质谱讲义(AB)

合集下载

质谱分析原理ppt课件.ppt

质谱分析原理ppt课件.ppt

CH2 CH2 CH2 CH2
CH2 CH2
CH2 CH2
CH3 CH3
43 H3C 29 H3C 15 CH3
CH2 CH2
CH2 CH2 CH3
CH2
CH2 CH2 CH2 CH3
CH2 CH2 CH2 CH2 CH3
三、α―断裂
BAZ
R CH2 OH R CH2 OR' R CH2 NR'2 R CH2 SR'
39 51 65 77
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
CH2 CH2 CH2 CH3
CH2CH2CH3
m/z=134
m/z=39 HC
m/z=65 CH
HC
CH
CH2 m/z=91
m/z=91
H2 C
CH2 CH H CH3
CH2 HC
四极杆质量分离器
二、仪器与结构
三、联用仪器
仪器内部结构
联用仪器( THE GC/MS PROCESS )
1.0 DEG/MI
N
HEWLET 5972A PTACKAR D
Mass Selective Detector
Sample
DC AB
Sample
HEWLETT PACKARD
5890
Gas Chromatograph (GC)
BCD• + A +
B• + A +
ABCD+
CD• + AB +
A•+ B+


D• + C + 离

质谱法(讲义)

质谱法(讲义)
缝进一步准直后进人质量分析器。
EI的优点:
(1)重现性好,在一定能量(70eV)的电子流轰击 下,离子流稳定,始终得到一样的图谱,故质谱仪谱 库中的标准质谱图均是采用EI方式制作的。 (2)灵敏度高,所得碎片离子多,质谱图复杂,获 得有关分子结构的信息量大。 (3)有丰富的碎片离子信息和成熟的离子开裂理 论,有利于物质的结构分析和鉴别。
第一节 基本原理和质谱仪
一、质谱法的基本原理
质谱分析法:
将物质分子转化为离子,按质荷比差异进行 分离和测定,实现成分和结构分析的方法。
样品导 入系统
产生离子流
离子源
m/z
质量扫描
质量 分析器
检测器
H0
放大器 记录器
质谱仪的工作原理
质谱仪是利用电磁学原理,使带电的样品离 子按质荷比进行分离的装置。离子电离后经加速 进入磁场中,其动能与加速电压及电荷Z有关, 即
磁分析器
最常用的分析器类型之一就是扇形磁分析 器。离子束经加速后飞入磁极间的弯曲区,由于 磁场作用,飞行轨道发生弯曲,见图
m = H 2R 2
z
2V
R = mv zH
仅用一个扇形磁场进行质量分析的质谱仪称
为单聚焦质谱仪,设计良好的单聚焦质谱仪分辨 率可达5000。
若 要 求 分 辨 率 大 于 5000 则 需 要 双 聚 焦 质 谱 仪。单聚焦质谱仪中影响分辨率提高的两个主要 因素是离子束离开离子枪时的角分散和动能分 散,因为各种离子是在电离室不同区域形成的。 为了校正这些分散,通常在磁场前加一个静电分 析器(Elctrostatic Analyzer,ESA),这种设 备由两个扇形圆筒组成,向外电极加上正电压, 内电极为负压。
57
100

AB MS培训

AB MS培训

AB液质培训质谱(MS) massspectrometry 李立军1、电离方式的总结:根据离子化方式的不同,有机常用的离子源(现在我看好多资料在介绍离子源的时候总是把气相质谱的电离方式和液相质谱的电离方式混在一块说,我觉得应该分开说最好,因为毕竟不能混用,让人看着很不舒服!!!气相是气相、液相是液相应该区别对待。

