植物生理
植物生理 (共104张PPT)

植物根系对水分的吸收
– 被动吸水
• 由于叶和枝的蒸腾作用引起根部吸水和向上运输 • 主要动力:蒸腾拉力 • 基本原理:水从水势高到水势低的渗透作用
• 根部吸水的途径
– 质外体途径:水分通过细胞壁、细胞间隙等没有细胞 质的部分移动 – 共质体途径:水分从一个细胞的细胞质经过胞间连丝 ,移动到另一个细胞的细胞质,形成一个细胞质的连 续体 – 跨膜途径:水分从一个细胞移动到另一个细胞,要两 次通过质膜,还要通过液泡膜
5. 三个相邻的细胞A、B、C,其Ψs和Ψp分 别为:A Ψs=-10巴,Ψp=4巴;B Ψs= -9巴,Ψp=6巴;C Ψs=-8巴,Ψp=4巴 ,其水流的方式正确的是() A.A←B→C B.A→B→C C. A←B←C D.A→B←C 6.在气孔张开时,水蒸气分子通过气孔的扩 散速度是() A.与气孔面积成正比 B.与气孔周长成正 比 C.与气孔面积无关,与气孔周长成反 比 D.不决定于气孔周长,而决定于气孔 大小
• 水分沿导管上升的动力
1.根压:在蒸腾较弱时,根压作用大 2.蒸腾拉力:在晴朗的环境下是主要的(蒸腾拉力-内聚力张力学说)
1.如果外液的水势高于植物细胞的水势,该外液称为
A.等渗溶液 B.高渗溶液 C.平衡溶液
。
D.低渗溶液
2. 已知洋葱表皮细胞=-10巴,置于下列哪种溶液会出现质 壁分离现象 A. -10巴溶液 B.-9巴甘油溶液 C.-8巴葡萄糖溶液 D.-15巴蔗糖溶液 3. (2004)大树中水分向上运输时,下列哪一项因素最重要 A.韧皮部中的毛细管作用 B.木质部的主动运输 C.叶的蒸腾作用 D.吐水 4.风干的种子吸水的数量与()有关 A. 温度高低 B. 养气供应 C. 种子的死活 D. 种子成分 的性质
植物的5大生理作用分别是

植物的5大生理作用分别是植物具有多种生理作用,这些作用使其能够适应环境、生长发育和维持生命活动。
以下是植物的五大主要生理作用:
1. 光合作用(Photosynthesis):光合作用是植物的核心生理过程之一,通过光合色素在叶绿体中捕获太阳能,将二氧化碳和水转化为葡萄糖和氧气。
这个过程为植物提供了能量,并是氧气的主要来源。
2. 呼吸作用(Respiration):呼吸作用是植物释放能量的过程,与动物的呼吸作用有所不同。
植物通过呼吸作用将葡萄糖和氧气转化为二氧化碳、水和能量。
这个过程发生在细胞的线粒体中。
3. 蒸腾作用(Transpiration):蒸腾作用是植物通过叶片表面散发水蒸气的过程。
这有助于植物在光合作用中吸收的水分的运输和分配,同时也有助于维持植物体内的水分平衡。
4. 激素调节(Hormone Regulation):植物产生和调节激素,如赤霉素、生长素、脱落酸等,以控制植物的生长、开花、果实发育和其他生命周期中的关键阶段。
激素对植物的发育和适应环境的响应起着重要作用。
5. 营养吸收和运输(Nutrient Absorption and Transport):植物通过根部吸收土壤中的水分和矿物质养分。
这些养分通过根内的细胞和导管系统进行运输,分配到植物的各个组织和细胞,以支持生长和代谢。
这五大生理作用共同维持了植物的生命活动和生态功能,使其能够适应不同的环境条件,并在生态系统中发挥重要作用。
植物生理学名词解释(全)

一、绪论1. 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。
二、植物的水分生理1.水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。
把纯水的水势定义为零,溶液的水势值则是负值。
