材料热膨胀系数

合集下载

一般材料的热膨胀系数

一般材料的热膨胀系数

一般材料的热膨胀系数热膨胀系数是一个物体在温度变化时长度、面积、体积等物理尺寸会发生变化的量度。

当温度升高时,物体的分子会加速运动,导致物体扩张变大,即膨胀;相反,当温度下降时,物体的分子运动减缓,导致物体收缩变小,即收缩。

不同材料具有不同的热膨胀系数,下面将介绍几种常见材料的热膨胀系数及其应用。

金属材料一般热膨胀系数较大,主要是因为金属的分子间结合力较弱,容易受温度变化的影响。

以下是几种常见金属材料的热膨胀系数(单位:1/℃):1.铝:23×10^-62.铁:11×10^-63.镍:13×10^-6金属材料的热膨胀系数对于设计工程尤为重要,如在建筑工程中,需考虑金属构件与其他材料之间的热膨胀差异,以避免因温度变化引起的结构变形或损坏。

陶瓷材料的热膨胀系数一般较小,主要是因为陶瓷的分子间结合力较强,不易受温度变化的影响。

以下是几种常见陶瓷材料的热膨胀系数(单位:1/℃):1.球墨铸铁:10×10^-62.玻璃:8×10^-63.瓷砖:6×10^-6陶瓷材料的热膨胀系数使其成为高温工艺中的重要材料。

例如,在陶瓷制品的制造过程中,需控制烧结时的温度变化,以保证陶瓷制品不会因热膨胀而破裂。

塑料材料的热膨胀系数一般介于金属材料和陶瓷材料之间,其数值与不同类型的塑料有关。

以下是几种常见塑料材料的热膨胀系数(单位:1/℃):1.聚乙烯:100×10^-62.聚氯乙烯:80×10^-63.聚酯:60×10^-6塑料材料的热膨胀系数是其在工程设计中需要考虑的重要因素。

