工程电磁场课程设计_ansys_电磁场分析
ANSYS电磁场分析指南 第四章 2-D瞬态磁场分析

第四章2-D瞬态磁场分析4.1 什么是瞬态磁场分析瞬态磁场分析处理的既不是静态的也不是谐波的磁场,而是由电压、电流或外加场的随时间无规律变化所引起的磁场变化。
在瞬态磁场分析中我们所感兴趣的典型物理量是:·涡流·涡流致使的磁力·涡流致使的能量损耗瞬态磁场分析可以是线性,也可以是非线性。
4.2 2-D瞬态磁场分析中用到的单元在涡流区域,瞬态模型只能用矢量位方程描述。
只能用下列单元类型来模拟涡流区。
表12D实体单元表2通用电路单元4.3 创建2D瞬态磁场分析的物理环境如同ANSYS其他类型分析一样,瞬态磁分析要建立物理环境、建模、给模型区域赋属性、划分网格、加边界条件和载荷、求解、然后检察结果。
2D瞬态磁分析的大多数步骤都相同或相似于2D静态磁场分析步骤。
本章讨论2D瞬态磁场分析中需要特殊处理的部分。
关于2D瞬态磁场分析中如何设置GUI参考框、单元选项(KEYOPTs)、实常数、单位制与2D静态磁场分析相同,第2章已经作了详细描述。
当定义材料性质时,一般也采用与第2章中同样的方法。
4.4 建立模型,划分网格,指定属性《ANSYS建模与分网指南》详细介绍了建模过程。
建立了模型后,对每个模型区要指定属性,即指定在第一步中定义好的单元类型、单元选项、材料特性、实常数、单元坐标系等。
使用AATT或VATT命令或其等效路径来指定属性。
详见第2章静态磁场分析部分。
4.5 施加边界条件和励磁载荷在瞬态磁分析中,可将边界条件和载荷施加到实体模型上(关键点、线和面),也可以施加到有限元模型上(节点和单元)。
加载方式与第2章静态分析类似。
也可以用命令加载和施加边界条件,对2D 瞬态分析还可以用加载步选项。
本手册第16章对这些载荷步选择有详细描述。
根据定义,瞬态分析中的边界条件和载荷是时间的函数,实际分析计算时,要将“载荷-时间”曲线分解成合适的载荷步,“载荷-时间”曲线的每个"拐点"就是一个载荷步。
ANSYS电磁场分析报告指南设计

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章 2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章 3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。
Ansys电磁场分析经典教程

耦合场分析概况…………………………………………………………………………….. 5-1
1-1
第一章
教程综述
1-2
• ANSYS/EMAG能用于模拟工业电磁装 置
• 电磁装置当然是3维,但可简化 为2维模 型。
• 模拟可考虑为: – 稳态 – 交流(谐波) – 时变瞬态 • 阶跃电压 • PWM(脉宽调制) (Pulse Width Modulation) • 任意
• 为每个物理区定义材料 – 导磁率(常数或非线性) – 电阻率 – 矫顽磁力,剩余磁感应
衔铁 线圈 锭子
实体模型
1-5
• 建实体模型 • 给模型赋予属性以模拟物理区 • 赋予边界条件
– 线圈激励 – 外部边界 – 开放边界 • 实体模型划分网格 • 加补充约束条件(如果有必要) – 周期性边界条件 – 连接不同网格
• 一旦衔铁已选好,选择OK (在选取框内)
1-25
• 选择与已选平面相对应的单元
用“面”
• 选择 OK • 图示衔铁单元
Utility>plot>elements
衔铁单元
1-26
• 使单元与衔铁组件联系起来 Utility>Select>Comp/Assembly>Create Component
• 选择Apply (重复显示和输入) • 建立线圈面
利用TAB 键移动输 入窗口
• 选择 Apply
1-17
• 建立空气面
• 选择 OK 衔铁
到了这步,建立了全部平 面,但它们还没有连接起 来.