水分代谢:植物对水分的吸收、运输、利用和散失的过程。
2.衬质势:由于衬质 ( 表面能吸附水分的物质,如纤维素、蛋白质、淀粉等 ) 的存在而使体系水势降低的数值。
3.压力势:植物细胞中由于静水质的存在而引起的水势增加的值。
4.渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。
5.渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。
对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。
6.质壁分离:植物细胞由于液泡失水而使原生质体和细胞壁分离的现象。
7.吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。
胶体物质吸引水分子的力量称为吸胀。
8.根压:由于植物根系生理活动而促使液流从根部上升的压力。
伤流和吐水现象是根压存在的证据。
9.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。
10.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用 g·kg-l表示。
11.蒸腾系数:植物每制造 1g 干物质所消耗水分的 g 数,它是蒸腾效率的倒数,又称需水量。
12. 气孔蒸腾:植物细胞内的水分通过气孔进行蒸腾的方式称为气孔蒸腾。
13.气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。
14.保卫细胞:新月形的细胞,成对分布在植物叶气孔周围,控制进出叶子的气体和水分的量。
形成气孔和水孔的一对细胞。
双子叶植物的保卫细胞通常是肾形的细胞,但禾本科的气孔则呈哑铃形。
气孔的保卫细胞含有叶绿体,因为细胞壁面对孔隙的一侧(腹侧)比较厚,而外侧(背侧)比较薄,所以随着细胞内压的变化,可进行开闭运动。
植物生理学

影响花芽分化的原因----植物激素\环境条件\生理条件
性 别 表 现
图19.14 已成熟的 及正在生长的花器 官的表面形态,花器 官的表皮细胞在形 态上相差很大,花瓣 的表皮细胞呈圆锥 形。萼片和花柱的 表皮细胞伸长,柱头 上有乳头状细胞突 起(SP),花药的表皮 细胞呈不规则状。 OV’子房
花粉萌发和花粉管的生长
具有生活力的花粉粒落 在柱头上,被柱头表皮细 胞吸附,并吸收表皮细胞 分泌物中的水分。由于营 养细胞吸胀作用使花粉内 壁以及营养细胞的质膜在 萌发孔处外突,形成花粉 管的乳状顶端,此过程称 为花粉萌发。接着花粉管 侵入柱头细胞间隙进入花 柱的引导组织。
花粉管的生长局限于顶端区。顶端区代谢十分旺盛, 内含与壁形成密切相关的细胞器,如线粒体、内质 网、高尔基体及运送合成壁前体的高尔基体小泡。
第二节 春化作用
一、春化作用的条件
低 温 诱 导 植 物 开 花 的 作 用 称 春 化 作 用 (vernalization)。
1928年,李森科(Lysenko) 除冬小麦、冬黑麦、冬大麦等冬性禾谷类作物 以外,某些二年生植物,如白菜、萝卜、胡萝 卜、芹菜、甜菜、甘蓝和天仙子等,以及一些 多年生草本植物(如牧草)的开花也需要经过 春化作用。
双受精
——两个精细胞中的 一个与卵细胞融 合形成合子。另 一个与中央细胞 的两个极核融合, 形成初生胚乳核。
玉米的双受精。 花粉管进入一个退化 的助细胞,并向该助细 胞内释放出核物质(造 成助细胞破裂),两个精 细胞中一个与卵细胞 融合,另一个与两个中 央细胞核融合
生长的花粉管从顶端到基部存在着由高到低 的Ca2+浓度梯度。若破坏这种Ca2+梯度会导
