常用小波的分类剖析
小波分析入门

小波分析的基本知识屠2001.8.2A.基本知识A1.小波(WAVELET)分类1.原始小波:(1).高斯gaus, (2).莫来特morlet, (3).墨西哥帽mexihat2.无限正则小波浪:(4).梅耶meyr (5).离散梅耶dmey3.正交和紧支集小波:(6).达比切斯dbN(Daubechies), (7).对称symN(symlets), (8).coifN4.双正交和紧支集小波: (9).双正交biorNr (10). 逆双正交rbioNr.Nd5.复小波: (11).复高斯cgauN (12)复莫来特 cmor Fb-Fc (13)复香农shan Fb-Fc(14).复频率B样条 fbspM Fb-Fc注1:db1小波也称哈尔Harr小波,也是原始小波注2.symlet小波是Daubechies小波的改进,由不对称改成近似对称注3.紧支集即函数在有限区域内不为零A2.小波函数和尺度(SCALE)函数1.小波函数(psi)--由高通滤波器确定,产生小波分解的细节 D(detail,)2.尺度函数(phi)--由低通正交镜象滤波器确定, 产生小波分解的逼近 A(approximation)A3.小波分解:S(SIGNAL)=A1+D1=(A2+D2)+D1=(A3+D3)+D2+D1=(A4+D4)+D3+D2+D1=...A4.小波包(WP=Wavelet Packet)分解:S=A1+D1=(AA2+DA2)+(AD2+DD2)=(AAA3+DAA3)+(ADA3+DDA3)+(ADA3+DDA3)+...A5.WAVEMENU: 开始图象用户界面GUI工具A6.WAVEDEMO: 小波工具箱演示B小波变换B1.一维连续小波变换:CWT coefs=cwt(S,scales,"wname')coefs=cwt(S,scales,'wname','plot')coefs=cwt(S,scales,'wname','plotmode')scales--正实数,如1:32,[64 32 16:-2:2],...COLORMENU,COLORBARB2.单级一维离散小波变换:DWT,UPCOEF[Ca1,Cd1]=dwt(x,'wname'), Ca1--逼近系数 Cd1--细节系数[Ca1,Cd1]=dwt(x,Lo_D,Hi_D)a1=upcoef('a',Ca1,'wname',1,L); a1--逼近 L--length(x)d1=upcoef('d',Cd1,'wname',1,L); d1--细节 L--length(x)B3.单级一维逆离散小波变换:IDWT, x=idwt(Ca1,Cd1,'wname')B4.多级一维离散小波分解:WAVEDEC,APPCOEF,DETCOEF,WRCOEF[C,L]=wavedec(x,N,'wname'),N--级(LEVEL)数 C--分解(DECOMPOSITION)矢量L--辅助操作(Bookkeeping)矢量B5.APPCOEF:提取一维小波逼近系数,A=appcoef(C,L,'wname',N)B6.DETCOEF:提取一维小波细节系数,A=detcoef(C,L,'wname',N)B7.WRCOEF:X=wrcoef('type',C,L,'wname',N).type=a,逼近;type=d,细节B8.WAVEREC(多级一维离散小波重构) 重构--RECONSTRUCTIONx=waverec(C,L,'wname')x=waverec(C,L,Lo_R,Hi_R)B9.WFILTERS--小波滤波器[Lo_D,Hi_D,Lo_R,Hi_R]=wfilters('wname'),'wname'=db,coif,sym,bior,rbioB10.DYADDOWN:二进(Dyadic)降采样 Y=dyaddown(x,EVENODD)EVENODD--even,y(k)=x(2k), --odd,y(k)=x(2k-1)B11. DYADUP:二进增采样(填零), y=dyadup(x,EVENODD)B12. WKEEP:保留矢量或矩阵的一部分C.小波包变换C1. WPDEC一维离散小波包分解:[T,D]=wpdec(x,N,'wname',E,P), T--树结构Tree structure, D--数据结构E-熵 Entropy E='shannon','threshold','norm','log energy','user'P-附加参数'threshold' 'sure':P=threshold(0<=P)'norm':P=power,1<=P<2)C2. WPREC一维离散小波包重构x=wprec(T,D) T--小波包树(TREE) N—节点(NODE)C3. WPCOEF小波包系数x=wpcoef(S,D,N)D.MALLAT算法(FWT)E.一维试验信号(b1(t): b2(t): )oislop(ramp+color noise):1=<t<=499,(t/500)+b2(t);500=<t<=1000,1+b2(t)2.freqbrk:1=<t<=500,sin(0.03t);501=<t<=1000,sin(0.3t)3. heavysin4.nelec(2000 电力消耗)5.leleccum(4320分(72小时)电力消耗6.linchirp(线性快扫)7.mfreqbrk8.mishmash 9.nearbrk(1~499,511~1500)10.noisbloc 11.noisbump12.noischir 13.noisdopp 噪声多普勒14.noismima 15.noispol: 在[1 1000]间 t^2-t+1+b1(t) 16.noissin:sin(0.03t)+b1(t) 17.qdchirp18.quachip19.scddvbrk:二阶导数不连续,t<0,exp(-4t^2);t>=0,exp(-t^2),t=[-0.5 0.5]20.sinfract 21.sinper8 22.sumlichr23.sumsin:sin(3t)+sin(0.3t)+sin(0.03t)24.trsin:1=<t<=500,((t-1)/500)+sin(0.3t);501=<t<=1000,((1000-t)/500)+sin(0.3t)25.vonkoch:分形,科克雪花26.warma:AR(3),b2(t)=-1.5*b2(t-1)-0.75*b2(t-2)-0.125*b2(t-3)+b1(t)+0.527.wcantor:分形,康托(三分取一)曲线28.whitnois:在[-0.5 0.5]间的均匀白噪声29.wnoislop:1=<t<=499,(3t/500)+b1(t);500=<t<=1000,3+b1(t)30.wntrsin:1=<t<=500,((t-1)/500)+sin(0.3t)+b1(t);501=<t<=1000,((1000-t)/500)+sin(0.3t)+b1(t)31.wstep:1=<t<=500,s=0;501=<t<=1000,s=20.32.cuspamax(1024):x=linspace(0,1.1024);y=exp(-128*((X-0.3).