线圈
1-18
• 用Overlap迫使全部平面连接在一起 Preprocessor>Operate> Overlap>Areas
AnsysMaxwell在工程电磁场中的应用1——二维分析技术

AnsysMaxwell在⼯程电磁场中的应⽤1——⼆维分析技术学习⾃:《Ansoft12在⼯程电磁场中的应⽤》赵博、张洪亮等编著软件版本:ANSYS2019R3(1.9.7)1.1 界⾯环境左侧为⼯程管理栏,可以管理⼀个⼯程⽂件中的不同部分或管理⼏个⼯程⽂件。
其下⽅为⼯程状态栏,在对某⼀物体或属性操作时,可在此看到操作的信息。
最下⽅并排的是⼯程信息栏,该栏显⽰⼯程⽂件在操作时的⼀些详细信息,例如警告提⽰,错误提⽰,求解完成等信息。
在旁边的⼯程进度栏内主要显⽰的是求解进度,参数化计算进度等,该进度信息通常会⽤进度条表⽰完成的百分⽐。
在屏幕中部是⼯程树栏,在此可以看到模型中的各个部件及材料属性、坐标系统等关键信息,也⽅便⽤户对其进⾏分别管理。
在操作界⾯最右侧较⼤区域为⼯程绘图区,⽤户可以在此绘制所要计算的模型,也可以在此显⽰计算后的场图结果和数据曲线等信息。
如果不⼩⼼将这⼏个区域给关闭了,还可以在 View 菜单栏中将其对应项前的对号勾上,则对应的区域会重新显⽰出来。
部分快捷操作按钮如下:新建 Maxwell 3D ⼯程,新建 Maxwell 2D ⼯程,新建电路⼯程,新建 RMxprt ⼯程。
新建,打开,保存,关闭等。
复制,剪切,粘贴,撤销等。
调整视图:移动、旋转、缩放和全局视图等。
模型绘制常⽤:绘制⾯的按钮,分为矩形⾯、圆⾯、正多边形⾯和椭圆⾯;绘制线的按钮,分为线段、曲线、圆、圆弧和函数曲线。
模型材料快捷按钮。
模型校验和求解。
帮助:最好的培训教材,建议⽤户熟悉该⽂档的结构和相关内容。
1.2 Maxwell 2D 的模型绘制绘制⼆维模型时,可以采⽤快捷按钮绘图,也可以采⽤Draw下拉菜单绘制,两者的效果是相同的。
在绘制 2D 模型时 Z ⽅向上的量可以恒定为 0,仅输⼊ X 和 Y ⽅向上的坐标数据即可。
在三个⽅向上数据栏后有两个下拉菜单,第⼀个为绘制模型时的坐标,默认是采⽤ Absolut 绝对坐标,也可以通过下拉菜单将其更换为相对坐标,则后⼀个操作会认为前⼀个绘图操作的结束点为新相对坐标点起点。
ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较.

期末大作业题目:简单直流致动器ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙学科(专业):机械工程学号:21225169所在院系:机械工程学系提交日期2013 年 1 月1、 背景简述:ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。
而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。
本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。
现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。
2、 问题描述:简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。
衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。
模型为轴对称。
3、 ANSYS 仿真操作步骤:第一步:Main menu>preferences第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete第三步:设置单元行为模拟模型的轴对称形状,选择Options(选项)第四步:定义材料Preprocessor>Material Props>•定义空气为1号材料(MURX = 1)•定义衔铁为2号材料(MURX = 1000)•定义线圈为3号材料(自由空间导磁率,MURX=1)第五步:建立衔铁面、线圈面、空气面Preprocessor>Modeling>Greate>Area>Rectangle>By Dimensions 建立衔铁面建立线圈面建立空气面最终结果第六步:用Overlap迫使全部平面连接在一起Preprocessor> Modeling>Booleans>Operate> Overlap>Areas 按Pick All第七步:平面要求与物理区和材料联系起来Preprocessor>Meshing> Meshing Attributes>Picked Areas用鼠标点取衔铁平面Preprocessor>Meshing> Meshing Attributes>Picked Areas选取线圈平面第八步:加磁通量平行边界条件Preprocessor>Solution>Define loads>apply>magnetic>boundary>Vector Poten>Flux par’1>On lines选取如下边界线段第九步:智能尺寸选项来控制网格大小Preprocessor>-Meshing>Size Cntrls>smartsize>basic第十步:网格生成Preprocessor >Meshing>Mesh>Areas>Free>Pick All结果如下:第十步:衔铁定义为一个单元组件(1)选择衔铁平面Utility>select>entities(2)选择与已选平面相对应的单元(3)图示衔铁单元Utility>plot>elements第十一步:使单元与衔铁组件联系起来Utility>Select>Comp/Assembly>Create Component第十二步:加力边界条件标志Preprocessor>Solution>Define