高中数学《1.3算法案例—进位制》学案新人教A版必修3
高中数学人教A版必修3《1.3算法案例》教案3

必修三《1.3算法案例》教学案进位制●三维目标1.知识与技能了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换.2.过程与方法学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律.3.情感、态度与价值观领悟十进制,二进制的特点,了解计算机的电路与二进制的联系,进一步认识到计算机与数学的联系.●重点难点重点:各进位制表示数的方法及各进位制之间的转换.难点:除k去余法的理解以及各进位制之间转换的程序框图的设计.●教学建议本节课主要采用演示、讲解和练习三结合的教学方法,教学内容上选用趣味性较强的数字进行举例说明,使学生在学习的过程中随时有新的发现,让他们感觉到原来数字之间还有这么多的联系.这种方法充分体现了以教师为主导、学生为主体的教学原则.通过具体实例,帮助学生理解十进制与其他进制之间的相互转换;通过练习,使学生进一步巩固所学到的知识.在课堂上让学生带着问题听老师讲解相关的知识,在此过程中,指导学生积极思考所提出的问题;然后布置相应的练习,让学生边学边练,实际操作,自我探索,自主学习,使学生在完成练习的过程中不知不觉实现知识的传递、迁移和融合;最后归纳总结,引导学生提出问题、讨论问题和解决问题,进一步加深对知识的理解和记忆,有助于知识的掌握.●教学流程创设问题情境引入问题:二进制,十进制之间怎样相互转化⇒学生自主学习,主动探索二进制与十进制的相互转化⇒分组讨论、各组展示自己的成果教师总结,强调关键点及注意点⇒通过例1的教学,使学生掌握k进制转化为十进制的方法⇒通过例2及变式训练使学生掌握十进制转化为k进制的方法⇒通过例3的学习使学生掌握不同进位制间的相互转化⇒归纳整理,课堂小结、整体认识进位制间的关系⇒完成当堂双基达标,巩固所学知识,并进行反馈矫正课标解读 1.了解进位制的概念.(重点)2.掌握不同进位制之间的相互转化.(难点)进位制的概念【问题导思】十进制使用0~9十个数字,那么二进制使用哪些数字?六进制呢?【提示】二进制使用0~1两个数字,六进制使用0~5六个数字.进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几.进位制之间的相互转化【问题导思】二进制数110 011(2)化为十进制数是多少?【提示】110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=51.k进制化为十进制的方法a n·a n-1·a n-2……a0(k)=a n×k n+a n-1×k n-1+…a1k+a0.k进制转化为十进制将二进制数101 101(2)化为十进制数.【思路探究】按二进制化十进制的方法,写成不同位上的数乘以基数的幂的形式,再相加求和.【自主解答】101 101(2)=1×25+0×24+1×23+1×22+0×21+1×20=32+8+4+1=45.一个k进制的正整数就是各位数码与k的方幂的乘积的和,其中幂指数等于相应数码所在位数(从右往左数)减1.例如:230 451(k)=2×k5+3×k4+0×k3+4×k2+5×k+1.将下列各数化成十进制数.(1)11 001 000(2);(2)310(8).【解】(1)11 001 000(2)=1×27+1×26+0×25+0×24+1×23+0×22+0×21+0×20=200;(2)310(8)=3×82+1×81+0×80=200.十进制转化为k进制(1)将194化成八进制数;(2)将48化成二进制数.【思路探究】除k取余→倒序写出→标明基数【自主解答】(1)∴194化为八进制数为302(8).(2)∴48化为二进制数为110 000(2).1.将十进制化成k进制的方法:用除k取余法,用k连续去除十进制数所得的商,直到商为零为止,然后将各步所得的余数倒序写出,即为相应的k进制数.2.为了区分不同的进位制,常在数的右下角标明基数.十进制数一般不标注基数.将十进制数30化为二进制数.【解】∴30(10)=11 110(2).不同进位制之间的转化将七进制数235(7)转化为八进制数.【思路探究】七进制→十进制→八进制【自主解答】235(7)=2×72+3×71+5×70=124,利用除8取余法(如图所示).