^2))-3*(abs(x-0.7).^0.433.brkintri:顶端折线三角34.wcantsym(2188):对称康托集disp('******)*************MALLAT算法示例***********************************************')x=[1.8 1.0 -1.0 -1.8];[Lo_D,Hi_D]=wfilters('db1','d');tmpo1=conv(x,Lo_D); [1.8 1.0 -1.0 -1.8]*[0.7071 0.7071]tmpo2=conv(x,Hi_D);Ca1=dyaddown(tmpo1);Cd1=dyaddown(tmpo2);disp('低通分解滤波器系数Lo_D 高通分解滤波器系数Hi_D');disp( [(Lo_D)' (Hi_D)'] ),disp('卷积conv(x,Lo_D 卷积conv(x,Hi_D)');disp( [(tmpo1)’ (tmpo2)’] ),disp('一级逼近系数Ca1 一级细节系数Cd1');disp( [(Ca1)’ (Cd1)’] ),% Ca1=1.9799 -1.9799 Cd1= 0.5657 0.5657[Lo_R,Hi_R]=wfilters('db1','r');disp('低通重构滤波器系数Lo_R=');disp(Lo_R),disp('高通重构滤波器系数Hi_R=');disp(Hi_R),tmp1=dyadup(Cd1);tmpo3=conv(tmp1,Hi_R);d1=wkeep(tmpo3,4);tmp2=dyadup(Ca1);tmpo4=conv(tmp2,Lo_R);a1=wkeep(tmpo4,4);disp( '一级逼近a1 一级细节d1 ');DISP( [(a1)’ (d1)’] ),% 一级逼近a1= 1.4000 1.4000 -1.4000 -1.4000% 一级细节d1= 0.4000 -0.4000 0.4000 -0.4000figure(1),a0=a1+d1;subplot(521),bar(x,0.1),title('原始波形x=[1.8 1.0 -1.0 -1.8]'), grid,axis([0 5 -2 2]),subplot(522),bar(a0,0.1),title('分解后重构波形s=a1+d1'),grid,axis([0 5 -2 2])subplot(523),bar(Ca1,0.1),title(' 逼近系数Ca1=[1.98 -1.98]'),grid,axis([0 5 -2 2])subplot(524),bar(Cd1,0.1),title(' 细节系数Cd1=[0.566 0.566]'),grid,axis([0 5 0 1])subplot(525),bar(a1,0.1),title(' 一级逼近a1=[1.4 1.4 -1.4 -1.4]'),grid,axis([0 5 -2 2])subplot(526),bar(d1,0.1),title(' 一级细节d1=[0.4 -0.4 0.4 -0.4]'),grid,axis([0 5 -1 1])subplot(527),bar(Lo_D,0.1),title('低通分解滤波器系数Lo_D'),grid,axis([0 5 0 1])subplot(528),bar(Hi_D,0.1),title('高通分解滤波器系数Hi_D'),grid,axis([0 5 -1 1])subplot(5,2,9),bar(Lo_R,0.1), title('低通重构滤波器系数Lo_R'),grid,axis([0 5 0 1])subplot(5,2,10),bar(Hi_R,0.1),title('高通重构滤波器系数Hi_R'),grid,axis([0 5 -1 1])%******以上为MALLAT算法原理,实际上用简单命令DWT,UPCOEF计算如下************************** x=[1.8 1.0 -1.0 -1.8];length(x);[Ca1,Cd1]=dwt(x,'db1');a1=upcoef('a',Ca1,'db1',1,4);d1=upcoef('d',Cd1,'db1',1,4);x1=a1+d1;a0=idwt(Ca1,Cd1,'db1',4);------------------------------------------------------------------------------------ x=[1.8 -1.8 1.8 -1.8];x=[1.8 1.0 -1.0 -1.8];[Lo_D,Hi_D]=wfilters('db40','d');tmpo1=conv(x,Lo_D);tmpo2=conv(x,Hi_D);Ca1=dyaddown(tmpo1);Cd1=dyaddown(tmpo2);disp('低通分解滤波器系数Lo_D 高通分解滤波器系数Hi_D');disp( [(Lo_D)'(Hi_D)'] )disp('卷积conv(x,Lo_D)');disp(tmpo1),disp('卷积conv(x,Hi_D)');disp(tmpo2),disp('一级逼近系数Ca1=');disp(Ca1),disp('一级细节系数Cd1=');disp(Cd1),[Lo_R,Hi_R]=wfilters('db40','r');disp('低通重构滤波器系数Lo_R=');disp(Lo_R),disp('高通重构滤波器系数Hi_R=');disp(Hi_R),tmp1=dyadup(Cd1);tmpo3=conv(tmp1,Hi_R);d1=wkeep(tmpo3,4);tmp2=dyadup(Ca1);tmpo4=conv(tmp2,Lo_R);a1=wkeep(tmpo4,4);disp('一级逼近a1');disp(a1),disp('一级细节d1');disp(d1),figure(2),a0=a1+d1;subplot(521),bar(x,0.1),title('原始波形x=[1.8 