植物生理生化完整版

植物生理生化完整版名词解释:1. 生物膜:细胞内所有的膜,总称生物膜,生物膜一般厚为8nm,主要由类脂和蛋白质两部分组成。
细胞和多种细胞器的表面都覆盖有生物膜。
2. 原生质体:除细胞壁以外的细胞部分,包括细胞核、细胞器、细胞质基质以及其外围的细胞质膜。
原生质体失去了细胞的固有形态,通常呈球状。
3. 小孔律:气体分子通过多孔表面扩散的速度,不与小孔的面积成正比,而与小孔的周长成正比的现象。
4. 内聚力学说:又称蒸腾流―内聚力―张力学说。
即以水分子的内聚力来解释水分沿导管上升原因的学说。
5. 有益元素:某种元素并非植物必需的,但常在植物体内存在,对植物生长发育生理功能表现有利作用,并能部分替代某一必需元素的作用,减缓缺素症的元素。
如钠、硅、硒。
6. 光合作用:是绿色植物利用光能,把二氧化碳和水合成有机物质,并放出氧气的过程。
7. 同化力:在电子传递及光合磷酸化作用中形成的NADPH+H+和ATP,随后用于CO2的同化,故称为同化力。
8. 呼吸商:又称为呼吸系数,简称RQ.是指在一定时间内,植物组织释放CO2的摩尔数与吸收氧的摩尔数之比。
9. 光饱和点:开始达到光饱和现象时的光照强度称为光饱和点。
10. 呼吸跃变:是某些果实在成熟过程中的一种特殊的呼吸形式。
果实在成熟初期呼吸略有降低,随之突然升高,然后又突然下降,经过这样的转折,果实进入成熟。
果实成熟前呼吸速率突然增高的现象称为呼吸跃变(或跃迁)。
11. 第二信使:配体与受体结合后并不进入细胞内,但间接激活细胞内其他可扩散,并能调节调节信号转导蛋白活性的小分子或离子。
(受细胞外信号的作用,在胞质溶胶内形成或向胞质溶胶释放的细胞内小分子。
通过作用于靶酶或胞内受体,将信号传递到级联反应下游)。
12. P蛋白:即韧皮蛋白,位于筛管的内壁,当韧皮部组织受到伤害时,P-蛋白在筛管周围累积并形成凝胶,堵塞筛管孔以维持其他部位筛管的正压力,同时减少韧皮部内运输队的同化物的外流。
植物生理学

植物生理学一、名词解释1、C4植物:具有四碳二羧酸途径的植物。
2、CO2同化:CO2同化成碳水化合物的过程。
3、EMP途径(糖酵解途径):细胞质基质中的己糖经过一系列酶促反应步骤分解成丙酮酸的过程。
4、单盐毒害:溶液中只有一种金属离子时,对植物起有害作用的现象。
5、电子传递链(呼吸链):呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总过程。
6、顶端优势:顶芽优先生长,而侧芽生长受抑制的现象。
7、冻害:当温度降到0℃以下,植物体内发生冰冻,因而受伤甚至死亡的现象。
8、光合链;连接两个光反应系统、排列紧密而互相衔接的电子传递物质。
9、光合磷酸化:叶绿体在光下把无机磷酸和ADP转化为ATP,形成高能磷酸键的过程。
10、光合速率:通常指单位时间、单位叶面积吸收CO2的物质的量或放出O2的物质的量。
11、光合作用:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物并释放氧气的过程。
12、光呼吸:指植物的绿色细胞在光照条件下进行的吸收O2并放出CO2的过程。
13、光形态建成:依赖光控制细胞的分化、结构和功能改变, 最终汇集成组织和器官的建成,即光控制发育的过程。
14、呼吸商:指植物组织在一定时间内,释放CO2与吸收O2的数量比值。
15、极性运输:生长素只能从形态学上端向下端的方向运输,而不能向相反的方向运输。
16、集流运输速率:指单位截面积筛分子在单位时间内运输物质的量,常用g/(m2·h)或g/(mm2·s)。