loads>apply>magnetic>Magnetic>Flag>Comp Force第十三步:给线圈平面施加电流密度(1)选择线圈平面Utility>Select>Entity(2)得到线圈截面积.Preprocessor>Modeling>Booleans>Operate Operate>Calc Geometric Items>Of Areas选择OK(3)将线圈面积赋予参数CAREAUtility>Parameter>Get Scalar Data第十四步:把电流密度加到平面上Preprocessor> Solution>Define loads>Apply>Excitation>Curr Density>On Areas第十五步:solve进行计算Preprocessor> Solution >solve>electromagnet>Static Analysis>Opt & Solve第十六步:后处理(1)生成磁力线圈General Postproc>plot results>Contour Plot>2D flux lines(2)计算电磁力General Postproc>Elec&Mag Calc>Component Based>Force(3)显示总磁通密度值(BSUM)General Postproc>Plot Results>Contour Plot>Nodal Solution最后结果如下:此时,完成了用ANSYS仿真分析简单直流致动器的全部过程,之后将附上用ansoft 仿真同一简单直流致动器的结果并做简单比较。
ANSYS电磁场分析指南-第六章3-D静态磁场分析(棱边单元方法)

第六章3-D静态磁场分析(棱边单元方法)6.1何时使用棱边元方法在理论上,当存在非均匀介质时,用基于节点的连续矢量位A来进行有限元计算会产生不精确的解,这种理论上的缺陷可通过使用棱边元方法予以消除。
这种方法不但适用于静态分析,还适用于谐波和瞬态磁场分析。
在大多数实际3-D分析中,推荐使用这种方法。
在棱边元方法中,电流源是整个网格的一个部分,虽然建模比较困难,但对导体的形状没有控制,更少约束。
另外也正因为对电流源也要划分网格,所以可以计算焦耳热和洛伦兹力。
用棱边元方法分析的典型使用情况有:·电机·变压器·感应加热·螺线管电磁铁·强场磁体·非破坏性试验·磁搅动·电解装置·粒子加速器·医疗和地球物理仪器《ANSYS理论手册》不同章节中讨论了棱边单元的公式。
这些章节包括棱边分析方法的概述、矩阵列式的讨论、棱边方法型函数的信息。
对于ANSYS的SOLID117棱边单元,自由度是矢量位A沿单元边切向分量的积分。
物理解释为:沿闭合环路对边自由度(通量)求和,得到通过封闭环路的磁通量。
正的通量值表示单元边矢量是由较低节点号指向较高节点号(由单元边连接)。
磁通量方向由封闭环路的方向根据右手法则来判定。
在ANSYS中,AZ表示边通量自由度,它在MKS单位制中的单位是韦伯(Volt·Secs),SOLID117是20节点六面体单元,它的12个边节点(每条边的中间节点)上持有边通量自由度AZ。
单元边矢量是由较低节点号指向较高节点号。
在动态问题中,8个角节点上持有时间积分电势自由度VOLT。
ANSYS程序可用棱边元方法分析3-D静态、谐波和瞬态磁场问题。
(实体模型与其它分析类型一样,只是边界条件不同),具体参见第7章,第8章。
6.2单元边方法中用到的单元表 1三维实体单元6.3物理模型区域的特性与设置对于包括空气、铁、永磁体、源电流的静态磁场分析模型,可以通过设置不同区域不同材料特性来完成。
ANSYS电磁场教程电磁模拟

THANKS FOR WATCHING
感谢您的观看
03Байду номын сангаас
本文介绍了ANSYS电磁场教程的基本内容和应用实例,包括静电场、静磁场和 时变电磁场的模拟分析,旨在帮助读者更好地理解和掌握ANSYS在电磁场分析 中的应用。
展望
随着科技的不断进步和应用需求的不断增加,电磁模拟技 术将越来越受到重视,ANSYS作为该领域的领先软件,将 继续发挥重要作用。
未来,ANSYS将不断更新和完善其功能和工具,以更好地 满足用户的需求,包括提高模拟精度、增加新的分析模块 和优化计算效率等。
后处理
分析结果、可视化展示等。
03 电磁场模拟案例分析
案例一:简单电场模拟
建立模型
创建一个简单的二维电场模型, 包括两个电极板和空气区域。
求解设置
选择合适的求解器类型和迭代 次数,进行电场模拟。
总结词
通过ANSYS软件进行简单电场 模拟,了解电场分布和电势分 布。
边界条件
设置电极板为电势边界条件, 设置空气区域为零电势边界条 件。
结果分析
查看电场分布云图和电势分布 云图,分析电场强度和电势的 变化趋势。
案例二:磁场模拟
总结词
通过ANSYS软件进 行磁场模拟,了解磁 场分布和磁感应强度 分布。
建立模型
创建一个简单的三维 磁场模型,包括一个 永磁体和空气区域。
边界条件
设置永磁体为磁化方 向边界条件,设置空 气区域为零磁感应强 度边界条件。
结果分析实例
磁场分布
通过后处理技术,将模拟得 到的磁场分布进行可视化展 示,并与理论值进行对比分 析。
ANSYSWorkbench基础教程与工程分析详解第九章电磁场分析

2.麦克斯韦第二方程
麦克斯韦第二方程也称为法拉第电磁感应定律:
ANSYS Workbench 基础教程与工程分析详解
JJ G JG JG G ∂D J 其积分形式为: v ∫ E ⋅ d I = −∫s ∂τ ⋅ d S JG JG ∂E 微分形式: ∇ × E = − ∂τ 该式说明:变化的磁场产生电场。即电场不仅由电H1−H2)=Js 或 H1t−H2t=Js n×(E1−E2)=0 H1t=H2t
法向分量的边界条件:
第 电磁场分析
9
章
n×(B1−B2)=0 B1n=B2n − n·(D1 D2)=ρs 或 D1n−H2n=ρs
