⑵ 8;(4) (2); (3)3.计算(1)1 1 1 1 1 1 1- 1- 1- 1 1- 12 3 4 5 6 74. 计算41 a5. 如果— 0,— 0,那么— _______ 0.a b bK6. 如果 5a>0,0.3b<0,0.7c<0,那么 一 _______ 0. ac7. -0.125的相反数的倒数是;若a<0,则同 a a三、解答 1.计算: (1)8;⑵21 3(6);⑶(-7.6)X 0.5; (4)3^21 . 32.计算. (1) 83;(4) (2).8.若a>0,则⑴(+48) r+6);(2) 3352 ;(3)4 十(-2);⑷o十-1000)5.计算.(1)(- 1155) r( -11) X (+3) X( -5)];(2)375 - 2 3 ;J32⑶13- (5) 6- (5).3 36.计算11 1 11(1) 1-3J(2) 81 -82 3 39七年级上学期数学《有理数的乘除法》练习题参考答案、ACBBAQCCAB、1 •相同;2互异;3 负;4 正的;5.>; 6.>; 7.8; 8.1,-1、1. (1) -6;(2)14; (3) -3.8 ; (4) 8162. (1) 22; (2)2; ( 3) -48 ;3. (1) 12;(2)5384. (1) 8; (2)-;(3) -2 ; (4) 035. (1) -7;(2)375; (3) 46. (1) 14;(2)-240。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 5×(-4)=___ 1.(-6)×4=___
2.(-7)×(-1)=___; 2.(-5)×0 =___;
3.
=-⨯)23(94___; 3. =-⨯-)3
2
()61(___; 4.(-3)×=-)3
1
( 4.-7的倒数是___,它的相反数是_
5.-7的绝对值是___; 5.-2.5的倒数是___
6.5
22-的倒数是___6.倒数等于它本身的有理数是__ 7.32-的倒数的相反数是___ 7. (-6)×5×7
2)67(⨯- 8.)3
2
()109(45)2(-⨯-⨯⨯-;;
8.(-4)×7×(-1)×(-0.25);
9. 4
1)23(158)245(⨯-⨯⨯-
9.一个有理数与其相反数的积( ) A 、符号必定为正 B 、符号必定为负 C 、一定不大于零 D 、一定不小于零
1、下列说法错误的是( )1. )5(25
24
49-⨯ A 、任何有理数都有倒数
B 、互为倒数的两个数的积为1
C 、互为倒数的两个数同号
D 、1和-1互为负倒数
2. 12
5)5.2()2.7()8(⨯
-⨯-⨯- 2、已知两个有理数a,b ,如果 ab <0,且a+b <0,那么( ) A 、a >0,b >0 B 、a <0,b >0 C 、a,b 异号
D 、a,b 异号,且负数的绝对值较大
3、若ab b a ,2,5-==>0,
则=+b a ___。
3. )25
1(4)5(25.0-
⨯⨯-⨯-- ;;
4.6.190)1.8(8.7-⨯⨯-⨯-
4. )8
14
112
1()8(+-⨯-
1. )48()6143361121(-⨯-+--
1、已知,032=-++y x 求xy y x 43
5212+--的值。
2.
34.07
5
)13(317234.03213⨯--⨯+⨯-⨯
-
2.)5
43()4
11(-⨯-
有理数乘法 (15) 班级 姓名 有理数除法(16)班级 姓名 1、
若a,b 互为相反数,1. =÷-9)27( c,d 互为倒数,m 的绝2.)10
3
()259(-÷-=; 对值是1,3.=-÷)9(1;
求m cd b a 2009)(-+的值。
4.=-÷)7(0;
5.
=-÷)1(3
4
; 6.=÷-4
3
25.0.
7. 4)11
3
12
(÷-
8. )5
11()2()24(-÷-÷-
2. )
3.0(4
5
)75.0(-÷÷-;
有理数除法(17)班级 姓名有理数除法(18)班级 姓名
1、化简下列分数:1. 3)4
11()213()53(÷-÷-⨯- (1)216
-= (2)48
12
-= (3)654--= 2. 2)21
(214⨯-÷⨯- (4)
3
.09
--=
2.计算
(1))11()3
1()33.0(-÷-÷-
3. 7)4
1
2(54)721(5÷-⨯⨯
-÷-
(2))4
1
(855.2-⨯÷-
;
有理数除法(19) 班级 姓名 有理数除法(20) 班级 姓名
1. )24(9
4
41227-÷⨯÷-; 1. 213443811-⨯⨯÷-
2、若0≠a ,求
a
a 的值。
2、一天,小红与小丽利用温差 测量山的高度,小红在山顶测得 温度是4-℃,小丽此时在山脚 测得温度是6℃.已知该地区高度 每增加100米,气温大约降低 8.0℃,这个山峰的高度大约 是多少米?。