例如,在塑料制品的尺寸设计中,需要预估在不同温度下的变化情况,以确保塑料制品在使用过程中不会因热膨胀而失去功能或造成安全问题。

总之,不同材料的热膨胀系数直接影响着工程、建筑、制造等领域的设计和操作。

在实际应用中,通过研究和测试不同材料的热膨胀系数,可以针对材料特性进行优化设计,提高产品的性能和可靠性。

材料热膨胀系数

材料热膨胀系数

材料热膨胀系数
材料的热膨胀系数是指在温度变化时,单位温度变化引起的单位长度变化。

材料的热膨胀系数是一个重要的物理量,它与材料的性质有关,对于工程设计和材料选择具有重要的影响。

材料的热膨胀系数通常用线膨胀系数和体膨胀系数来表示。

线膨胀系数是指材料在长度方向上的膨胀量与初始长度之比,通常用α表示,单位是1/℃。

体膨胀系数是指材料在体积方向上的膨胀量与初始体积之比,通常用β表示,单位是1/℃。

不同材料的热膨胀系数通常是不同的。

一般来说,固体的热膨胀系数比液体和气体要小。

金属是一类常用材料,其热膨胀系数较大。

例如,铝的线膨胀系数约为23×10^-6/℃,铜的线膨胀系数约为16×10^-6/℃。

相比之下,水在0-30℃的温度范围内的线膨胀系数约为207×10^-6/℃。

这就意味着在相同温度范围内,相同长度的铝和水在温度变化时,铝的长度变化相对较小。

材料的热膨胀系数对于工程设计和材料选择具有重要的意义。

例如,在建筑设计中,需要考虑材料的热膨胀系数来确定结构的稳定性。

如果不同部分的材料热膨胀系数相差太大,就可能导致结构的变形,从而影响其使用寿命和安全性。

此外,在高温设备中,材料的热膨胀系数也需要考虑,以避免由于温度变化引起的热应力和破裂。

综上所述,材料的热膨胀系数是一个重要的物理量,它与材料的性质有关,对工程设计和材料选择具有重要的影响。

不同材
料的热膨胀系数不同,需要根据具体应用考虑选择合适的材料,以确保结构的稳定性和安全性。

常见材料热膨胀系数

常见材料热膨胀系数

常见材料热膨胀系数材料的热膨胀系数是指当温度发生变化时,材料的尺寸发生的变化程度。

具体来说,热膨胀系数是用来描述材料在单位温度变化下单位长度发生的变化量。

常见材料的热膨胀系数是不同的,下面将介绍一些常见材料的热膨胀系数。

1.金属材料:-铝(α=23.6×10^-6/°C):铝是一种常见的轻金属,具有良好的导热性和导电性。

由于铝的热膨胀系数相对较大,因此在设计结构时需要考虑到其热膨胀的影响。

-钢(α=11.7×10^-6/°C):钢是一种常见的结构材料,具有良好的强度和韧性。

由于钢的热膨胀系数较小,因此在设计结构时其变形程度相对较小。

-不锈钢(α=16×10^-6/°C):不锈钢具有良好的耐腐蚀性和高温性能,是一种常见的结构材料之一2.陶瓷材料:-石英(α=0.54×10^-6/°C):石英是一种硅酸盐矿物,具有高硬度和耐高温性能。

石英的热膨胀系数较小,因此在高温环境下具有较好的稳定性。

-氧化铝(α=8.2×10^-6/°C):氧化铝是一种常见的陶瓷材料,具有良好的耐高温性和介电性能。

氧化铝的热膨胀系数适中,可广泛应用于高温环境中。

3.塑料材料:-聚乙烯(α=120×10^-6/°C):聚乙烯是一种常见的塑料材料,具有良好的抗冲击性和电绝缘性能。

由于聚乙烯的热膨胀系数较大,因此在高温环境下容易发生变形。

-聚苯乙烯(α=70×10^-6/°C):聚苯乙烯是一种常见的塑料材料,具有较好的抗压强度和耐磨性。

由于聚苯乙烯的热膨胀系数适中,因此在一些结构应用中比较常见。

4.玻璃材料:-硼硅酸盐玻璃(α=4.5×10^-6/°C):硼硅酸盐玻璃是一种常见的玻璃材料,具有良好的透明性和抗酸碱性能。

硼硅酸盐玻璃的热膨胀系数较小,因此在高温环境下具有较好的稳定性。

各种材料热膨胀系数

各种材料热膨胀系数

各种材料热膨胀系数
热膨胀系数是指物体在温度变化时所发生的线膨胀或体膨胀的程度。

不同的材料具有不同的热膨胀系数,以下将介绍一些常见材料的热膨胀系数。

1.金属材料:
金属一般具有较高的热膨胀系数,常用的金属材料的热膨胀系数如下:-铝:23×10^-6/℃
-铜:17×10^-6/℃
-铁:12×10^-6/℃
-钢:12×10^-6/℃
2.塑料材料:
相较于金属材料,塑料材料的热膨胀系数较低,常用塑料的热膨胀系
数如下:
-聚乙烯(PE):60×10^-6/℃
-聚氯乙烯(PVC):60~80×10^-6/℃
-聚苯乙烯(PS):70~90×10^-6/℃
3.陶瓷材料:
陶瓷材料的热膨胀系数因其成分和结构的不同而有所区别,以下是一
些常见陶瓷材料的热膨胀系数:
-瓷砖:5~9×10^-6/℃
-玻璃:8~12×10^-6/℃
4.混凝土材料:
混凝土材料的热膨胀系数与其中的骨料类型、水灰比等因素有关,一般范围为8~18×10^-6/℃。

5.石材材料:
-大理石:10×10^-6/℃
-花岗岩:8~12×10^-6/℃
6.环氧树脂:
环氧树脂是一种聚合物材料,其热膨胀系数较低,约为40~80×10^-6/℃。

需要注意的是,以上数值仅为常见材料的热膨胀系数范围,实际数值可能会因材料的具体成分和制备工艺等因素而有所不同。

在实际工程中,需要根据具体要求和应用场景选择合适的材料,以保证工程的稳定性和可靠性。

一般材料的热膨胀系数

一般材料的热膨胀系数

一般材料的热膨胀系数热膨胀系数(Coefficient of Thermal Expansion,简称CTE)是一种衡量材料在温度变化下长度变化的物理性质,通常用于工程和材料科学中的热应力分析和设计。

