质谱直接进样
高效液相色谱三重四级杆串联质谱联用直接进样法测定饮用水水源中的阿特拉津研究

环境 监 测 工 作 的 实 际应 用 。
关键 词 : 高效液相 色谱 质谱联 用仪 ; 阿特拉 津 ; 直接进样 法
中图分类号 : X 8 3 2 文献标志码 : A
De t e r mi n a t i o n o f At r a z i n e i n Dr i n k i n g Wa t e r S o u r c e s
第3 9卷第 3期
2 0 1 4年 3月
环境科学与管理
EN、 r I l NM咂 NTAL S CI ENCE AND I ANAGEhⅡ NT
V0 I . 3 9 No . 3 Ma r .2 01 4
文章 编 号 : 1 6 7 4— 6 1 3 9 ( 2 0 1 4 ) 0 3— 0 1 5 6— 0 4
Wi t h o u t a n y o r g a n i c s o l v e n t a t p r e l i mi n a r y t r e a t me n t p h r a s e ,t h e s a mp l e wa s d i r e c t l y a n a l y z e d a f t e r b e i n g f i l t e r e d b y 0 . 2)w e r e u s e d t o d e t e mi r n e t h e A t r a z i n e i n t h i s me t h o d .T h i s m e t h o d a l s o h a s a h i g h s e n s i t i v i t y a n d l o w d e t e c t i o n
做质谱送样品要求

做质谱的送样品要求:做之前最好对LC-MS有个基本的了解
1.物质要给出全称,分子式,分子量三方面准确信息。
2.溶解性:固体什么溶剂溶解,液体是什么溶剂。
3.极性。
液相也是提高纯度和样品富集的作用,液相柱子需用什么溶剂洗脱,即流动相是什么,何种比例。
样品过0.22或0.45微孔滤膜,防止管路堵塞,柱压力升高,管路堵了可不是小事。
4.酸碱性。
有利于质谱选择正负离子哪种模式。
5.如何保存。
4摄氏度还是室温等信息。
避光还是不避光。
6.参考文献,直接可以参照仪器型号,样品预处理方法和测量方法。
不然进一针容易,没测出来,是没溶解,还是样品分解了,是分子量不对,还是模式不对,质谱不响应。
说不清楚的地方太多。
例如6-巯基嘌呤:
分子结构图:
判断是加一个氢还是失去氢容易。
分子式: C5H4N4S 可根据质谱软件算精确分子量,小数点××.××××后四位.
分子量: 152.17706
因为质谱只认分子量,并且ESI源下,中性物质即不电离物质是检测不到的。
分子离子峰有时在正离子模式是加H,加Na的;负离子是减氢的。
做蛋白有做蛋白的质谱,不是一个质谱什么都能干,否则就没有那么多型号区分。
在许多院所高校,做蛋白和做小分子完全是两个方向,两个科室,分析方法当然不一样。
如都能学到那当然最好。
可做起来不是很容易的事,需要耗费大量时间,更需要体制的沟通.。
气相色谱质谱分析样品制备方法和技术

气相色谱质谱分析样品制备方法和技术气相色谱-质谱(GC-MS)是一种常用的分析技术,广泛应用于化学、生物学、环境科学等领域。
它通过将样品中的化合物分离,然后对这些化合物进行质谱分析,以确定它们的化学结构。
以下将详细介绍气相色谱-质谱分析样品的制备方法和技术。
一、样品制备在进行气相色谱-质谱分析之前,需要对样品进行适当的制备。
通常包括以下步骤:1.样品收集:根据分析的需要,选择合适的容器和收集方法,确保样品的代表性和无污染。
2.样品处理:根据样品的性质和目标化合物,选择适当的处理方法,如萃取、浓缩、净化等,以提取和分析目标化合物。
3.样品衍生化:对于一些不易挥发或不易电离的化合物,需要进行衍生化处理,以提高其挥发性和电离能力。
4.样品注入:将处理后的样品注入到气相色谱-质谱系统中进行分析。
二、色谱条件优化气相色谱是GC-MS分析中的关键部分,需要通过优化色谱条件以提高分析的分离效果和灵敏度。
以下是一些常用的优化方法:1.选择合适的色谱柱:根据目标化合物的性质和类型,选择适合的色谱柱,以提高分离效果。
2.调整柱温:通过调整柱温,可以改善样品的分离效果和色谱峰的形状。
3.调整载气流速:通过调整载气流速,可以控制样品的分离速度和灵敏度。
4.调整分流比:通过调整分流比,可以控制样品的进样量,从而影响色谱峰的形状和灵敏度。
三、质谱条件优化质谱是GC-MS分析中的另一个关键部分,需要通过优化质谱条件以提高分析的准确性和灵敏度。
以下是一些常用的优化方法:1.选择合适的离子源:根据目标化合物的性质和类型,选择适合的离子源,以提高电离效率和灵敏度。
2.调整离子源温度:通过调整离子源温度,可以控制样品的电离效率和质谱峰的形状。
3.调整传输线温度:通过调整传输线温度,可以改善样品的离解效果和质谱峰的形状。
4.调整碰撞能量:通过调整碰撞能量,可以控制样品的离解方式和灵敏度。
5.调整扫描方式:通过调整扫描方式,可以控制质谱图的分辨率和质量范围。
质谱进样方式及其优缺点