∴124=174(8),∴235(7)转化为八进制为174(8).1.本题在书写八进制数174(8)时,常因漏掉右下标(8)而致误.2.对于非十进制数之间的互化,常以“十进制数”为中间桥梁,用除k取余法实现转化.将二进制数1 010 101(2)化为十进制数结果为________;再将该数化为八进制数结果为________.【解析】 1 010 101(2)=1×26+0×25+1×24+0×23+1×22+0×21+1×20=85.∴85化为八进制数为125(8).【答案】85125(8)(见学生用书第26页)算法案例在实际问题中的应用(12分)古时候,当边境有敌人来犯时,守边的官兵通过在烽火台上点火向境内报告,如图1-3-1所示,烽火台上点火表示数字1,未点火表示数字0,约定二进制数对应的十进制数的单位是1 000,请你计算一下,这组烽火台表示有多少敌人入侵?图1-3-1【思路点拨】观察图形发现中间的烽火台未点火,得出其代表数字为0,其他都为1,由此得出二进制数,再将其转化为实际人数.【规范解答】由图易知这组烽火台表示的二进制数为11 011(2),4分它表示的十进制数为11 011(2)=1×24+1×23+0×22+1×21+1×20=27,8分由于十进制数的单位是1 000,故入侵敌人的数目为27×1 000=27 000.12分本题将军事知识与进位制之间的转化巧妙结合起来,在将二进制数转化为十进制数后,应明确此数并不是所求敌人的人数,不要忽视题目中条件“单位是1 000”.把一个非十进制数转化为另一种非十进制数,通常是把这个数先转化为十进制数,然后再利用除k取余法,把十进制数转化为k进制数.而在使用除k取余法时要注意以下几点:1.必须除到所得的商是0为止;2.各步所得的余数必须从下到上排列;3.切记在所求数的右下角标明基数.(见学生用书第26页)1.下列各数中可能是四进制数的是()A.55B.32C.41D.38【解析】四进制数中最大数不超过3,故B正确.【答案】 B2.110(2)转化为十进制数是()A.5 B.6 C.4 D.7【解析】110(2)=1×22+1×21+0×20=6.【答案】 B3.把153化为三进制数,则末位数是()A.0 B.1 C.2 D.3【解析】153÷3=51,余数为0,由除k取余法知末位数为0. 【答案】 A4.把154(6)化为七进制数.【解】154(6)=1×62+5×61+4×60=70.∴70=130(7).∴154(6)=130(7).一、选择题1.下列写法正确的是()A.858(8)B.265(7)C.312(3)D.68(6)【解析】k进制中各位上的数字均小于k,故A、C、D选项错误.【答案】 B2.(2013·洛阳高一检测)把89转化为五进制数是()A.324(5)B.253(5)C.342(5)D.423(5)【解析】故89=324(5).【答案】 A3.三位五进制数表示的最大十进制数是() A.120 B.124 C.144 D.224【解析】三位五进制数最大为444(5),444(5)=4×52+4×51+4×50=124.【答案】 B4.由389化为的四进制数的末位是() A.3 B.2 C.1 D.0【解析】∵∴389=12 011(4),故选C.【答案】 C5.下列各数中,最小的数是()A.111 111(2)B.75C.200(6)D.105(8)【解析】111 111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63. 200(6)=2×62=72.105(8)=1×82+0×81+5×80=69.【答案】 A二、填空题6.将101 110(2)化为十进制数为________.【解析】101 110(2)=1×25+0×24+1×23+1×22+1×21+0×20=32+8+4+2=46.【答案】467.已知一个k进制数132(k)与十进制数30相等,则k等于________.【解析】132(k)=1×k2+3×k+2=k2+3k+2=30,∴k=4或-7(舍).【答案】 48.五进制数23(5)转化为二进制数为________.【解析】23(5)=2×51+3×50=13,将13化为二进制数13=1 101(2).【答案】 1 101(2)三、解答题9.