)有如下几种,其中EI,ESI最常用。

λ EI(Electron Impact Ionization): 电子轰击电离—硬电离。

CI(Chemicalλ Ionization): 化学电离——核心是质子转移。

FD(Fieldλ Desorption): 场解吸——目前基本被FAB取代。

FAB(Fast Ato m Bo mbard ment):λ快原子轰击——或者铯离子(LSIMS,液体二次离子质谱) 。

ESI(Electrospray Ionization):λ电喷雾电离——属最软的电离方式。

APCI(Atmospheric Pressure Chemical Ionization):λ大气压化学电离——同上,更适宜做小分子。

APPI(Atmospheric Pressure PhotoSprayλ Ionization): 大气压光喷雾电离——同上,更适宜做非极性分子。

MALDI(Matrix Assisted Laserλ Desorption): 基质辅助激光解吸电离。

λ重点介绍两种电离方式:EI(Electron Impact Ionization)电子轰击电离——最经典常规的方式,其他均属软电离。

EI使用面广,峰重现性好,碎片离子多。

缺点:不适合极性大、热不稳定性化合物,且可测定分子量有限,一般≤1,000。

MALDI(Matrix Assisted Laser Desorption):基质辅助激光解吸离子化——是一种用于大分子离子化方法,利用对使用的激光波长范围具有吸收并能提供质子的基质(一般常用小分子液体或结晶化合物),将样品与其混合溶解并形成混合体,在真空下用激光照射该混合体,基体吸收激光能量,并传递给样品,从而使样品解吸离子化。

质谱分析学习.pptx

质谱分析学习.pptx
第41页/共95页
(3)麦氏重排
第42页/共95页
第43页/共95页
四、醇
第44页/共95页
第45页/共95页
第46页/共95页
第47页/共95页
第48页/共95页
五、酚
第49页/共95页
六、醛酮
第50页/共95页
第51页/5页
第53页/共95页
八、胺
1、分子离子峰 脂肪族胺的分子离子峰很弱, 环胺、芳胺的分子离子峰很强。
2、断裂方式
第54页/共95页
第55页/共95页
九、酰胺
1、分子离子峰 酰胺类分子离子峰通常可测到。
2、断裂方式(具有羰基裂解的特点)
第56页/共95页
十、硝基化合物
第57页/共95页
第58页/共95页
第59页/共95页
第72页/共95页
这规则用于其他碎片离子时,则是含偶数个氮原子的奇电子 离子其质量是偶数;而含偶数个氮原子的偶电子离子其质量 将是奇数。而分子离子均是奇电子离子。应含偶数个(不含 氮)氮原子。 (4)必须有合理的质量碎片的丢失。分子离子峰的裂解过程 中常常会失去小质量的中性碎 片和自由基。因此裂解过程中 分子离子(母离子)与子离子之间的质量差一定要合理,例 如出现质量差15或18,就丢失-CH3或一个分子水是合理的。 而丢失4~13原子质量单位是不合理的。因为分子离子
第70页/共95页
醇类容易失水,出现(M-18) +峰。有些硝基化合物、易于分 解的有机化合物及支链烷烃,在电子轰击条件下得不到分子 离子峰,只有碎片峰。
(3)分子离子应符合氮规则。有机化合物主要由C、H、O、 N、S、CI、Br、1、F、P等元素组成。在质谱中有机化合 物分子中含有偶数个(包括零)氮原子的分子离子,质量一 定是偶数;而含有奇数个氮原子的分子离子,质量数一定是 奇数,这个规则称为“氮规则”。因为某些元素的最大丰度 的同位素(轻同位素)的原子的质量数为偶数,其化合价亦

abscience质谱

abscience质谱

abscience质谱abscience质谱是一种常用的分析技术,主要用于鉴定和定量化合物混合物中的成分。

它基于质量谱仪的原理,通过将样品中的化合物分子离子化并分离,然后测量它们的质量和相对丰度,从而获取样品的质谱图。

质谱仪由离子源、质量分析器和检测器组成。

离子源将样品中的化合物分子转化为离子,常见的离子化技术包括电子轰击离子化、化学离子化和电喷雾离子化。

质量分析器根据离子的质量-荷比(m/z)比值,将离子进行分离和排序。

常见的质量分析器包括质子转移质谱(proton transfer reaction mass spectrometry, PTR-MS)、飞行时间质谱(time-of-flight mass spectrometry, TOF-MS)和四极杆质谱(quadrupole mass spectrometry, QMS)。