在工程上求解电磁场问题,实际上就是在确定的边界条件下联合求解上述诸方程。由 微分形式的麦克斯韦方程式可知:时变电场是有旋有散的,时变磁场是有旋无散的。在时 变电磁场中电场与磁场是不可分割的。因此,时变电磁场是有旋有散场。但是在电荷及电 流均不存在的无源区中,时变电磁场是有旋无散的。电场线与磁场线相互交链,自行闭合, 351 从而在空间形成电磁波。此外,时变电场的方向与时变磁场的方向处处互相垂直。 JG JJ G JJ G J G ∂E ∂D ∂H ∂B = = = 0 。那么,上述麦克斯韦方程变 = 对于不随时间变化的静态场有: ∂t ∂t ∂t ∂t 为静电场方程与恒定磁场方程,此时电场与磁场不再相关,而是彼此独立。
350
3.麦克斯韦第三方程
麦克斯韦第三方程也称为电场的高斯定律。 JJ G JJ G 其积分形式为: v ∫ s D ⋅ dS = q JJ G 微分形式: ∇ × D = ρ 该式表明:穿过任何闭合曲面的电通量等于该闭合曲面所包围的静电荷,也表明了电 荷能产生磁场。
4.麦克斯韦第四方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程电磁场课程设计——基于ANSYS软件的有限元分析法高超2010302540283电气工程与自动化2010级10班131****3933****************一、基本知识学习总结:1、Utility Menu 实用菜单SAVE_DB 存储数据库 RESUME_DB 恢复数据库Select Entity 选择实体 Comp/Assembly 组元/集合Plot/Replot 画图/重新画图 Pan,Zoom,Rotate…平移,缩放,旋转…WorkPlane(WP) 工作平面 Coordinate System(CS) 坐标系Macro 宏Preference()…优先设置…Preprocessor (Pre7)前处理General Postproc (Post1) 通用后处理Solution(Solu) 求解模块TimeHist Postproc (Post26)时间历程后处理Optim……优化模块2、分析步骤(1)建模:A.重名文件名(/title,xx或者File>>Change Title…)B.设定分析范围(main menu>>preferences:electrics )C.建立数学模型,并进行物理剖分析(2)加载求解器A.计入求解器B.定义分析类型:C.定义分析属性D.加载E.保存数据库F.开始求解G.世家附加载荷:若想施加额外的负载条件,重复执行H.完成求解(3)读取结果,进入后处理模块二、实验项目(一)静电场分析——求圆柱截流导线周围的电场和对地电容功能:主要能解决有电荷分布以及电压所引起的电场和电势(电压)分布以及多导体系统的部分电容。
1、分析步骤:如上2、静电场分析——电容计算方法A.定义式:C = Q/UQ—带等量异号电荷的两导体的电量,U—两导体间的电压。
B.能量法:C=2W (U1−U0)2W—两导体系统的电场能量, U1 ,U0 —两导体间的电压C.ANSYS 中的CMATRIX宏命令:cmatrix GUI:MainMenu>Solution>Solve>Electromagnet>StaticAnalysis>Capac Matrix 3、模型描述:求无限长载流导线附近的电场分布,无限长载流导线截面为圆柱形,周围为空气介质,平面位置和尺寸如图8(a)所示,R0 = 100mm,h= 5m,H = 50m。
空气的相对电容率为εr =1 ,导线的相对电容率为εr=1。
边界和激励设置:将大地和无限远处作为求解边界。
求解区域外围空气(5倍的模型尺寸)设置为截断边界,边界上的电位为0V。
导线截面内所有的电位均相等,导线为一等势体,电位设置为100V,图8(b)为模型总体示意图。
4、模型分析原理:利用镜像法与等电轴法建立数学模型,如图等效电轴位置:b=h−√ℎ2−R02等效电容为:C0=τu=πεlnd−(R+b)R−bd=2h即:将单输电线对地电容等效为双输电线之间的电容计算。
,所以单极导线对地电容C=2C05、编程命令1、确定文件名,选择研宄范围点击Utility Menu>File>Change Title,输入你的文件名。
点击Main Menu>Preferences,选择Electric。
2、定义参数:(ansys command windows或者UtilityMenu>Parameters>Scalar Parameters)h = 5 R0 = 0.1D_2 = sqrt(h**2-R0**2)U = 100 d = 2*hb = h-D_2 pi = atan(1)*4epsilon = 8.854187817*10**(-12)C0 = 2*pi*epsilon/log((d-(R0+b))/(R0-b))tau = C0*U图8(a)无限长导线模型尺寸图8(b)无限长导线电场计算模型示意图3、定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete点击Add,选择Electrostatic和2D Quad 121 (二维四边形单元plane121)------------------[ET,1,PLANE121]<ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPR>Defines a local element type from the element library.ET定义单元类型4、定义材料属性:Material Props>Material ModelsElectromagnetics>Relative Permittivity>Constant: PREX=1(定义相对介电常数)--------------[ MP,PERX,1,1]<MP, Lab, MAT, C0, C1, C2, C3, C4>Defines a linear material property as a constant or a function of temperature.PREP7:MaterialsLab:Valid material property label有效材料属性包括:弹性模量Elastic moduli=(EX,EY,EZ)割线热膨胀系数Secant coefficients of thermal expansion(ALPX...)