在什么进制中,十进制数71记为47?【解】设47(k)=71(10),则4×k1+7×k0=4k+7=71,∴k=16,即在十六进位制中,十进制71记为47.10.设m是最大的四位五进制数,将m化为七进制.【解】∵m是最大的四位五进制数,∴m=4 444(5),∴m=4×53+4×52+4×51+4×50=624(10),∴,∴4 444(5)=1 551(7).11.若二进制数10b 1(2)和三进制数a 02(3)相等,求正整数a ,b . 【解】 ∵10b 1(2)=1×23+b ×2+1=2b +9, a 02(3)=a ×32+2=9a +2, ∴2b +9=9a +2,即9a -2b =7, ∵a ∈{1,2},b ∈{0,1}, 当a =1时,b =1适合, 当a =2时,b =112不适合.∴a =1,b =1.计算机为什么要采用二进制呢?第一,二进制只有0和1两个数字,要得到表示两种不同稳定状态的电子器件很容易,而且制造简单,可靠性高.例如,电位的高与低,电容的充电与放电,晶体管的导通与截止,等等.第二,在各种记数法中,二进制运算规则简单,有布尔逻辑代数作理论依据,简单的运算规则使得机器内部的操作也变得简单.二进制加法法则只有4条:0+0=0,0+1=1,1+0=1,1+1=10,而十进制加法法则从0+0=0到9+9=18,有100条.二进制的乘法法则也很简单:0×0=0,0×1=0,1×0=0,1×1=1,而十进制的乘法法则要由一张“九九表”来规定,比较复杂.。
高中数学 第一章 算法初步 1.3.3 进位制教案 新人教A版必修3(2021年整理)

重庆市高中数学第一章算法初步1.3.3 进位制教案新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市高中数学第一章算法初步1.3.3 进位制教案新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市高中数学第一章算法初步1.3.3 进位制教案新人教A版必修3的全部内容。
1。
3。
3 进位制一、三维目标(a)知识与技能了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。
(b)过程与方法学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律.(c)情态与价值观领悟十进制,二进制的特点,了解计算机的电路与二进制的联系,进一步认识到计算机与数学的联系.二、教学重难点重点:各进位制表示数的方法及各进位制之间的转换难点:除k去余法的理解以及各进位制之间转换的程序框图的设计三、学法与教学用具学法:在学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k去余法.教学用具:电脑,计算器,图形计算器四、教学设计(一)创设情景,揭示课题我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的。
比如时间和角度的单位用六十进位制,电子计算机用的是二进制。
那么什么是进位制?不同的进位制之间又又什么联系呢?(二)研探新知进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。
可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。
高中数学算法案例-进位制(公开课)教案 新人教A版必修3

必修3第一章1.3算法案例:案例3进位制[教学目标]:(1)了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。
(2)学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律。
[教学重点]各进位制表示数的方法及各进位制之间的转换[教学难点]除k取余法的理解[情感态度价值观] 学生通过合作完成任务,领悟十进制,二进制的特点,了解计算机与二进制的联系,进一步认识到计算机与数学的联系,培养他们的合作精神和严谨的态度。
[教学方法] 讲解法、尝试法、归纳法、讨论法、[教学用具]多媒体电脑[学法] 学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k取余法。