17、假环式电子传递:指水光解放出的电子经PSⅡ和PSⅠ两个光系统,最终传给O2的电子传递。
18、简单扩散:生物膜允许一些疏水分子和小而不带电的极性分子,以简单扩散方式通过细胞膜,溶质从浓度较高的区域跨膜移向浓度较低的邻近区域的物理过程。
19、近似昼夜节奏:在没有昼夜变化和温度变化的恒温条件下,叶子的升起和下降运动的每一周期近似24小时的周期性变化节律。
(完整版)植物生理学教案

光信号转导途径光敏色素、来自花色素等光 受体介导的信号转导途径 。
温度信号转导途径
温度感受器介导的信号转 导途径,如春化作用。
植物生长与发育的农业应用
作物育种
通过遗传改良,选育具有优良 生长和发育特性的作物品种。
作物栽培
通过合理的农业措施,如施肥 、灌溉、除草等,调控作物的 生长和发育。
设施农业
利用设施条件,调控环境因子 ,促进作物的生长和发育,提 高产量和品质。
• 维持细胞内外环境稳定:呼吸作用参与细胞内pH值、渗透压等环境因素的调节。
呼吸作用的生理意义及影响因素
温度
适宜的温度有利于呼吸作用的进行, 过高或过低的温度都会抑制呼吸作用 。
氧气浓度
有氧呼吸需要充足的氧气,低氧或无 氧条件会抑制有氧呼吸,促进无氧呼 吸。
呼吸作用的生理意义及影响因素
水分
适宜的水分含量有利于呼吸作用的进行,水分过多或过少都会抑制呼吸作用。
液泡
06 调节细胞内的水分和离子浓度
,维持细胞的渗透压和pH值稳 定。
03
植物的水分生理
水的物理和化学性质
02
01
03
水的物理性质 无色、无味、透明的液体。 在4°C时密度最大,具有异常的膨胀特性。
水的物理和化学性质
• 高比热容和高汽化热,对稳定环境温度有重要作用。
水的物理和化学性质
01
水的化学性质
研究对象
植物的细胞、组织、器官以及整 体植株在各种环境条件下的生理 活动和代谢过程。
植物生理学的历史与发展
01
02
03
04
萌芽阶段
古代人们对植物生理现象的观 察和描述。
实验生理学阶段
17-18世纪,通过实验手段研 究植物生理过程。
植物生理学重点

一.成花诱导春化作用( vernalization):低温诱导促进植物开花的作用。
温度:相对低温型:低温处理促进植物开花,如冬性一年生植物,种子吸涨后即可感受低温绝对低温型:若不经低温处理,植物绝对不能开花,如二年生植物,营养体达到一定大小才能感受低温。
低温及条件:各类植物通过春化时要求低温持续的时间不同,在一定时间内,春化的效应随低温处理时间的延长而增加。
(2)需要充足的氧气、适量的水分和作为呼吸底物的糖分(3)光照春化之前,充足的光照可促进二年生和多年生植物通过春化。
时期、部位和刺激传导(1)时期大多数一年生植物(冬小麦)在种子吸胀后即可接受低温诱导,在种子萌发和苗期均可进行。
而需低温的二年生植物(胡萝卜、月见草等)只有绿苗达到一定大小才能通过春化。
(2)部位感受低温的部位:茎尖端的生长点春化过程中的生理生化变化(1)呼吸速率—春化处理的较高(2)核酸代谢在春化过程中核酸(特别是RNA)含量增加,代谢加速,而且RNA性质有所变化。
(3)蛋白质代谢可溶性Pr及游离AA含量(Pro)增加。
(4)GA含量增加一些需春化的植物(如天仙子、白菜、胡萝卜等)未经低温处理,若施用GA也能开花。
GA以某种方式部分代替低温的作用。
春化作用的机理前体物低温中间产物低温最终产物(完成春化)高温中间产物分解(解除春化)春化作用在农业生产中的应用A、人工春化,加速成花,提早成熟(1)“闷麦法” —春天补种冬小麦(2)春小麦低温处理—早熟,躲开干热风,利于后季作物的生长(3)加速育种过程—冬性作物的育种B、指导引种引种时应注意原产地所处的纬度,了解品种对低温的要求。
如北种南引,只进行营养生长而不开花结实。