质谱进样方式主要有直接进样和通过接口进样两种方式,它们各自有不同的优缺点。
直接进样是将样品直接放入质谱仪的离子源中进行分析。
这种方式的优点是操作简单、快速,适用于固体、液体和气体样品的分析。
然而,直接进样的缺点也很明显,它只能分析小分子化合物,对于大分子化合物或热不稳定的化合物,直接进样可能会导致分子裂解或失去结构信息。
通过接口进样则是将样品通过某种接口技术引入质谱仪进行分析。
常见的接口技术有气相色谱-质谱联用(GC-MS)、液相色谱-质谱联用(LC-MS)等。
这种方式的优点是可以分析大分子化合物、热不稳定化合物以及复杂混合物,提高了质谱分析的准确性和可靠性。
此外,通过接口技术还可以对样品进行前处理,如分离、纯化等,有利于减少干扰物质的影响。
但是,通过接口进样也存在一些缺点,如需要额外的接口设备和操作步骤,可能会增加分析时间和成本。
在选择质谱进样方式时,需要根据样品的性质、分析目的以及实验室条件等因素进行综合考虑。
例如,对于小分子化合物或简单混合物的分析,可以选择直接进样;而对于大分子化合物、热不稳定化合物或复杂混合物的分析,则需要考虑使用适当的接口技术进样。
此外,还有一些新兴的进样技术正在不断发展中,如直
接实时分析(DART)、解吸电喷雾电离(DESI)等。
这些新技术具有无需或仅需少量样品制备、高通量、快速分析等优点,为质谱分析提供了更广阔的应用前景。
质谱仪操作流程

质谱仪操作流程全文共四篇示例,供读者参考第一篇示例:质谱仪是一种用于分析物质成分的高科技仪器,可以通过测量离子质量和相对丰度来确定物质的成分和结构。
质谱仪的操作流程是非常复杂的,需要经过严密的步骤和严格的操作规范。
下面我们就来详细介绍一下质谱仪的操作流程。
一、准备工作在操作质谱仪之前,首先需要进行一些准备工作。
这包括检查仪器是否正常工作,检查所需的溶剂和试剂是否充足,清洁和校准仪器等。
还需要准备好样品,并将其溶解在适当的溶剂中以便于进行质谱分析。
二、样品进样在准备好样品之后,就可以将其注入到质谱仪中进行分析了。
样品进样的方式有多种,常见的方式包括直接进样和气相进样等。
进样过程需要根据实际情况选择适当的方式,并注意样品的浓度和纯度,以确保获得准确的分析结果。
三、质谱分析质谱分析是质谱仪的核心部分,主要通过离子化和质谱分析两个步骤来确定样品的成分和结构。
在离子化过程中,样品会被加热或离子化气体撞击,生成离子化合物。
然后,这些离子会通过质谱分析器进行分析,最终得到质谱图谱。
根据质谱图谱的特征峰,可以确定样品的分子量和成分。
四、数据处理和解释在完成质谱分析之后,还需要对获得的数据进行处理和解释。
这包括对质谱图谱进行分析和比对,找出其中的特征峰,并通过数据库比对或其他方法来识别样品的成分和结构。
还需要对数据进行统计分析,评估分析的准确性和可靠性。
五、结果验证和报告需要对分析结果进行验证和总结,并编制成报告。
报告应包括样品的基本信息、分析手段和结果、数据处理和解释过程等内容,以便于其他人能够了解和复制分析结果。
还可以将报告提交给相关部门或机构,用于进一步的研究和应用。
质谱仪的操作流程是一个复杂而精密的过程,需要严格遵守操作规范和注意安全事项。
只有经过充分的准备和严密的操作,才能获得准确的分析结果,为科学研究和技术应用提供有力的支持。
希望本文对您了解质谱仪的操作流程有所帮助。
第二篇示例:质谱仪是一种用于分析样品中各种化合物的仪器,它能够通过分析分子离子的质荷比来确定化合物的分子结构和组成。
质谱仪的使用方法与常用进样技术 质谱仪操作规程