1.0 -1.0 -1.8]'),subplot(521),bar(x,0.1),title('原始波形x=[1.8 -1.8 1.8 -1.8]'),grid,axis([0 5 -2 2]),subplot(522),bar(a0,0.1),title('分解后重构波形s=a1+d1'),grid,axis([0 5 -2 2]) subplot(523),bar(Ca1,0.1),title(' 逼近系数Ca1'),grid,axlimdlg, axis([0 5 -2 2]) subplot(524),bar(Cd1,0.1),title(' 细节系数Cd1'),grid,axlimdlg, axis([0 5 0 1])subplot(525),bar(a1,0.1),title(' 一级逼近a1=[1.296,0.911,-0.6502,-1.5585]'),subplot(525),bar(a1,0.1),title(' 一级逼近a1=[ ]'), axlimdlg,grid, axis([0 5 -2 2])subplot(526),bar(d1,0.1),title(' 一级细节d1=[0.504,0.089,-0.3498,-0.2415'), subplot(526),bar(d1,0.1),title(' 一级细节d1=[ ]'),axlimdlg,grid, axis([0 5 -1 1])subplot(527),bar(Lo_D,0.1),title('低通分解滤波器系数Lo_D'),grid, axis([0 5 0 1]) subplot(528),bar(Hi_D,0.1),title('高通分解滤波器系数Hi_D'),grid, axis([0 5 -1 1]) subplot(5,2,9),bar(Lo_R,0.1), title('低通重构滤波器系数Lo_R'),grid, axis([0 5 0 1]), axlimdlg,subplot(5,2,10),bar(Hi_R,0.1),title('高通重构滤波器系数Hi_R'),grid, axis([0 5 -1 1]) axlimdlg,k=[1.8 1.0 -1.0 -1.8];s=[1.296 0.911 -0.6502 -1.5585];t=[0.504 0.089 -0.3498 -0.2415];ss=abs(fft(s,21));tt=abs(fft(t,21));kk=abs(fft(k,21));subplot(311),plot(kk),grid,axlimdlg,subplot(312),plot(ss),grid,axlimdlg,subplot(313),plot(tt),grid,axlimdlg,k1=[1.8 1.0 -1.0 -1.8];s1=[1.4 1.4 -1.4 -1.4];t1=[0.4 -0.4 0.4 -0.4];k2=[1.8 1.0 -1.0 -1.8];s2=[1.296 0.911 -0.6502 -1.5585];t2=[0.504 0.089 -0.3498 -0.2415];S1=abs(fft(s1,21));T1=abs(fft(t1,21));K1=abs(fft(k1,21));S2=abs(fft(s2,21));T2=abs(fft(t2,21));K2=abs(fft(k2,21));subplot(321),plot(K1),grid,axis([1 11 0 6]),title('Harr')subplot(323),plot(S1),grid,axis([1 11 0 6]),title('Harr')subplot(325),plot(T1),grid,axis([1 11 0 2]),title('Harr')subplot(322),plot(K2),grid,axis([1 11 0 6]),title('db40')subplot(324),plot(S2),grid,axis([1 11 0 6]),title('db40')subplot(326),plot(T2),grid,axis([1 11 0 2]),title('db40')disp('**********MALLAT算法可用简单命令DWT,UPCOEF重算如下*******************')x=[1.8 1.0 -1.0 -1.8];length(x); =4[Ca1,Cd1]=dwt(x,'db1');a1=upcoef('a',Ca1,'db1',1,4);d1=upcoef('d',Cd1,'db1',1,4);disp('一级逼近系数Ca1=');disp(Ca1), disp('一级细节系数Cd1=');disp(Cd1),disp('一级逼近a1=');disp(a1), disp('一级细节d1=');disp(d1),x1=a1+d1;a0=idwt(Ca1,Cd1,'db1',4);figure(1),subplot(321),bar(x,0.1),title('x=a1+d1=[1.8 1.0 -1.0 -1.8]'),grid,axis([0 5 -2 2]),subplot(322),bar(a0,0.1),title('a0=idwt=x'),grid,axis([0 5 -2 2])subplot(323),bar(Ca1,0.1),title(' 逼近系数Ca1=[1.98 -1.98]'),grid,axis([0 5 -2 2])subplot(324),bar(Cd1,0.1),title(' 细节系数Cd1=[0.566 0.566]'),grid,axis([0 5 0 1]) subplot(325),bar(a1,0.1),title(' 一级逼近a1=[1.4 1.4 -1.4 -1.4]'),grid,axis([0 5 -1.5 1.5])subplot(326),bar(d1,0.1),title(' 一级细节d1=[0.4 -0.4 0.4 -0.4]'),grid,axis([0 5 -1 1])pausedisp(' *******************************************************************'), disp(' * *'), disp(' * *'), disp(' * 低通滤波器减低通滤波器等于带通滤波器 *'), disp(' * *'), disp(' *******************************************************************'), pause,f=-10:0.01:10;t=-50:1/20:50;y1=cos(2*pi*100*f);y2=cos(2*pi*100*t);y1(1:50)=zeros(1,50);y1(1952:2001)=zeros(1,50);y2(1:250)=zeros(1,250);y2(1752:2001)=zeros(1,250);yy=y1-y2;u=cos(2*pi*7*t);v=sinc(t);r=u.