检测器则测量离子的相对丰度,并将其转化为电信号。

abscience质谱的应用十分广泛。

在生物医学领域,它可用于药物代谢动力学研究、蛋白质组学分析和生物标志物的鉴定等。

在环境科学中,质谱可用于空气、水和土壤中有机污染物的监测。

在食品安全检测方面,质谱可用于检测食品中的农药残留和食品添加剂等。

此外,质谱还可以应用于石油和石化行业、法医学领域等。

abscience质谱的优势在于其高灵敏度、高分辨率和广泛的应用范围。

在质谱仪的支持下,可以对复杂的混合物进行快速分析,并且可以鉴定微量甚至痕量级的化合物。

另外,相对于传统的色谱技术,质谱仪具有更高的分辨率,能够更准确地鉴定和定量化合物。

然而,abscience质谱也存在一些挑战和限制。

首先,质谱分析通常需要复杂的样品预处理和分离步骤,这增加了分析的时间和难度。

其次,质谱设备的成本较高,对于一些实验室来说可能不太容易使用。

此外,质谱的定量分析需要准确的内标和标准曲线,而这些都需要一定的实验条件和操作经验。

总之,abscience质谱是一种非常重要的分析技术,具有广泛的应用前景。

质谱讲义4-1(解析-离子类型)

质谱讲义4-1(解析-离子类型)

二、同位素离子 1. 常见元素的同位素天然丰度
2. 同位素离子丰度的计算
H
Isotopic Clusters H
H
H H
79 H H 0.1% one H is 2H
H 78
H
H
79 H H 6.5% one C is 13C
H H
H H
H
H
93.4%
all H are 1H and all C are 12C
1.分子离子峰判断
(1)除同位素峰外质荷比最大的峰 (2)氮规则(奇电子离子) (3)在高质量区应有合理的碎片离子
注意:在实际样品测定中,杂质干扰、仪器本底会影响的分子离子峰的判断。
# 6 9 : E t h e n e , c h lo r o - ( * ) 2 7
A b u n d a n c e
1. 2. 3. 4.
断裂的表示法 简单断裂 复杂断裂 断裂的预测
1.
断裂的表示法
2.
简单断裂
(1) α断裂
(2) i 断裂
(3) σ 断裂
3.
复杂断裂
(1)麦氏重排
4. 断裂的预测
a.产物的稳定性
b.立体化学因素
c. 键的活泼性
C-I键比C-Br键活泼、C-O键比C-C键活泼
61
46
The Nitrogen Rule
A molecule with an odd number of nitrogens has an odd molecular weight.
A molecule that contains only C, H, and O or which has an even number of nitrogens has an even molecular weight.

质谱的解析

质谱的解析

13C对M+2相对丰度的贡献由统计规律做近视计
算为: (1.1 × x)2 / 200 18O对M+2的贡献:0.20 × z ∴M+2相对丰度=100×RI(M+2)/RI(M) = (1.1×x)2/200 + 0.20×z
(b) 化合物中若除C、H、O、N、F、I、P外还 含s个硫 时: CxHyOzNwSs则除了上述同 位素外,还要考虑33S、34S的贡献: 以分子离子M的相对丰度为100时: M+1相对丰度=1.1 × x + 0.37 × w + 0.8 × s M+2的相对丰度= (1.1×x)2/200 + 0.20×z + 4.4×s
(c)化合物若含Cl、Br之一,它们对M+2、 M+4的贡献可按(a+b)n的展开系数推算,若同 时含Cl、Br,可用(a+b)n •(c+d)m的展开系数 推算。
我们可采用下列步骤来推测分子离子峰或某一碎片 峰的元素组成(以讨论分子离子峰的元素组成为例): (1)确定M峰,它由最轻同位素组成,不含Cl和Br时 它应是这组同位素峰中丰度最大的峰。(不要把M1,M+1峰错当做M峰!) (2)把这组峰的数据全部归一化(即将M峰做为100, 求出M+1、M+2的相对丰度)。
100 59
50 55
73 87 20 40 80 60 2-甲基-2-丁醇质谱 100
Hale Waihona Puke m/z为87的峰就是M-1峰。虽然很弱,但还能看到。对它 的辨认是这样的,右端最强峰73是奇数,此化合物不含N, 因此它不应为M+峰,并且它与相邻主峰59相差14,也证 明它不是M+峰。假定m/z59和m/z73是由脱乙基和脱甲基 产生的,化合物分子量就是59+29或73+15。因此m/z87 就是M-1的峰。图中m/z70和71弱峰,归因于M-H2O和MOH。