[教学过程]一、创设情景,揭示课题辗转相除法和更相减损术,是求两个正整数的最大公约数的算法,秦九韶算法是求多项式的值的算法,将这些算法转化为程序,就可以由计算机来完成相关运算。
人们为了计数和运算方便,约定了各种进位制,本节课我们来共同学习《进位制》你都了解那些进位制?比如说?在日常生活中,我们最熟悉、最常用的是十进位制,据说这与古人曾以手指计数有关;由于计算机的计算与记忆元件特点,计算机上通用的是二进位制;一周七天是七进位;一年十二个月〔生肖、一打〕是十二进制;旧式的称是十六进制;〔老称一斤为16两,故而有了半斤八两之说〕、24进制〔节气〕一小时六十分、角度的单位是六十进位制。
二进制是有德国数学家莱布尼兹发明的。
第一台计算机ENIAC〔埃尼阿克〕用的就是十进制。
计算机之父冯·诺伊曼研究后,提出改进意见,用二进制替代十进制。
主要原因①二进制只有0和1两个数字,要得到两种不同稳定状态的电子器件很容易,而且制造简单,可靠性高;②各种计数法中,二进制运算规那么简单。
如:十进 制乘法叫九九表,二进制只有4句。
高中数学 1.3算法案例精品教案 新人教A版必修3

1.3算法案例第三、四课时 秦九韶算法与排序(1)教学目标(a )知识与技能1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
2.掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。
(b )过程与方法模仿秦九韶计算方法,体会古人计算构思的巧妙。
能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。
(c )情态与价值通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。
通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
(2)教学重难点重点:1.秦九韶算法的特点2.两种排序法的排序步骤及计算机程序设计难点:1.秦九韶算法的先进性理解2.排序法的计算机程序设计(3)学法与教学用具学法:1.探究秦九韶算法对比一般计算方法中计算次数的改变,体会科学的计算。
2.模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。
教学用具:电脑,计算器,图形计算器(4)教学设想(一)创设情景,揭示课题我们已经学过了多项式的计算,下面我们计算一下多项式1)(2345+++++=x x x x x x f 当5=x 时的值,并统计所做的计算的种类及计算次数。
根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。
我们把多项式变形为:1)))1(1(1()(2+++++=x x x x x x f 再统计一下计算当5=x 时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。
显然少了6次乘法运算。
这种算法就叫秦九韶算法。
(二)研探新知1.秦九韶计算多项式的方法01210123120132211012211)))((())(()()(a a x a x a x a a x a x a x a x a a x a x a x a x a a x a x a x a x a x f n n n n n n n n n n n n n n n n n n n +++++==+++++=+++++=+++++=--------------例1 已知一个5次多项式为8.07.16.25.325)(2345-+-++=x x x x x x f 用秦九韶算法求这个多项式当5=x 时的值。
新人教A版必修三1.3《算法案例》word教案

基础教育课程改革实验学科教案一、新课引入从我们出生后初步接触数到现在,我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的•比如时间和角度的单位用六十进位制,电子计算机用的是二进制等等•那么不同的进位制之间又有什么联系呢?二、新课讲解(一)进位制与基数进位制是人们为了计数和运算方便而约定的记数方式,用有限的数字在不同的位置表示不同的数值。