*v;U=fft(u);V=fft(v);R=fft(r);x1=real(ifft(y1));x2=real(ifft(y2));xx=real(ifft(yy));figure(2),subplot(331),plot(f,y1),axis([-12,12,0,1.1]),...title('低通(尺度) Y1(f),Fc=9.5Hz.'),subplot(332),plot(f,y2),axis([-12,12,0,1.1]),...title('低通(尺度) Y2(f),Fc=7.5Hz.'),subplot(333),plot(f,yy),axis([-12,12,0,1.1]),...title('带通(小波) YY(f),BW=2Hz.'),subplot(334),plot(t,ifftshift(x1)),axis([-5 5 -0.1 1.0]),...title('X1(t)=IFFT(Y1)'),xlabel('t(s)'),...subplot(335),plot(t,ifftshift(x2)),axis([-5 5 -0.3 0.8]),...title('X2(t)=IFFT(Y2)'),xlabel('t(s)'),subplot(336),plot(t,ifftshift(xx)),axis([-5 5 -0.1 0.16]),...title('X3(t)=IFFT(YY)'),xlabel('t(s)'),pausedisp(' ******************************************************************'), disp(' * *'), disp(' * 调制引起频移,低通变成带通 *'), disp(' * *'), disp(' ******************************************************************'), pause, figure(3),subplot(331),plot(t,u),axis([-2 2 -1.1 1.1]),title('u=cos(2pi*7t),t=-50~50'),subplot(332),plot(t,v),axis([-4 4 -0.3 1.1]),title('v=sinc(t),t=-50~50')subplot(333),plot(t,r),axis([-4 4 -0.9 1.1]),title('r=uv,t=-50~50')subplot(334),plot(f,abs(U)),axis([-5 5 0 900]),title('FFT(u),F=3Hz'),xlabel('Hz') subplot(335),plot(f,fftshift(abs(V))),axis([-5 5 0 23]),...title('V=FFT(v)),低通:Fc=0.5Hz'),xlabel('Hz')subplot(336),plot(f,abs(R)),axis([-5 5 0 11]),title('FFT(r),带通:BW=1Hz'),...xlabel('Hz'),pause,********************************************************************************* t1=-10:0.02:10;f1=0:0.05:50;ta=-20:0.02:20;tb=0:0.02:40;f1=0:1/40:50;x1=cos(2*pi*50*t1);x2=cos(2*pi*50*[0:0.02:20]);x3=cos(2*pi*50*[20:0.02:40]);xa=[zeros(1,500) x1 zeros(1,500)];xb=[x2 zeros(1,1000)];xc=[zeros(1,1000) x3]; fxa=fft(xa);fxb=fft(xb);fxc=fft(xc);subplot(531),plot(ta,xa),axis([-20 20 0 1.1]),title(''),subplot(532),plot(tb,xb),axis([0 40 0 1.1]),title(''),subplot(533),plot(tb,xc),axis([0 40 0 1.1]),title(''),subplot(534),plot(f1,abs(fxa)),grid,axlimdlg,title(''),subplot(535),plot(f1,abs(fxb)),grid,axlimdlg,title(''),subplot(536),plot(f1,abs(fxc)),grid,axlimdlg,title(''),subplot(537),plot(f1,angle(fxa)),grid,axlimdlg,title(''),subplot(538),plot(f1,angle(fxb)),grid,axlimdlg,title(''),subplot(539),plot(f1,angle(fxc)),grid,axlimdlg,title(''),subplot(5,3,10),plot(f1,unwrap(angle(fxa))),grid,axlimdlg,title(''),subplot(5,3,11),plot(f1,unwrap(angle(fxb))),grid,axlimdlg,title(''),subplot(5,3,12),plot(f1,unwrap(angle(fxc))),grid,axlimdlg,title(''),disp('**************************END***********************************'),。
第3章小波分析概述2

x −b ψ a ,b ( x ) = a ψ ( ) a
− 1 2
ˆ ˆ ψ ab (ω ) = a e -jω bψ ( aω )
ω*
a
ω
*
频窗半宽度: ∆ψˆ 频窗范围: [ω ± ∆ψˆ ]
*
问题:为何b没有对频窗宽度以及位置产生影响?