质谱分析讲义1(概述)讲解

质谱分析讲义1(概述)讲解

第三节、质谱图
丙酸
第四节、有机质谱中的各种离子
1.分子离子 2.准分子离子 如 MH+ 、 M Na+ 、 (M-H)3.碎片离子 4.重排离子 5.母离子与子离子 6.亚稳离子 7.奇电子离子和偶电子离子 8.多电荷离子 9.同位素离子
第五节、国内外发展趋势和有机所质谱现状
离子化方式: EI、CI、FAB、ESI、nanospray、MALDI
Turbo pumps Diffusion Pumps Rough pumps Rotary pumps
Ion
Inlet
source
Sample plate Target HPLC GC Solids probe DCI
MALDI API Electrospray IonSpray FAB LSIMS EI CI
GC-杂交离子阱质谱 (分子-离子反应) GC×GC-四极质谱 (复杂样品分析)
GC-QTOF MS
(复杂体系)
19
上海有机质谱中心非挥发性样品分析仪器配置状态
LC-四极质谱 (低分辨质谱)
MALDI-TOF MS (低分辨质谱)
LC-离子阱质谱 (多级串联质谱)
MALDI-FTMS ESI-FTMS
质量分析器: 磁质谱、四极质谱、TOF、FTMS、离子阱 串联质谱
上海有机所是国内最早开展有机质谱测试的单位之一。
上海有机质谱中心挥发性成分分析仪器配置状态
GC-四极质谱 (图谱检索)
GC-飞行时间质谱 (准确质量测定)GC-离子阱质Fra bibliotek (多级串联质谱)
GC-三重四极质谱 (微量成分定性定量分析)
第二节、质谱仪器主要指标
一、质量范围 质谱仪的质量测定范围表示质谱仪所能进行分析的样品的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质谱(MS) mass spectrometry质谱法是将样品离子化,变为气态离子混合物,并按质荷比(m/z)分离的分析技术;质谱仪是实现上述分离分析技术,从而测定物质的质量与含量及其结构的仪器。

质谱分析法是一种快速,有效的分析方法,利用质谱仪可进行同位素分析,化合物分析,气体成分分析以及金属和非金属固体样品的超纯痕量分析。

在有机混合物的分析研究中证明了质谱分析法比化学分析法和光学分析法具有更加卓越的优越性,其中有机化合物质谱分析在质谱学中占最大的比重,全世界几乎有3/4仪器从事有机分析, 现在的有机质谱法,不仅可以进行小分子的分析,而且可以直接分析糖,核酸,蛋白质等生物大分子,在生物化学和生物医学上的研究成为当前的热点,生物质谱学的时代已经到来,当代研究有机化合物已经离不开质谱仪。

一.仪器概述1.基本结构质谱仪由以下几部分组成供电系统┏━━━━━┳━━━━━━╋━━━━━━━┳━━━━━━┓进样系统离子源质量分析器检测接收器数据系统┗━━━━━┻━━┳━━━┻━━━━━━━┛真空系统(1)进样系统:把分析样品导入离子源的装置,包括:直接进样,GC,LC及接口,加热进样,参考物进样等。

(2)离子源:使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机常用的有如下几种,其中EI,FAB最常用。

EI(Electron Impact Ionization):电子轰击电离——最经典常规的方式,其他均属软电离,EI使用面广,峰重现性好,碎片离子多。

缺点:不适合极性大、热不稳定性化合物,且可测定分子量有限,一般≤1,000。

CI(Chemical Ionization):化学电离——核心是质子转移,与EI相比,在EI法中不易产生分子离子的化合物,在CI中易形成较高丰度的[M+H]+或[M-H]+等‘准’分子离子。

得到碎片少,谱图简单,但结构信息少一些。

与EI 法同样,样品需要汽化,对难挥发性的化合物不太适合。

原理R + e-→R+·+ 2e-(电子电离)反应气为含H的R为反应气体分子R+·+ R →RH+ + (R-H)·分子,例如异丁M为样品分子RH+ + M →R + (M+H)+ (质子转移)烷,甲烷,氨气,R浓度>>M浓度R+·+ M →R + M+·(电荷交换)甲醇气等R+·+ M →(R+M)+·(加合离子)FD(Field Desorption):场解吸——大部分只有一根峰, 适用于难挥发极性化合物,例如糖,应用较困难,目前基本被FAB取代。