处理:直接给出进位制的概念和意义。
(1)利用二进制,十进制,十二进制,引导学生理解进位制。
(二进制就是满二进一,它只用两个数字0和1,如3在二进制中要表示为11 ; 4在二进制中要表示为 100;同理,十进制就是满十进一,它只用 10个数字0和9;十进制就是满十进一,它只用10个数字0和9;十二进制就是满十二进一,它只用 12个符号0和9及A,B,如18在十二进制中要表示为A6)(2)可使用数字符号的个数称为基数,基数为 n,则称n进位制(n进制)(对于任何一个数,我们可以用不同的进位制来表示。
比如:十进数57,可以用八进制表示为 71、用十六进制表示为 39,它们所代表的数值都是一样的。
表示各种进位制数一般在数字右下脚加注来表示,如111001⑵表示二进制数,34(5)表示5进制数)(二)以k为基数的k进制数的表示:a n a nJ a n^ ■■■a1a0(k)说明:(1)利用与十进制类比的方法说明:0 a n < k,0 Ea n」,a n?•…,a1,a° :: k(2)利用与十进制类比的方法说明:时间教学过程设计意图n n」虫门_2……aa ow二a n k ■k ■.・・■ a i k a o尝试练习:(1 )把二进制数110011 (2)化为十进制数;(2)把三进制数10212(3)化为十进制数;(三)设计一个算法,将k进制数a(共有n位)化为十进制数b算法步骤、程序框图、程序见教材P41— P42.(四)如何将十进制数转化为k进制数;1、把89化为二进制数.解:根据二进制数满二进一的原则,可以用2连续去除89或所得商,然后去余数.具体的计算方法如下:89=2*44+1 ; 44=2*22+0 ; 22=2*11+0 ; 11=2*5+1 ; 5=2*2+1 ; 2=2*1+0 1= 2*0+1所以:89=2*(2*(2*(2*(2*2+1)+1)+0)+0)+1=1*2 6+0*2 5+1*24+1*23+0*22+0*21+1*2 0=1011001 ⑵这种算法叫做除2取余法.此外,还可以用右边的除法算式表示尝试练习:将十进制数2008转化为二进制数变式:上述方法也可以推广为把十进制化为k进制数的算法,这种算法称为除k取余法.变式练习:将十进制数2008转化为八进制数(五)设计一个程序,实现“除k取余法” (k・N,2乞k乞9)算法步骤、程序框图、程序见教材P43— P45.三、课堂小结:(1)进位制的概念及表示方法(2)十进制与二进制之间转换的方法及计算机程序四、作业布置:补充:设计程序框图把一个八进制数23456( 8)转换成十进制数2 89余数44 12 22 02 11 02 5 12 2 12 11时间教学过程设计意图。
山东省高中数学《1.3 算法案例》导学案3 新人教A版必修3

6将以下数字表示成不同位上的数字与基数的幂的乘积之和的形式:
110011(2)=
7342(8)=
anan-1…a1a0(k)=
7 参考教材,用除k取余法将89转化成二进制数得 89=
5.根据阅读与思考“割圆术”中的程序画出程序框图.
作业
布置
学习小结/教学
反思
§1.3 算法案例3
授课
时间
第 周 星期 第 节
课型
新授课
主备课人
学习
目标
2解进位制的概念,对一个数能够做不同进制间的转换.
1据对进位制的理解,体会计算机的计数原理.
2了解进位制的程序框图及程序.
重点难点
理解进位制的概念,对一个数能够做不同进制间的转换
学运算方便而约定的记数系统,如逢十进一,就是十进制;
8.将以下数字表示成不同位上的数字与基数的幂的乘积之和的形式:
10212(3)=412(5)=
9完成下列进位制之间的转化:
23769(8)=________(10)119(10)= _________(6)
合作探究:
例1把二进制数110011(2)化为十进制数.
例2设计一个算法,把k进制数a(共有n位)化成十进制数
2十进制使用0~9十个数字,那么二进制、五进制、七进制分别使用哪些数字?
3十进制数3721中的3表示3个______, 7表示7个_____,2表示2个十,1表示1个一。
于是,我们得到这样的式子:3721=
4一般地,若k是一个大于1的整数,则以k为基数的k进制数可以表示为一串数字连写在一起的形式:anan-1…a1a0(k). 其中各个数位上的数字an ,an-1…a1 ,a0的取值范围如何?