C、控制花期如低温处理可使秋播的花卉改为春播,当年开花收获营养器官的植物,可高温处理解除春化光周期的发现某些植物在完成春化作用后,只有在高温和特定的光周期处理以后,花芽才能分化。
光周期( photoperiod):一天之中白天和黑夜的相对长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、植物细胞细胞是生物体结构和功能的基本单位,可分为原核细胞( 如细菌、蓝藻) 和真核细胞( 其他单细胞和多细胞生物)两大类。
原核细胞简单,没有细胞核和高度分化的细胞器。
真核细胞结构复杂。
植物细胞的细胞壁、质体( 包括叶绿体)和液泡是其区别于动物细胞的三大结构特征,细胞是由多糖、脂类、蛋白质、核酸等生物大分子和其他小分子等成分所组成的。
原生质的物理特性、胶体性质和液晶性质与细胞的生命活动密切相关。
细胞壁由胞间层、初生壁、次生壁所构成,其化学成分主要是纤维素、半纤维素、果胶、蛋白质等物质。
细胞壁不仅是细胞的骨架与屏障,而且在物质运输、抗病抗逆、细胞识别等方面起积极作用。
胞间连丝充当了细胞间物质运输与信息传递的通道。
磷脂双分子层是组成生物膜的基本结构,其中镶嵌的各种膜蛋白决定了膜的大部分功能。
“流动镶嵌模型”是最流行的生物膜结构模型。
生物膜是细胞实现区域化的屏障,也是细胞同外界、细胞器间以及细胞器同细胞基质间进行物质交换的通道。
此外,生物膜还是生化反应的场所,并具有细胞识别、传递信息等功能。
细胞核是细胞遗传与代谢的调控中心。
染色体由核酸与蛋白构成,它是核内最重要的结构物质。
叶绿体和线粒体是植物细胞内能量转换的细胞器,并有环状DNA 及自身转录RNA 与翻译蛋白质的体系,被称为第二遗传信息系统。
它们与细胞核都具有双层被膜。
微管、微丝、中间纤维等构成了细胞骨架,是植物细胞的蛋白质纤维网架体系,它们在维持细胞形态、保持细胞内部结构的有序性、推动细胞器的运动和物质运输等方面起重要的作用。
内膜系统是在结构、功能或发生上有联系的一类亚细胞结构。
内质网内接核膜、外连质膜,甚至经胞间连丝与相邻细胞相连,参与细胞间物质运输、交换和信息传递。
高尔基体则与内质网密切配合,参与多种生物大分子的合成以及膜结构、壁物质与细胞器的组建。
溶酶体与液泡内都富含水解酶,参与细胞内物质的分解和细胞的自溶反应。
此外,液泡还具有物质贮藏、调控细胞水分平衡以及参与多种代谢的作用。
过氧化体是光呼吸的场所,而乙醛酸循环体则为脂肪酸代谢所不可少,圆球体为油脂积累和代谢所必需。
核糖体是蛋白质合成场所。
在看似无稳定结构的细胞质基质里,进行着一系列复杂而有序的生理生化反应。
细胞质基质、细胞器和生物膜系统协调配合,使细胞的结构和功能达到高度的统一。
植物细胞还能感应外界环境的刺激,并且形成或产生某种( 些)信号物质,这些信号物质传递到达作用部位,通过胞内信号转导系统最终引起一系列生理生化响应。
已确认的胞间信号有脱落酸、吲哚乙酸、细胞分裂素、多胺、乙酰胆碱、水杨酸、寡聚糖等化学信号和电波、水压等物理信号,胞内信号有钙信号系统、肌醇磷脂信号系统和环核苷酸信号系统等。
胞间与胞内信号的转化则通过质膜上的受体和G 蛋白。
而引起生理生化反应则需通过蛋白质的磷酸化作用与脱磷酸化作用。
蛋白质的可逆磷酸化作用在植物信号转导过程中,有非常重要的作用。
IP 3 .三磷酸肌醇;DG .二酰甘油;PKA .依赖cAMP 的蛋白激酶;PK Ca 2 +. 依赖Ca 2 +的蛋白激酶;PKC .依赖Ca 2 +与磷脂的蛋白激酶;PK Ca 2 +·CaM .依赖Ca 2 +·CaM 的蛋白激酶高等植物细胞具有核、叶绿体、线粒体三个基因组,后两组称为核外基因。