∆ψˆ ab =
[
∆ψˆ a
]
时域:∆ψ ab = a ∆ψ
注意存在条件:容许小波 Cψ = ∫
∞
Ψ (ω )
2
ω
dω < ∞
类似傅立叶逆变换,可看成是对f(x)的一种分解 (不同的是这种分解有一个多尺度的思想)
五、离散小波变换
离散傅立叶变换的基函数是离散的, 而离散小波变换的基函数是连续的
X ( k ) = ∑ x ( n )e
离散傅立叶变换
n =0
N −1
傅立叶分析
傅立叶变换和逆变换:
F (ω ) = ∫ f ( x )e − jxω dx
∞
1 f ( x) = F (ω )e jxω d ω 2π ∫ ∞
傅立叶变换没有时域局域化的能力,任何局 部时域上的变化都会影响整个频域。(例子:一次
实现多通道图像的傅立叶变换)
小波基与傅立叶变换基函数的差别?
% ψ j ,k 是相对于 ψ j,k
的重构小波
注意:
1. 正交与双正交的情况、对偶 2. 从积分到离散和的变化(冗余度的变化)
1 Cψ dadb a2
f (x) =
∫∫ W f ( a , b )ψ ( a , b )
∞
回顾:
1、各种小波的关系(a,b的取值类型不同)。
小波的几个术语及常见的小波基介绍解析

小波的几个术语及常见的小波基介绍本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。
一、小波基选择标准小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。
现实中到底选择使用哪一种小波的标准一般有以下几点:1、支撑长度小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。
支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。
大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。
这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。
总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。
2、对称性具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。
3、消失矩在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。
消失矩越大,就使更多的小波系数为零。
但在一般情况下,消失矩越高,支撑长度也越长。
所以在支撑长度和消失矩上,我们必须要折衷处理。
小波的消失矩的定义为,若其中,Ψ(t)为基本小波,0<=p<N。
则称小波函数具有N阶消失矩。
从上式还可以得出,同任意n-1阶多项式正交。
在频域内表示就是Ψ(ω)在ω=0处有高阶零点(一阶零点就是容许条件)。
小波分析全章节讲解

虽然时变信号的频率特性 随着时间而改变,但是这种改 变是渐变的而非突变的,也就 是说,在一个特定的足够小的 区间(窗)内,可以认为信号 的特性是不变的,信号是局部 稳定的或准平稳的。
(二)加窗时频分析 1.时窗处理 将信号在时域内进行分段,等效于用位置不 同的窗函数 g ( t ) 与原信号 f ( t ) 相乘的结果,如下 图所示。在时域内,时间函数一般选取具有能量 局部化的函数。先选定一个基本窗函数 g ( t ) , 然后将 g ( t ) 沿时间轴平移得到一组窗函数,
en , em 0, m n (m n) 1, m n
对应的傅里叶展开式为
f
f , en en
n 1
规范正交性存在于原基底与对偶基底之间, 展开式也相应的由原基底和对偶基底构成, 这种基称为双正交基,与互为对偶基底。
(6)框架 { 设H为Hilbert空间, k } 为H中的一个函数 序列,若 f H ,都存在实数A,B使得
小波分析的应用领域十分广泛,它包括: 数学领域的许多学科;信号分析、图象处理;量子 力学、理论物理;军事电子对抗与武器的智能化;计算 机分类与识别;音乐与语言的人工合成;医学成像与诊 断;地震勘探数据处理;大型机械的故障诊断等方面; 例如: 在数学方面,它已用于数值分析、构造快速数值方法、 曲线曲面构造、微分方程求解、控制论等。 在信号分析方面的滤波、去噪声、压缩、传递等。 在图象处理方面的图象压缩、分类、 识别与诊断,去污等。 在医学成像方面的减少B超、CT、 核磁共振成像的时间,提高分辨率等。
f (t ) e
j t
d t f ( t ), e
j t
小波的几个术语及常见的小波基介绍

小波的几个术语及常见的小波基介绍本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。
一、小波基选择标准小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。
现实中到底选择使用哪一种小波的标准一般有以下几点:1、支撑长度小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。
支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。