热膨胀系数的定义是材料在单位温度变化下的长度变化与原始长度的比值。

它通常由单位温度变化对应的线性热膨胀的长度变化与起始长度的比值表示。

热膨胀系数可以是正值、负值或零值,这取决于材料的热性质。

正值表示材料在加热时会膨胀,负值表示在加热时会收缩,零值表示材料在温度变化时不发生体积变化。

不同材料的热膨胀系数存在很大差异。

以下是一些常见材料的热膨胀系数范围:1.金属材料:-铝:23.1×10^(-6)/°C-铜:16.5×10^(-6)/°C-钢铁:10.8-13.0×10^(-6)/°C-钠:71×10^(-6)/°C2.陶瓷材料:-石英:0.55×10^(-6)/°C-石墨:8.1×10^(-6)/°C-球墨铸铁:10.4×10^(-6)/°C-高纯度氧化铝陶瓷:7-10×10^(-6)/°C3.聚合物材料:-聚乙烯:100-200×10^(-6)/°C-聚丙烯:100-200×10^(-6)/°C-聚氯乙烯:70-190×10^(-6)/°C-聚四氟乙烯(PTFE):120-200×10^(-6)/°C需要注意的是,材料的热膨胀系数不仅与材料的种类有关,还与温度的变化范围和使用条件有关。

热膨胀系数通常以线性近似表示,即在一定温度范围内认为热膨胀系数是恒定的。

在实际工程中,需要注意考虑温度变化对材料性能和结构稳定性的影响。

热膨胀系数的知识在工程设计和材料选择中非常重要。

各种材料热膨胀系数

各种材料热膨胀系数
食盐
40
不锈钢
14.4-16.0

1.23

12.3
碳纤维(HM 35 in Lngsrichtung)
-0.5

10.8
氯仿(三氯甲烷)
1.28
水泥
6 – 14
康铜
15.2

14
果酸
1.07

29.3
Kovar
~ 5

4.5
乙醚
1.62

17.5

16.5

36
乙酸乙酯
1.38

41

26

26.7
各种材料热膨胀系数
热膨胀系数(Coefficient of thermal expansion,简称CTE)是指物质在热胀冷缩效应作用之下,几何特性随着温度的变化而发生变化的规律性系数。
实际应用中,有两种主要的热膨胀系数,分别是:
线性热膨胀系数:a=1/L*△L/△T
体积热膨胀系数:γ=1/V0*(аV/аt)p
甘油(Propantriol)
0.49
铬6.2锰23金14.2甲醇
1.1
钻石
1.3

5
花岗岩
3
Minerall(Hydraulikl)
0.7
冰, 0 °C
51
黄铜
18.4
石墨
2
石蜡
0.76

12.2

5.2
灰铸铁
9
煤油/柴油
0.96/0.69

6
新银
18
玻璃 (Quarzglas)
0.5

常见材料热膨胀系数

常见材料热膨胀系数

常见材料热膨胀系数引言材料的热膨胀系数是指材料在温度变化时,单位温度变化下材料长度、面积或体积的变化量。

热膨胀系数是一个重要的物理参数,对于工程设计、材料选择和热力学计算等方面都有重要的影响。

本文将介绍常见材料的热膨胀系数,包括金属材料、陶瓷材料、塑料材料和复合材料等。

我们将分别介绍这些材料的定义、热膨胀原理以及具体的热膨胀系数数值。

一、金属材料金属材料是一类常见的工程材料,具有良好的导热性和导电性。

金属材料的热膨胀系数一般较大,因此在温度变化较大的情况下,金属结构往往需要考虑热膨胀的影响。

常见金属材料的热膨胀系数如下:•铁(Fe):12.0 × 10^-6 /℃•铝(Al):23.1 × 10^-6 /℃•铜(Cu):16.6 × 10^-6 /℃•镍(Ni):13.3 × 10^-6 /℃•钛(Ti):8.6 × 10^-6 /℃二、陶瓷材料陶瓷材料是一类具有高硬度、高耐磨性和耐高温性能的材料。

陶瓷材料的热膨胀系数一般较小,因此在高温条件下,陶瓷材料往往能够保持较好的尺寸稳定性。

常见陶瓷材料的热膨胀系数如下:•氧化铝(Al2O3):8.0 × 10^-6 /℃•氮化硅(Si3N4):3.2 × 10^-6 /℃•硼化硅(SiC):4.0 × 10^-6 /℃•氧化锆(ZrO2):9.0 × 10^-6 /℃•氧化锆陶瓷(ZTA):10.0 × 10^-6 /℃三、塑料材料塑料材料是一类具有良好的绝缘性能、耐腐蚀性和可塑性的材料。