河北邯郸市第四中学高中数学《算法案例-进位制》教案 新人教A版必修3

某某某某市第四中学高中数学《算法案例-进位制》教案新人教A版必修3一.教学目标(1)知识与技能:学生了解进位制的概念,学会表示进位制数,理解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换. (2)过程与方法:学生经历得出各种进位制与十进制之间转换的规律的过程,进一步掌握进位制之间转换的方法.(3)情感态度价值观:学生通过合作完成任务,领悟十进制,二进制的特点,了解计算机的电路与二进制的联系,进一步认识到计算机与数学的联系,培养他们的合作精神和严谨的态度.二.教学重点与难点重点: 各进位制表示数的方法及各进位制之间的转换.难点:“除k取余法”的理解.三.教学方法与手段讲授法、归纳法、讨论法.计算机辅助教学(未能呈现)四.教学过程Ⅰ. 创设情景揭示课题我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.你能举出一些实例么?生活中的进位制:如:60进制(在时间上,1小时分成60分钟,1分钟分成60秒;在角度上,1度分成60分,1分分成60秒) 、12进制(月份、生肖、一打)、七进制(一周七天)、16进制(老称一斤为16两,故而有了半斤八两之说)、24进制(节气)等等.那么什么是进位制?不同的进位制之间又有什么联系呢?Ⅱ. 新课讲授一、进位制的概念进位制是人们为了计数和运算方便而约定的记数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;等等,也就是说,“满几进一”就是几进制,几进制的基数就是几.思考1日常生活中,常用的是十进制数,十进制数用哪些数字进行记数?答:0、1、2、3、4、5、6、7、8、9.思考2二进制用的是那些数字?七进制用的是那些数字?答:0、1 ; 0、1、2、3、4、5、6.特别地,十六进制:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F.那么,对于k进制数(k是一个大于1的整数)怎样(以k为基数)记一个数呢?怎样才能分清,不和其它进制数发生混淆呢?二、k进制数的表示对于任何一个数,我们可以用不同的进位制来表示.思考3若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式:)(011k n n a a a a -其中,对于011,,,,a a a a n n -有什么要求呢?明确两个要点:(1) 第一个数字(最高位)不能等于0;(2) 每一个数字都必须小于k .即:表示各种进位制数一般在数字右下角标明基数(十进制一般不标明基数).如:)2(111001表示二进制数;)8(71表示八进制.思考4 十进制数3721如何表示成10的幂的乘积之和的形式?也就是说十进制中的3721中的3表示3个千,7表示7个百, 2表示2个十, 1表示1个一.十进制数在计数时,几个数字排成一排,从右起,第一位是个位,个位上的数字是几,就表示几个一, 第二位是十位,因为满十进一,十位上的数字是几,就表示几个十,接着依次是百位,千位,万位,….对于十进制数,比如说:3721,根据它的意义,我们可以把它写成下面的形式:3721=3×103+7×102+2×101+1×100 请你模仿上述过程,把二进制数11011(2)改写成上述形式:11011(2)=1×24+1×23+0×22+1×21+1×20 3421(5)=3×53+4×52+2×51+1×50思考5:k 进位制的数可以写成什么样的形式呢?(课本40页探究)若)(011k n n a a a a -表示一个k 进制的数,请你把它写成各个位上数字与k 的幂的乘积之和的形式.001111)(011k a k a k a k a a a a a n n n n k n n ⨯+⨯++⨯+⨯=---上面这个改写过程,就是把k 进制的数转化为十进制数的方法,只要写成各个位上数字与k 的幂的乘积之和的形式,就完成了转换.题型二: 十进制数转化为k 进制数例2 把89转化为二进制数.解:因为二进制数要满足“满二进一”的原则, 所以第一步,用2去除89,得到它的商与余数.第二步,用上一步的商去除以2,得到它的商与余数,继续执行第二步,直到商为0为止.89=2×44+144=2×22+022=2×11+011=2×5+15=2×2+12=2×1+01=2×0+1所以,89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1= ……=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1011001(2)这种算法叫做除2取余法,还可以用下面的除法算式表示:最后把所有的余数倒着写一遍,得到89=1011001(2).这种方法可以推广到:把十进制数化为k进制数的算法,称为“除k取余法”.注意:我们将十进制数转换为二进制数的时候,希望将十进制数写成基数2的幂的乘积之和的形式。