FAB(Fast Atom Bombardment):快原子轰击——利用氩,氙,80年代初发明,或者铯离子枪(LSIMS,液体二次离子质谱),高速中性原子或离子对溶解在基质中的样品溶液进行轰击,在产生“爆发性”汽化的同时,发生离子-分子反应,从而引发质子转移,最终实现样品离子化。

适用于热不稳定以及极性化合物等。

FAB法的关键之一是,选择适当的(基质)底物,从而可以进行从较低极性到高极性的范围较广的有机化合物测定,是目前应用比较广的电离技术。

不但得到分子量还能提供大量碎片信息。

产生的谱介于EI与ESI之间,接近硬电离技术。

生成的准分子离子,一般常见[M+H]+和[M+底物] +。

另外:还有根据底物脱氢以及分解反应产生的[M-H]_容易提供电子的芳烃化合物产生M+⋅甾类化合物、氨基霉素等还产生[M+NH4]+糖甙、聚醚等一般可(产生)观察到[M+Na]+由底物与粒子轰击(碰撞)诱导发生还原反应来产生[M+nH]+ (n>1),二量体(双分子)[M+H+M]+及[M+H+B]+等。

因此,进行谱图解析时,要考虑底物和化合物的性质,盐类的混入等进行综合判断。

ESI(Electrospray Ionization):电喷雾电离——与LC,毛细管电泳联用最好,亦可直接进样,属最软的电离方式,混合物直接进样可得到各组分的分子量。

APCI(Atmospheric Pressure Chemical Ionization):大气压化学电离——同上,更适宜做小分子。

MALDI(Matrix Assisted Laser Desorption):基体辅助激光解吸基质辅助激光解吸电离——是一种用于大分子离子化方法,利用对使用的激光波长范围具有吸收并能提供质子的基质(一般常用小分子液体或结晶化合物),将样品与其混合溶解并形成混合体,在真空下用激光照射该混合体,基体吸收激光能量,并传递给样品,从而使样品解吸电离。

MALDI的特点是准分子离子峰很强。

通常将MALDI用于飞行时间质谱和FT-MS,特别适合分析蛋白质和DNA等大分子。

(3)质量分析器:是质谱仪中将离子按质荷比分开的部分,离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z 离子聚焦在一起,组成质谱。

(4)检测接收器:接收离子束流的装置,有:二次电子倍增器光电倍增管微通道板(5)数据系统:将接收来的电信号放大、处理并给出分析结果。

包括外围部分.例如终端显示器,打印机等。

现代计算机接口,还可反过来控制质谱仪各部分工作。

(6)真空系统:由机械真空泵(前极低真空泵),扩散泵或分子泵(高真空泵)组成真空机组,抽取离子源和分析器部分的真空。

只有在足够高的真空下,离子才能从离子源到达接收器,真空度不够则灵敏度低。

(7)供电系统:包括整个仪器各部分的电器控制部件,从几伏低压到几千伏高压。

2.分类:常见下列几种:双聚焦扇形磁场-电场串联仪器(sector)四极质谱仪(Q)离子阱质谱仪(TRAP)飞行时间质谱仪(TOF)付利叶变换-离子回旋共振质谱仪(FT-ICRMS)┏混合型如四极+TOF,磁式+TRAP等串列式多级质谱仪(MS/MS) ━┫三重四极┗TOF+TOF3.分析原理:磁质谱基本公式:M/Z=H2R2/2VM:质量Z:电荷V:加速电压R:磁场半径H:磁场强度磁质谱经典,可高分辨,质量范围相对宽;缺点是体积大,造价高,现在越来越少。