塑料材料的热膨胀系数一般较大,因此在温度变化较大的情况下,塑料制品往往需要考虑热膨胀的影响。

常见塑料材料的热膨胀系数如下:•聚乙烯(PE):100 × 10^-6 /℃•聚丙烯(PP):90 × 10^-6 /℃•聚氯乙烯(PVC):60 × 10^-6 /℃•聚苯乙烯(PS):80 × 10^-6 /℃•聚四氟乙烯(PTFE):125 × 10^-6 /℃四、复合材料复合材料是一类由两种或两种以上的材料组成的材料。

常见材料热膨胀系数

常见材料热膨胀系数

常见材料热膨胀系数
(原创版)
目录
1.热膨胀系数的定义与意义
2.常见材料的热膨胀系数
2.1 金属材料
2.2 非金属材料
2.3 陶瓷和玻璃
3.热膨胀系数在实际应用中的重要性
4.结论
正文
热膨胀系数是一个重要的物理量,它表征了物体在受热时,其长度、面积或体积变化的程度。

热膨胀系数包括线膨胀系数、面膨胀系数和体膨
胀系数,这些系数可以反映物质在温度变化时的膨胀特性。

在我们生活中,许多常见材料都有不同的热膨胀系数。

首先,我们来看看金属材料。

金属材料的热膨胀系数通常在 (10~20)x10(-6) 的范围内,如 15 号钢的热膨胀系数为 12.93x10(-6)/℃。

此外,不同类型的金属材料其热膨胀系数也有所差异,例如,铜的热膨胀系数为 17.7x10(-6)/℃,铝的热膨胀系数为 24.6x10(-6)/℃。

除了金属材料,我们还常常接触到非金属材料。

非金属材料的热膨胀
系数普遍较大,比如,塑料的热膨胀系数通常在 100x10(-6) 左右,而橡胶的热膨胀系数可以达到 200x10(-6) 以上。

这些材料在工程应用中需要特别注意其热膨胀特性。

陶瓷和玻璃这类材料的热膨胀系数较低,通常在 10x10(-6) 左右。

在实际应用中,当两种不同材料需要焊接或熔接时,选择具有相近热膨胀
系数的材料是十分重要的。

例如,在玻璃仪器和陶瓷制品的焊接加工过程中,需要选用热膨胀系数相近的材料,以保证焊接接头的稳定性和可靠性。

总之,热膨胀系数是描述材料在温度变化时尺寸变化特性的重要参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自制立式膨胀仪
自制立式膨胀仪(智能型)
卧式膨胀仪
四.示差法的测定原理(石英膨胀仪)
图43-3 示差法测定材料膨胀系数的装置 1— 测温热电偶;2—膨胀仪电炉;3—电热丝;4—电流表;5—调压器; 6—电炉铁壳;7—铜柱电炉芯;8—待测试棒;9—石英玻璃棒; 10—石英玻璃管;11—遮热板;12—铁制支承架;13—千分表; 14—水瓶;15—水银温度计; 16—电位差计。
同,在焊接处产生应力,降低了材料的机械强度和气密性,严重时会 导致焊接处脱落、炸裂、漏气或漏油。
目的意义
• 合理使用材料
精密仪器(小型、大型),选用膨胀系数小的材料
例:大型加工机械 水泥路面
钢铁大桥
水泥大桥 大型建筑物 „ „
因此,测定材料的热膨胀系数具有重要的意义。
二.材料的热膨胀系数
材料的体积或长度随温度的升高而增大的现象称为热膨 胀。热膨胀通常用热膨胀系数表示。 1. 体积膨胀系数(αV):