广东省佛山市顺德区高中数学《1.3算法案例进位制》学案 新人教A版必修3

【学习目标】1.理解进位制的概念,能进行不同进位制的转化;2.了解进位制的程序框图和程序;3.激情投入,积极参与,培养学生严谨的数学思维品质。
【重点、难点】自主学习案【知识梳理】1、进位制是人们为了和方便而约定的记数系统,就是几进制,几进制的基数就是。
2、其他进制的数可以表示为不同位上数字与基数的幂的乘积之和的形式。
3、十进制化成k进制的方法叫。
【预习自测】1.关于进位制说法错误的是()A、进位制是人们为了计数和运算方便而约定的记数系统。
B、二进制就是满二进一,十进制就是满十进一。
C、满几进几,就是几进制,几进制的基数就是几。
D、为了区分不同的进位值,必须在数的右下角标注基数。
2、以下各数中有可能是五进制数的是()A、55B、106C、732D、21343、将11化成二进制数等于【我的疑问】合作探究案【课内探究】例1:将下列非十进制数转化成十进制数(1)110011(2)(2)2124(5)例2、(1)把十进制数89化成二进制数;(2)把十进制数2008转化为八进制数。
例3、分别将1234(5)转化成十进制数和八进制数。
变式:分别将10001(2)转化成六进制数。
总结提升各进位制之间的转化(只限整数)(1)k 进位制数化成十进制数公式:0)10(01111)(01k a k a k a k a a a a a n n n n k n n n ⨯+⨯++⨯+⨯=---(2)十进制数化成k 进制数用除k 取余法,应进行到商是零为止,余数按从小到上的顺序读取才是k 进制数(3)非十进制数之间的互化:可用十进制数为桥梁,实现不同进制数之间的互化。
【当堂检测】1、 用“除k 取余法”将十进制数2012转化成二进制数和八进制数2、 完成下列进位制之间的转化(1)10212(2)= (10) (2)412(10)= (2)课后练习案1、101(9)化成十进制数等于2、28化成五进制数等于3、2376(10)= (5) (4)119(10)= (6)4、1010(2)×110(3)= (10)5、已知一个k进制数132与十进制数30相等,那么k等于6、(选作)设计一个程序,将2011年转化成二进制数(先画框图,再写程序)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《1.3算法案例—进位制》学案新人教A版必修3
【学习目标】
1.理解进位制的概念,能进行不同进位制的转化;
2.了解进位制的程序框图和程序;
3.激情投入,积极参与,培养学生严谨的数学思维品质。
【重点、难点】
自主学习案
【知识梳理】
1、进位制是人们为了和方便而约定的记数系统,
就是几进制,几进制的基数就是。
2、其他进制的数可以表示为不同位上数字与基数的幂的乘积之和的形式。
3、十进制化成k进制的方法叫。
【预习自测】
1.关于进位制说法错误的是()
A、进位制是人们为了计数和运算方便而约定的记数系统。
B、二进制就是满二进一,十进制就是满十进一。
C、满几进几,就是几进制,几进制的基数就是几。
D、为了区分不同的进位值,必须在数的右下角标注基数。
2、以下各数中有可能是五进制数的是()
A、55
B、106
C、732
D、2134
3、将11化成二进制数等于
【我的疑问】
合作探究案
【课内探究】
例1:将下列非十进制数转化成十进制数
(1)110011(2)(2)2124(5)
例2、(1)把十进制数89化成二进制数;(2)把十进制数2008转化为八进制数。
例3、分别将1234(5)转化成十进制数和八进制数。
变式:分别将10001(2)转化成六进制数。
总结提升
各进位制之间的转化(只限整数)
(1)k 进位制数化成十进制数公式:
)10(01111)(01k a k a k a k a a a a a n n n n k n n n ⨯+⨯++⨯+⨯=--- (2)十进制数化成k 进制数用除k 取余法,应进行到商是零为止,余数按从小到上的顺序读取才是k 进制数
(3)非十进制数之间的互化:可用十进制数为桥梁,实现不同进制数之间的互化。
【当堂检测】
1、 用“除k 取余法”将十进制数2012转化成二进制数和八进制数
2、 完成下列进位制之间的转化
(1)10212(2)= (10) (2)412(10)= (2)
课后练习案
1、101(9)化成十进制数等于
2、28化成五进制数等于
3、2376(10)= (5)(4)119(10)= (6)
4、1010(2)×110(3)= (10)
5、已知一个k进制数132与十进制数30相等,那么k等于
6、(选作)设计一个程序,将2011年转化成二进制数(先画框图,再写程序)。