瞬时热膨胀系数Instantaneous coefficients of thermal expansion主要泊松比Major Poisson's ratios(PRXY…)最小泊松比Minor Poisson's ratios(NUXY)5、创建几何模型:>>PlotCtrls>Numbering>选Keypoint numbers 为on,Linenumbers 为on,Area numbers 为on,点击OK[/PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1]< /PNUM, Label, KEY >Controls entity numbering/coloring on plots.Label: KP-Keypoint numbers on solid model plots.LINE-Line numbers on solid model plots (bothnumbers and colors on line plots).AREA-Area numbers on solid model plots (both numbers and colors on area plots).>>Main Menu>Preprocessor>Modeling>Create>Lines>Arcs>By Cent & RadiusArc length in degrees中输入180 Number of lines in arc中输入2--------------------------------------画一个半圆[circle,1,10*h,,,180]< CIRCLE, PCENT, RAD, PAXIS, PZERO, ARC, NSEG >Generates circular arc lines.PCENT-Keypoint defining the center of the circle (in the plane of the circle)RAD-Radius of the circlePAXIS; PZERO; ARC;NSEG-Number of lines around circumference (defaults to minimum required for 90°-maximum arcs, i.e., 4 for 360°). Number of keypoints generated is NSEG for 360° orNSEG + 1 for less than 360°.>>Main Menu>Preprocessor>Modeling>Create>Lines>Lines> Straight Line 选择关键点1,2并点击OK。
重复上述操作,选择关键点1, 4 并点击OK。
--------------- 【l,1,2 l,1,4】< L, P1, P2, NDIV, SPACE, XV1, YV1, ZV1, XV2, YV2, ZV2>Defines a line between two keypoints.连接关键点。
P1---Keypoint at the beginning of line.P2----Keypoint at the end of line.>> Main Menu>Preprocessor>Modeling>Create>Areas>Arbitrary> By Lines,选择L1,L2,L3,L4,然后点击OK。
-----------------------【al,all】< AL, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10 >Generates an area bounded by previously defined lines.通过已定义的线条生成一个有界区域。
L1, L2, L3, . . . , L10:List of lines defining area(The minimum number of lines is 3)(If L1 = ALL, use all selected lines with L2 defining the normal)>>Main Menu>Preprocessor>Modeling>Create>Areas>Circle> Solid Circle,在WP X栏中输入0,在WP Y栏中输入h,在Radius栏中输入R0-----------------------------------【cyl4,0,h,R0】< CYL4, XCENTER, YCENTER, RAD1, THETA1, RAD2, THETA2, DEPTH>Creates a circular area or cylindrical volume anywhere on the working plane.(在工作区域坐标为(x,y)的点上建一个半径为R0的圆)>>Select>Everything选中所有对象---------------------------【alls】>>点击Main Menu>Preprocessor>Modeling>Operate>Booleans> Overlap>Areas,在弹出的对话框中点击Pick All。