大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。
这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。
总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。
2、对称性具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。
3、消失矩在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。
消失矩越大,就使更多的小波系数为零。
但在一般情况下,消失矩越高,支撑长度也越长。
所以在支撑长度和消失矩上,我们必须要折衷处理。
小波的消失矩的定义为,若其中,Ψ(t)为基本小波,0<=p<N。
则称小波函数具有N阶消失矩。
从上式还可以得出,同任意n-1阶多项式正交。
在频域内表示就是Ψ(ω)在ω=0处有高阶零点(一阶零点就是容许条件)。
最新小波分析及其应用PPT课件

4、离散小波变换的应用
❖ 例子:某电信号如图所示,数据长度1024。利用 sym5小波对信号进行小波变换。分解到第二层并进 行压缩。
❖ 采用阈值:0.05*细节小波系数的绝对值最大值
无忧PPT整理发
4、离散小波变换的应用
❖ 进行小 波变换 后,对 信号进 行重构 恢复信 号。
无忧PPT整理发
❖ 降低采样频率的一种方法。在信号样本中隔 一个点选取一个点。
❖ 做一次隔点采样,信号的采样频率就减少一 半。信号中的数据量也减半。
无忧PPT整理发
❖ 重构算法
A jf( t) 2 h ( t 2 k )A j 1 f( t) g ( t 2 k )D j 1 f( t)
k
k
无忧PPT整理发
❖ 以后说明的离散小波变换一般为二进离散小波变 换。
无忧PPT整理发
2、离散小波变换定义
❖ 定义:
W f( m , n ) f ( t ) ,m ( , n t ) = a 0 m / 2 f ( t )( a 0 m t n b 0 ) d t
❖ 小波变换的思想是:将任意函数和信号表示为小波 函数的线性组合。 W f (m , n ) 为小波系数。
压缩)
滤波)
❖ 1、将原始信号进行小 ❖ 1、将原始信号进行小波 波变换,得到小波系数。 变换,得到小波系数。
❖ 2、将系数中足够小的 ❖ 2、将系数中代表高频率
系数去除得到滤噪后数 信号的系数去除,得到的
据。
数据。
❖ 3、用数据对原始信号 ❖ 3、用数据对原始信号进
进行重构。
行重构。
无忧PPT整理发
k
D
j
f
(t
小波分析理论ppt课件
S(w,t ) f (t)g*(w t ) eiwt d t R
(1.12)
25
其中,“*”表示复共轭;g(t)为有紧支集的函数;f(t)为被 分析的信号。在这个变换中,ejwt起着频限的作用,g(t)起 着时限的作用。随着时间t的变化,g(t)所确定的“时间窗” 在t轴上移动,使f(t)“逐渐”进行分析。因此g(t)往往被称为
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。 在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
9
若f(t)是实轴上以2p为周期的函数,即f(t)∈L2(0,2p) ,则f(t)可以表示成傅里叶级数的形式,即
(1.1)
F(w)的傅里叶逆变换定义为
f (t) 1 eiwt F (w)dw 2 π -
(1.2)
6
为了计算傅里叶变换,需要用数值积分,即取f(t)在R 上的离散点上的值来计算这个积分。在实际应用中,我们 希望在计算机上实现信号的频谱分析及其他方面的处理工 作,对信号的要求是:在时域和频域应是离散的,且都应 是有限长的。下面给出离散傅里叶变换(Discrete Fourier Transform,DFT)的定义。
。将母函数y(t)经伸缩和平移后,就可以得到一个小波序
列。
对于连续的情况,小波序列为
y a,b (t)
2
其中,短时傅里叶变换和小波变换也是因传统的傅里叶变 换不能够满足信号处理的要求而产生的。短时傅里叶变换 分析的基本思想是:假定非平稳信号在分析窗函数g(t)的 一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,
小波分析知识点总结
小波分析知识点总结小波分析的基本思想是利用小波函数对信号进行分解,得到不同尺度和频率的成分,然后对这些成分进行分析。
小波函数通常具有局部化特性,能够反映信号的局部特征,在时域和频域上都具有一定的分辨率,因此可以更准确地描述信号的时频特性。
小波分析主要包括小波变换、小波系数的选择、小波包分析、小波域滤波等内容。
下面将从这些方面对小波分析进行介绍。
1. 小波变换小波变换是小波分析的核心内容,它将信号分解成不同尺度和频率的成分。
小波变换包括连续小波变换和离散小波变换两种形式。
连续小波变换将信号分解成不同尺度和频率的成分,并且可以实现任意精细程度的分解。
但是由于小波函数是连续的,计算复杂度较高,因此应用较为有限。