质谱仪的使用方法与常用进样技术质谱仪操作规程质谱仪又称质谱计。
分别和检测不同同位素的仪器。
即依据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分别和检测物质构成的一类仪器。
质谱仪按应用范围分为同位素养谱仪、无机质谱仪和有机质谱仪。
按辨别本领分为高辨别、中辨别和低辨别质谱仪;按工作原理分为静态仪器和动态仪器。
质谱仪的使用方法与常用进样技术一、质谱仪的用法分别和检测不同同位素的仪器。
仪器的紧要装置放在真空中。
将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。
质谱方法zui早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。
现代质谱仪经过不断改进,仍旧利用电磁学原理,使离子束按荷质比分别。
质谱仪的性能指标是它的辨别率,假如质谱仪恰能辨别质量m和m+m,辨别率定义为m/m。
现代质谱仪的辨别率达105~106量级,可测量原子质量到小数点后7位数字。
质谱仪zui紧要的应用是分别同位素并测定它们的原子质量及相对丰度。
测定原子质量的精度超过化学测量方法,大约2/3以上的原子的质量是用质谱方法测定的。
由于质量和能量的当量关系,由此可得到有关核结构与核结合能的学问。
对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质时代。
质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构供应牢靠的依据。
由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。
二、质谱仪常用进样技术将样品导入质谱仪可分为直接进样和通过接口两种方式实现。
1、直接进样:在室不冷不热常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。
吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再接受程序升温的方式使之解吸,经毛细管导入质谱仪。
直接质谱法

直接质谱法
答:直接质谱法是一种通过质谱仪直接检测样品中离子的质荷比(m/z)的实验方法。
这种方法不需要将样品进行复杂的前处理,而是直接将样品引入质谱仪中进行离子化,然后利用电场和磁场将离子分离,测量它们的质荷比和相对丰度。
直接质谱法可以应用于多种领域,如生物样品分析、环境监测、化学反应机理研究等。
在生物样品分析中,可以直接分析生物体内的代谢物、蛋白质等,无需进行复杂的分离和纯化。
在环境监测中,可以直接检测大气、水体中的污染物,如VOCs、农药残留等。
在化学反应机理研究中,可以直接观察反应过程中产生的中间产物和反应速率常数等。
直接质谱法的优点是灵敏度高、特异性好、分析速度快,而且可以同时检测多种化合物。
但是,由于直接质谱法的实验条件要求较高,对仪器的性能和操作要求也较高,因此需要专业的操作人员进行操作和维护。
同时,由于直接质谱法需要消耗大量的样品,因此对于一些痕量物质的检测还需要进行预浓缩等处理。
高效液相色谱—质谱联用仪分析水质(直接进样法)中的氨基甲酸酯

高效液相色谱—质谱联用仪分析水质(直接进样法)中的氨基甲酸酯类农药残留本研究建立了水中的氨基甲酸酯类农药经直接进样富集,采用超高效液相色谱-三重四级杆质谱法分离检测10种氨基甲酸酯类农药残留的方法。
根据保留时间、特征离子定性,外标法定量。
实验结果得出:线性系数在0.998以上;方法检出限为0.1~2?g/L;对(加)不同浓度的标准溶液进行精密度和准确度实验,连续进样12次相对标准偏差小于6.87%,加标回收率在79.7%-103%,符合环境标准。
标签:超高效液相色谱-质谱;氨基甲酸酯类农药;地下水1 前言在农业生产中农药被大量的使用,一部分农药会直接或间接地残存于谷物、蔬菜、水产品、畜禽产品中,另一部分会直接残留在土壤和水中,由于地表径流、大气干湿沉降等环境迁徙行为进入地表水体,势必造成水环境与水资源的污染,进而通过饮用或食物链直接或间接地影响人类健康。
作为我国使用量较大的禁用杀虫剂之一,氨基甲酸酯类农药由于其有杀虫效果显著、分解快、代谢迅速的特点,被广泛运用于粮食、蔬菜、水果等各种作物。
但因为其原料易得、合成简单,被大量不科学的使用。
氨基甲酸酯类农药属于化学合成农药中有机合成化合物,此类杀虫剂进入体内可抑制乙酰胆碱酶,造成急性中毒,其过量使用对人体健康造成影响,同时造成水环境污染。
氨基甲酸酯类极性高,热稳定性强,被土壤吸附后水中残留浓度低,分析前需要对样品进行分离富集预处理,本论文采取直接进样,节省了前处理的时间和损失。
2 材料与方法2.1 仪器与试剂超高效液相色谱-串联四极杆质谱仪(QSight LX50:美国PerkinElmer公司产品,配有电喷雾离子源(ESI);甲醇:色谱纯;乙腈:色谱纯;氨基甲酸酯农药标准物质,上海安谱公司。
取适量氨基甲酸酯农药标准品,用甲醇稀释并定容,配制成100?g/mL标准储备液,将该储备液于-4℃以下冷藏密封避光保存。
用90%甲醇,10%乙腈稀释溶液稀释成不同浓度的混合标准工作溶液,浓度依次为10、20、50、100、200?g/L。