四极分析器quadrupole是一种被广泛使用的质谱仪分析器。

由两组对称的电极组成。

电极上加有直流电压和射频电压(±(U+Vcosωt))。

相对的两个电极电压相同,相邻的两个电极上电压大小相等,极性相反。

带电粒子射入高频电场中,在场半径限定的空间内振荡。

在一定的电压和频率下,只有一种质荷比的离子可以通过四极杆达到检测器,其余离子则因振幅不断增大,撞在电极上而被“过滤”掉,因此四极分析器又叫四极滤质器。

利用电压或频率扫描,可以检测不同质荷比的离子。

优点是扫描速度快,比磁式质谱价格便宜,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限。

飞行时间质谱仪:利用相同能量的带电粒子,由于质量的差异而具有不同速度的原理,不同质量的离子以不同时间通过相同的漂移距离到达接收器。

公式M/Z=2E/v2v=d/t 代入M/Z=Kt2E:离子动能v:离子速度d:飞行距离t:飞行时间K:常数=2E/d2优点:扫描速度快,灵敏度高,不受质量范围限制以及结构简单,造价低廉等.FT-MS:在射频电场和正交横磁场作用下,离子作螺旋回转运动,回旋半径越转越大,当离子回旋运动的频率与补电场射频频率相等时,产生回旋共振现象,测量产生回旋共振的离子流强度,经付立叶变换计算,最后得到质谱图。

是较新的技术,对于高质量数,高分辨率及多重离子分析,很有前途,但使用超导磁铁需要液氦,不能接GC,动态范围稍窄,目前还不太作为常规仪器使用。

离子阱Ion trap 通常由一个双曲面截面的环形电极和上下一对双曲面端电极构成。

从离子源产生的离子进入离子阱内后,在一定的电压和频率下,所有离子均被阱集。

改变射频电压,可使感兴趣的离子处于不稳定状态,运动幅度增大而被抛出阱外被接收、检测。

用离子阱作为质量分析器,不但可以分析离子源产生的的离子,而且可以把离子阱当成碰撞室,使阱内的离子碰撞活化解离,分析其碎片离子,得到子离子谱。

离子阱不但体积很小,而且具有多级质谱的功能,即做到MS n,但动态范围窄,低质量区1/3缺失,不太适合混合物定量.多级质谱联用仪现在,几乎所有的商品质谱仪上均配有GC-MS,但对难挥发、强极性和大分子量混合物,GC-MS无能为力,为了弥补GC-MS的不足,经过20多年的探索,通过开发上述几种软电离技术,特别是ESI和APCI等,解决了LC 与离子源接口问题(1987年完成),从而实现了LC-MS联用,是分析化学的一次重大进展,而串联质谱仪更具有许多优点。

串联质谱仪(MS/MS或T amdem):离子源—→第一分析器—→碰撞室—→第二分析室—→接收器MS1 MS2进行MS/MS的仪器从原理上可分为两类。

第一类仪器利用质谱在空间中的顺序,是由两台质谱仪串联组装而成。

即前面列出的串列式多级质谱仪。

第二类利用了一个质谱仪时间顺序上的离子储存能力,由具有存储离子的分析器组成,如离子回旋共振仪(ICR)和离子阱质谱仪。

这类仪器通过喷射出其它离子而对特定的离子进行选择。

在一个选择时间段这些被选择的离子被激活,发生裂解,从而在质谱图中观测到碎片离子。

这一个过程可以反复观测几代碎片的碎片。

时间型质谱便于进行多级子离子实验,但另一方面不能进行母离子扫描或中性丢失。

一般采用ESI、CI或FAB等软离子化方法,以利于多产生分子离子,通过MS1的离子源使样品离子化后,混和离子通过第一分析器,可选择一定质量的离子作为母体离子,进入碰撞室,室内充有靶子反应气体(碰撞气体:He、Ar、Xe、CH4等)对所选离子进行碰撞,发生离子—分子碰撞反应,从而产生‘子离子’,再经MS2的分析器及接受器得到子离子(扫描)质谱(product ion spectrun)。

一般称做MS/MS-CID谱,或者简称为CID(collision-induced dissociation) 谱,碰撞诱导裂解谱,及MS/MS谱。

另外,也有母找子离子的MS/MS谱,(MS/MS spreursor ion spectrum)研究MS/MS谱(一般指子离子质谱,与在源内裂解产生的正常碎片质谱类似,但有区别,现不能检索),可以了解到被分析样品的混合物性质和成分,对一些混合物(目前,多用最软电离的ESI或APCI的MS/MS。

不必进行色谱分离可直接分析,与色谱法相比,有很快的响应速度,省时省样品省费用,具有高灵敏度和高效率的优点。

另外一个特点是通过子→母及母→子MS/MS谱可以掌握一定的结构信息,做为目前有力的结构解析手段。

因此,现在利用串联质谱仪进行药物研究越来越得到重视,特别是在药物代谢以及混合物的微量成分分析和结构测定等方面正在起到越来越重要的作用。

相关文档
最新文档