离散小波变换是将连续小波变换进行离散化处理,从而降低计算复杂度。
离散小波变换可以通过小波分解和小波重构过程来实现信号的分解和重构,具有较好的实用性和计算效率。
小波变换具有多重分辨率分析的特点,可以在不同尺度和频率上对信号进行分析,具有较好的时频局部化特性。
2. 小波系数的选择小波系数对信号的分解和重构效果具有重要影响。
通常情况下,小波系数是由小波函数的形状和尺度决定的,不同的小波函数对信号的分解和重构效果有一定的影响。
常用的小波函数包括哈尔小波、Daubechies小波、Meyer小波、Gabor小波等。
这些小波函数具有不同的形状和尺度特性,可以适用于不同类型的信号。
在选择小波系数时,需要考虑信号的特点和分析的目的,选择合适的小波函数和尺度参数,以实现更好的分解效果。
3. 小波包分析小波包分析是小波变换的一种扩展形式,它能够对信号进行更为细致的分解。
小波包分析将信号进行逐层分解,得到更为丰富的频率成分,能够更准确地描述信号的时频特性。
小波包分析通常采用二叉树结构进行信号分解,在每层分解中都能够获得更为细致的频率分量。
小波包分析可以实现任意精细程度的频率分解,能够更充分地利用小波函数的局部化特性,对信号进行更为全面的时频分析。
小波变换去噪基础知识整理
1.小波变换的概念小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
有人把小波变换称为“数学显微镜”。
2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么?有几种定义小波(或者小波族)的方法:缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。
在双正交小波的情况,分解和重建的滤波器分别定义。
高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。
例如Daubechies和Symlet 小波。
缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。
小波函数实际上是带通滤波器,每一级缩放将带宽减半。
这产生了一个问题,如果要覆盖整个谱需要无穷多的级。
缩放函数滤掉变换的最低级并保证整个谱被覆盖到。
对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。
例如Meyer小波。
小波函数:小波只有时域表示,作为小波函数。
例如墨西哥帽小波。
3.小波变换分类小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。
两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。
DWT用于信号编码而CWT用于信号分析。
所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。
4.小波变换的优点从图像处理的角度看,小波变换存在以下几个优点:(1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述)(2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性(3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)(4)小波变换实现上有快速算法(Mallat小波分解算法)另:1) 低熵性变化后的熵很低;2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性3) 去相关性域更利于去噪;4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。
《小波分析介绍》PPT课件
定义 设f (t), (t)为平方可积函数,且 (t)为允许小波,则称
Wf (a,b) :
1 a
f (t) (t b)dt,
R
a
a0Leabharlann 是f (t)的连续小波变换 .
2021/8/31
第二章
2
2
定理 设 (t)为允许小波,对 f , g L2 (R), 有
[W f
(a,
b)Wg
第二章 小波变换
§1 小波和小波变换 一、小波 小波首先应用于地球物理学中,用来分析地震勘探的数据。
定义 设函数 L2(R) L1(R),并且ˆ (0) 0,
称函数族
a,b (x)
a
1/ 2
x
b a
a,b R, a 0
为分析小波或连续小波, 称为基本小波或母小波。
注:ˆ (0) 0 R (x)dx 0 a,b (x) 2 R a,b (x) 2 dx (x) 2
性质2(平移性) W f (tt0 ) (a, b) W f (t) (a, b t0 )
性质3(尺度法则)
W f (t) (a, b)
1
W
f
(t
)
(a,
b)
0
性质4(乘法定理)
1
0
a 2 W f (a,b)Wg (a,b)dbda C
f (t)g(t)dt
R
自证
其中 C
称f (t) C j,k j,k (t)中的展开系数Cj,k为小波系数,
j ,kZ
其中,C j,k R f (t) j,k (t)dt.