一.目的意义

二.材料的热膨胀系数 三.材料热膨胀系数的检测方法
四.示差法的测定原理
五.实验过程 六.主要影响因素讨论 七.实验数据处理
一.目的意义
• 热膨胀 物体的体积或长度随温度的升高而增大的现象称为热膨胀。热膨 胀系数是材料的主要物理性质之一,它是衡量材料的热稳定性好坏的 一个重要指标。 • 提高材料的热稳定性
由于膨胀系数一般比较小,可忽略高阶无穷小。取一级近似:
β= 3α 在测量技术上,体膨胀比较难测,通常应用以上关系来 估算材料的体膨胀系数β,已足够精确。
2. 线膨胀系数(αL):
在实际工作中一般都是测定材料的线热膨胀系数。所以对于普 通材料,通常所说膨胀系数是指线膨胀系数。
线膨胀系数是指温度升高1℃后,物体的相对伸长。
淬火:玻璃成形后快速冷却 精密退火:玻璃成形后缓慢冷却
2. 加热速度对玻璃线膨胀系数的影响
在测定玻璃 线膨胀系数时的升温速度。
玻璃的热历史对玻璃线膨胀系数的影响
玻璃的热历史对 其膨胀系数有重要的 影响。 退火玻璃曲线发 生曲折是由于温度超 过 Tg 以 后 , 伴 随 玻 璃转变发生结构变化, 膨胀更加剧烈。 至于急冷玻璃, 是由于试样存在热应 变,在某温度以上开 始出现弛豫的结果。
• • •
根据原子热振动概念的热容理论,格留涅辛进行计算。在没有相变时,膨 胀系数随温度的升高连续增大。 但对铁、钴、镍等铁磁金属,在温度靠近居里温度时,膨胀系数出现明显 的反常。 其中镍和钴的膨胀系数实验值高于理论值,如图5-17所示,称为正反常, 而铁的实验值低于理论值,称为负反常。


1.
电磁感应热机械法是将顶杆的移动通过天平传递到差动变压 器,变换成电讯号,经放大转换,从而测量出试样的伸长量。 根据试样的伸长量就可计算出线膨胀系数。 ΔL / L0 = al Δt 试样规格为直径3-8mm,长度10-20mm的圆棒。
立式膨胀仪是将试样 安放在一端封闭的石英管 底部,使其保持良好的接 触,试样的另一端通过一 个石英顶杆将膨胀引起的 位移传递到千分表上,即 可读出不同温度下的膨胀 量。
无机非金属、有机材料„„,都可用这种膨胀仪测定。
玻璃的线膨胀系数与温度有关。 石英玻璃的平均线膨胀系数(按下列温度范围取值); 5.7×10-7度-1 5.9×10-7度-1 5.8×10-7度-1 (0~300℃) (0~400℃) (0~1000℃)
5.97×10-7度-1
(200~700℃)
例:夹层玻璃
目的意义
• 焊接或熔接
当两种不同的材料彼此焊接或熔接时,都要求二种材料具备相近 的膨胀系数。
如两种不同金属的焊接,玻璃仪器的焊接加工,在电真空工业和 仪器制造工业中广泛地将非金属材料(玻璃、陶瓷)与各种金属焊接, 也要求两者有相适应的热膨胀系数。
如果选择材料的膨胀系数相差比较大,焊接时由于膨胀的速度不
Ⅰ. 加热速度5℃/分钟 Ⅱ. 加热速度8℃/分钟 Ⅲ. 加热速度?℃/分钟
• 加热速度减慢, Tg下降。 • 对于“碱-钙-硅玻璃”,M-符尔达(M.Fulda) 得到下列数据:
加热速度 ℃/分钟 转变温度 ℃
0.5 468
1 479
5 493
9 499
这是由于玻璃快速加热时,性质来不及反 映该温度下的最终值。
降低材料的线膨胀系数,提高材料的热稳定性,提高材料的使用 安全性。
• 提高材料的强度 如果层状物由两种材料迭置连接而成,则温度变化时,由于两种 材料膨胀值不同,若仍连接在一起,体系中要采用一中间膨胀值,从 而使一种材料中产生压应力而另一种材料中产生大小相等的张应力, 恰当地利用这个特性,可以增加制品的强度。
测定无机非金属材料热膨胀系数常用:千分表法、热机 械法(光学法、电磁感应法)、体积法 等。 它们的共同点都是试样在加热炉中受热膨胀,通过顶杆 将膨胀传递到检测系统。不同之处在于检测系统。
千分表法是用千分表直接测量试样的伸长量。
光学热机械法是通过顶杆的伸长量来推动光学系统内的反 射镜转动经光学放大系统而使光点在影屏上移动来测定试样的 伸长量。
2.
相变研究是材料科学中的一项 基础研究工作,而相变临界点 的测定对于每一个新钢种(或 合金)总是不可缺少的。 以钢铁为例,由于在加热和冷 却过程中存在同素异构转变, 产生明显的体积效应,因而采 用膨胀的测量来确定变相温度 是一个很有效的方法。根据膨 胀曲线来确定钢中a r 转变 温度。 取热膨胀曲线上偏离纯热膨胀 的点a、c 对应的温度为转变点。 b、d对应的温度为转变点。 取加热与冷却曲线上的四个极 值点a’、 b’ 、d’ 、 c’对应的温 度为转变点。
三.材料热膨胀系数的检测方法
人类很早(十八世纪)就测定固体的热膨胀。当时的测定装置很原 始:水平放置约 15厘米长的试样,下面点燃几支蜡烛加热,通过齿轮机 构放大来确定试样长度的变化。 十九世纪到现在,人们创造了许多测定方法。上世纪 60 年代出现了 激光法,出现了用计算机控制或记录处理测定数据的测量仪器。
因此,材料的平均线膨胀系数应标明温度范围, 如:
α( 0~300 ) = 5.7×10-7 / k α( 0~1000 ) = 5.8×10-7 / k
五.实验过程 试样 切割
试样 研磨
试样加工
实验过程关键操作
试样安装
六.主要影响因素讨论 1. 试样加工与安装
2. 玻璃的热历史对玻璃线膨胀系数的影响
几种无机材料的热膨胀曲线