基因表达包括转录与翻译两个步骤。
转录是RNA的生物合成,翻译是蛋白质的生物合成,这两个过程受到严格的调节控制。
二、植物的水分生理水是生命的“先天”环境,没有水就没有植物。
水是植物体的主要组成成分。
水除了直接或间接地参与生理生化反应之外,还调节植物的生态环境。
植物体内的水分以自由水和束缚水两种形态存在,两者的比例与植物的代谢强度和抗逆性强弱有着密切关系。
每偏摩尔水的自由能就是水的化学势。
每偏摩尔体积水的化学势差就是水势。
植物细胞的水势由渗透势(溶质势)、压力势和衬质势组成,Ψw =Ψs +Ψp+Ψm 。
水势单位采用压力单位(MPa )。
水分从水势高处通过半透膜移向水势低处,就是渗透作用。
细胞吸水有渗透吸水、吸胀吸水以及代谢性吸水之分。
具有液泡的植物细胞以渗透吸水为主。
未形成液泡的嫩细胞和干燥种子的吸水主要靠吸胀吸水。
细胞与细胞之间的水分移动方向,决定于两处的水势差,水分总是从水势高处流向水势低处,直至两处水势差为零。
土壤中只有可利用水才能被植物根系吸收。
根系吸收水分最活跃的部位是根毛区。
根系吸水可分为主动吸水和被动吸水,通常被动吸水是主要的。
凡是影响根压形成和影响蒸腾速率的内外条件,都影响根的吸水。
蒸腾作用在植物生活中具有重要的作用。
气孔蒸腾是蒸腾作用的主要方式。
气孔开闭机理可以用无机离子吸收学说和苹果酸生成学说来解释。
气孔开闭的关键问题是保卫细胞中的溶质增加和水势的下降,当保卫细胞水势下降后它周围细胞吸水,气孔就张开,反之气孔则关闭。
影响气孔蒸腾的外界因素主要有光照、温度和湿度,而内部因素则以气孔开度为主。
水分在植物体内可经质外体和共质体途径运输。
运输的途径是:土壤→根毛→皮层→内皮层→中柱鞘→根的导管或管胞→茎的导管→叶柄导管→叶脉导管→叶肉细胞→叶细胞间隙→气孔下腔→气孔→大气。
水分在导管或管胞上升的动力是根压与蒸腾拉力,并以蒸腾拉力为主。
由于水分子之间的内聚力和水分子与导管壁之间的吸附力远大于水柱张力,因而导管中的水柱连续不中断,这是水分源源不断上升的保证。
灌溉的基本原则是用少量的水取得最大的效果。
要进一步发挥灌溉的作用,就需要掌握作物的需水规律。
作物需水量(蒸腾系数)因作物种类、生长发育时期不同而有差异。
合理灌溉则要以作物需水量和水分临界期为依据,参照生理指标制定灌溉方案,采用先进的灌溉方法及时地进行灌溉。
合理灌溉可取得良好的生理效应和生态效应,增产效果显著。
三、植物的矿质营养矿质元素和水分一样,主要存在于土壤中,由根系吸收进入植物体内,运输到需要的部位加以同化,以满足植物生命活动的需要。
植物对矿物质的吸收、转运和同化,通称为矿质营养。
植物体内的化学元素并非全部是植物生命活动所必需的,只有其中一部分为植物生命活动所不可缺少。
要确定植物体内各种元素是否为植物所必需,只根据灰分分析得到的数据是不够的。
通过溶液培养或砂基培养,并按照Arnon & Stout 于1939 年提出的植物必须元素的标准:(1 )如缺乏该元素,植物生育发生障碍,不能完成生活史;(2 )除去该元素,则表现出专一的病症,而且这种缺乏症是可以预防和恢复的;(3 )该元素在植物营养生理上应表现直接的效果,绝不是因土壤或培养基的物理、化学、微生物条件的改变而产生的间接效果。
目前已经明确碳、氢、氧、氮、磷、钾、钙、镁、硫、铁、锰、铜、锌、硼、钼、氯、镍17 种元素为大多数高等植物所必需的,其中碳、氢、氧、氮、磷、钾、钙、镁、硫9种元素植物需要量相对较大,称为大量元素;其余铁、锰、铜、锌、硼、钼、氯、镍8 种元素植物需要量极微,稍多即发生毒害,故称为微量元素。