迷人的风采
1,t [0,0.5)
例:Harr基本小波
h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
6
4
-0.2 2
-0.4
0
-4 -2
0
2
4
0
0.5
1
墨西哥草帽小波,(a)时域波形,(b)频谱
2020/11/8
12
2.常用的基本小波
Mexican hat小波不是紧支撑的,不是
正交的,也不是双正交的,但它是对称 的,可用于连续小波变换。由于该小波 在 处0 有二阶零点,因此它满足容许 条件,且该小波比较接近人眼视觉的空 间响应特征
Haar小波是不连续小波,由于 t (t)dt 0 , 因此处() 只有一阶零点 0 ,这就使 得Haar小波在实际的信号分析与处理中 受到了限制。
2020/11/8
7
2.常用的基本小波
Morlet小波
Morlet小波定义为
(t) et2 / 2e jt
其傅里叶变换
() 2 e(0 )2 / 2
(t), (2 j t) 0 • Haar波是对称的。系统的单位冲击响应若具有对称性,
则该系统具有线性相位,这对于去除相位失真是非常有 利的。Haar小波是目前唯一一个既具有对称性又是有限 支撑的正交小波;
• Haar小波仅取+1和-1,计算简单。
2020/11/8
6
2.常用的基本小波
➢ Haar小波缺点
2020/11/8
3
2.常用的基本小波
Haar小波
Haar小波来自于数学家Haar于1910年提出的 Haar正交函数集,其定义是:
1
(t) 1
0
0 t 1/ 2
1/
2
t
1
其它
其波形如图所示。 (t的) 傅里叶变换是:
() j 4 sin2 ( )e j / 2 a
2020/11/8
2020/11/8
15
3.正交小波
目前提出的正交小波大致可分为四种, 即Daubechies小波,对称小波, Coiflets小波和Meyer小波。这些正交 小波和前面所讨论的“经典小波”不同, 它们一般不能由一个简洁的表达式给出,(t) 而是通过一个叫做“尺度函数”的 (的t) 加权组合来产生的。
2020/11/8
13
2.常用的基本小波
Gaussian小波
高斯小波是由一基本高斯函数分别求导而得到
的,定义为: (,t)
c
dk dt k
et2 / 2
k 1,2,,8
式中定标常数是保证 (t) 。 1 2 该小波不是正交的,也不是双正交的,也不是紧
支撑的。当k取偶数时 (t正) 对称,当k取奇数时, (t)
2020/11/8
16
3.正交小波
Daubechies小波
Daubechies小波简称db小波。它是由法国女学者 Ingrid Dauechies于90年代初提出并构造。 Daubechies对小波变换的理论做出了突出的贡献, 特别是在尺度a取2的整数次幂时的小波理论及正交 小波的构造方面进行了深入的研究,其代表作 《Ten Lectures on Wavelet(小波十讲)》
并取 0 5 该小波不是紧支撑的,理论上讲t可取 ~ 但是当 0 5 ,或再取更大的值时,() 和 (t) 在时域和
频域都具有很好的集中,如图所示。
2020/11/8
9
2.常用的基本小波
Morlet wavelet: Psi 1
The FT of Psi 16
0.8
14
0.6 12
0.4
式中 c 2,其1/傅4 里叶变换为
3
() 2 c2e2 / 2
该小波是由一高斯函数的二阶导数所得到的,其波形
和其频谱如图所示。2020/11/8源自112.常用的基本小波
Mexican hat wavelet: Psi 1
The FT of Psi 20
18 0.8
16
0.6
14
12 0.4
10 0.2
2020/11/8
17
3.正交小波
dbN中的表示db小波的阶次N, 2 ~ 1,0 N 。1当时,db1即是
Haar小波。因此,前述的Haar小波应归于“正交小
波”类。Daubechies计算出了N 2 ~ 1时0 的 (t及), h0,h。1, g0
db小g波1 是正交小波,也是双正交小波,并是紧支撑的。
常用小波的分类
基本内容
1.小波的分类 2.常用的基本小波
3.正交小波 4.双正交小波
2020/11/8
2
1.小波的分类
第一类:是所谓地“经典小波”,在 MATLAB中又称作“原始小波”。 第二类:是Daubecheis构造的正 交小波 第三类:是由Cohen, Daubechies构造的双正交小波
它是一个具有高斯包络的单频率复正弦函数。考虑到
待分析的信号一般是实信号。
Morlet小波不是正交的,也不是双正交的,可用
于连续小波变换。但该小波是对称的,是应用较为广
泛的一种小波。
2020/11/8
8
2.常用的基本小波
MATLAB中将Morlet小波定义改造为: (t) et2 / 2 cos0t
4
2.常用的基本小波
(t ) 1
1/ 2 1
t
0
1 (t 1)
1 0
2
t
(t / 2)
1
2t
0
Harr小波
(a) (t) ,(b) (t 1),(c) (t / 2)
2020/11/8
5
2.常用的基本小波
➢ Haar小波的优点
• Haar小波在时域是紧支撑的,即其非零区间为(0,1) • Haar小波属正交小波。若取 a 2 j , j Z , b Z ,那么
0.2
10
0
8
-0.2
6
-0.4 4
-0.6
-0.8
2
-1
0
-4 -2
0
2
4
0
0.5
1
Morlet小波, (a)时域波形, (b)频谱
2020/11/8
10
2.常用的基本小波
Mexican hat小波
该小波的中文名字为“墨西哥草帽”小波,又称
Marr小波。它定义为:
(t) c(1 t2 )et2 / 2
反对称。下图中给出了k=4时的 (t的) 时域波形及对
应的频谱。
2020/11/8
14
2.常用的基本小波
Gaussian wavelet: Psi 1.2
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-10
-5
0
5
10
15 10
5 0
0
The FT of Psi
0.5
1
高斯小波,取k=4,(a)时域波形,(b)频谱
的支撑范围在
, 的支撑范围在
。小波
(t) 具有N阶消失矩t ,0 ~在(2N 1) (t)
处具(有1NN阶) ~零N点。但db(t小) 波是非对称的,(其)相应的 0滤