如果金属在加热或冷却的过 程中发生相变,由于不同组 成的比容差异,将引起热膨 胀的异常,这种异常的膨胀 系数为研究材料中的组织转 变提供了重要的信息。 研究金属热膨胀的另一方面 兴趣来自于仪表对材料热膨 胀性能的特殊要求。

例如,作为尺寸稳定零件的微 波设备谐振腔、精密计时器 和宇宙航行雷达天线等,都 要求在气温变动范围内具有 一定的膨胀系数的合金;电 真空技术中为了与玻璃、陶 瓷、云母、人造宝石等气密 封接要求具有很低膨胀系数 的合金;用于制造热敏性元 件的双金属却要求高膨胀合 金。 这就需要研究化学成分和组织 结构对合金膨胀系数的影响。
七.实验数据处理
绘制膨胀曲线、计算平均线膨胀系数、求特征点的温度。
实验数据处理
在图上求玻璃的转变温度Tg和软化点温度Tf。
以3个试样的平均值表示实验结果
理论讲述结束
大家动手做实验
设试体在一个方向的长度为 L 。当温度从T1上升到 T2时,长
度也从L1上升到L2 ,则平均线膨胀系数
实际上,无机非金属材料的体积膨胀系数αV 、线
膨胀系数αL并不是一个常数,而是随温度稍有变化,
通常随温度升高而增大。 瞬时线膨胀系数为
无机材料的线膨胀系数一般都不大, 数量级约为10-5-10-6/K。
加热速度对玻璃线膨胀系数的影响
• 加热速度是个极重要的因素。玻 璃快速加热时,性质来不及反映 该温度的最终值。 • 柯尔纳(O.Koeyner)和沙尔芒 (H.Salmang)在研究硅酸盐的 玻璃时发现,只有以 5 ℃/分钟 的加热速度,加热试样时,才能 清楚地看到Tg 。 • 同样试样,如果以 8 ℃/分钟的 加热速度,加热试样时, Tg根 本不显现。在这种情况下,玻璃 在略低于Tg 温度下就开始软 由于总有内能存在,物质的每个粒子 都在振动。
当物质受热时,由于温度升高,每个粒子 的热能增大,导致振幅也随之增大,由(非简谐) 力相互结合的两个原子之间的距离也随之增大, 物质就发生膨胀。
物质的热膨胀是由非简谐(非线性) 振动引起的。
设试体为一立方体,边长为L 。当温度从T1上升到T2时, 体积也从V1上升到V2 ,体膨胀系数
示差法的测定原理
由于玻璃的膨胀系数一般是 石英的膨胀系数一般是 两者的膨胀差可以测定。
图43-1 石英膨胀仪内部结构热膨胀分析图
因为 α玻璃 ﹥ 所以 ΔL1 ﹥ ΔL2
α石英
千分表的指示为 ΔL = ΔL1 – ΔL2 玻璃的净伸长 ΔL1 = ΔL – ΔL2 按定义,玻璃的膨胀系数
注:只要材料的膨胀系数小于石英的膨胀系数的处理,如: 金属、
相关文档
最新文档