必需的矿质元素在植物体内的生理作用有 3 个方面:⑴是细胞结构物质的组成成分,如N ,P ,S 等;⑵是植物生命活动的调节者,参与酶的活动,如Mn ,Mg ,Fe 等;⑶起电化学作用,即离子浓度的平衡、胶体的稳定和电荷中和等,如K + 。
可被植物吸收的氮素形态主要是铵态氮和硝态氮。
氮是构成蛋白质的主要成分,占蛋白质含量的16% ~18%。
此外,核酸、核苷酸、辅酶、磷脂、叶绿素等化合物中都含有氮,而某些植物激素、维生素和生物碱等也含有氮。
因此,氮在植物生命活动中占有首要的地位,故又称为生命元素。
磷是以正磷酸盐(H 2 P0 4 - )形式被植物吸收。
当磷进入植物体后,大部分成为有机物,有一部分仍保持无机物形式。
磷存在于磷脂、核酸和核蛋白中,磷是核苷酸衍生物( 如ATP 、FMN 、NAD + 、NADP + 和COA 等) 的组成成分,其在糖类代谢、蛋白质代谢和脂肪代谢中起着极其重要的作用。
K +既是植物的吸收形态又是在植物体内的存在形态,与氮、磷相反,钾不参与重要有机物的组成。
钾主要集中在植物生命活动最活跃的部位,如生长点、幼叶、形成层等。
钾对于参与活体内各种重要反应的酶起着活化剂的作用,是40 多种酶的辅助因子。
钾促进呼吸进程及核酸和蛋白质的形成。
钾对糖类的合成和运输有影响。
植物体内的钙有呈离子状态的,有呈盐形式的,还有与有机物结合的。
钙主要存在于叶子或老的器官和组织中。
它是一个比较不易移动的元素。
钙在生物膜中可作为磷脂的磷酸根和蛋白质的羧基间联系的桥梁,因而可以维持膜结构的稳定性。
钙是构成细胞壁的一种元素,细胞壁的胞间层是由果胶酸钙组成的。
胞质溶胶中的钙与可溶性的蛋白质形成钙调素( 简称CaM) 。
CaM 和Ca 2+ 结合,形成有活性的Ca-CaM 复合体,在代谢调节中起“第二信使”的作用。
镁主要存在于幼嫩器官和组织中,植物成熟时则集中于种子。
镁是叶绿素的组成成分之一。
在光合和呼吸过程中,镁可以活化各种磷酸变位酶和磷酸激酶。
同样,镁也可以活化DNA 和RNA 的合成过程。
SO 4 2-进入植物体后,一部分保持不变,大部分被还原成硫,进一步同化为含硫氨基酸,如胱氨酸、半胱氨酸和蛋氨酸等,而这些氨基酸几乎是所有蛋白质的构成分子。
硫也是CoA的成分之一,氨基酸、脂肪、糖类等的合成等都和CoA 有密切关系。
铁进入植物体内处于被固定状态,不易转移。
铁是许多重要氧化还原酶的组成成分。
铁在呼吸、光合等氧化还原过程中(Fe 3+ ≒Fe 2+ )都起着重要的作用。
铁影响叶绿体构造形成,和叶绿素的合成。
锰是糖酵解和三羧酸循环中某些酶的活化剂,所以锰能提高呼吸速率。
锰是硝酸还原酶的活化剂。
在光合作用方面,水的裂解需要锰参与。
铜是某些氧化酶的成分,影响氧化还原过程。
铜又存在于叶绿体的质体蓝素中,后者是光合作用电子传递体系的一员。
缺锌植物失去合成色氨酸的能力,而色氨酸是吲哚乙酸的前身,因此缺锌植物的吲哚乙酸含量低。
硼能与游离状态的糖结合,使糖带有极性,从而使糖容易通过质膜,促进运输。
硼对植物生殖过程有影响。
硼具有抑制有毒酚类化合物形成的作用。
钼是硝酸还原酶的金属成分,起着电子传递作用。
钼又是固氮酶中钼铁蛋白的成分,在固氮过程中起作用。
氯在光合作用水裂解过程中起着活化剂的作用,促进氧的释放。
根和叶的细胞分裂需要氯。
镍是近年来发现的植物生长所必需的微量元素。
镍是脲酶的金属成分,脲酶的作用是催化尿素水解成C0 2 和NH 4 + 。
镍也是固氮菌脱氢酶的组成成分。
每种元素缺乏时都会使植物出现特有的症状和出现部位,根据这些可以进行缺素的简单诊断,比较准确的方法是化学分析法。
植物细胞吸收离子的方式可分为被动吸收和主动吸收,其中被动吸收的机理被理解为简单扩散和离子通道运输,主动吸收是通过离子泵和离子载体实现的。