《简单的三角恒等变换》教学设计
第二节简单的三角恒等变换(第二课时)示范教

的三角函数表达式化简为基本的三角函数形式。
学生自我评价报告
1 2
知识掌握程度
大部分学生表示能够理解和掌握本节课所学的三 角恒等变换公式,并能够运用它们解决一些实际 问题。
学习方法
学生认为通过推导公式、举例验证以及大量练习 的方式,有助于加深对知识点的理解和记忆。
3
学习态度
学生表示在学习过程中保持积极的学习态度,认 真听讲、思考并积极参与课堂讨论。
02
实例2
证明$tanalpha = frac{sinalpha}{cosalpha}$。该恒等式可通过三角函
数的定义和商数关系式进行证明,也可通过几何意义进行解释。
03
实例3
证明$sin(alpha + beta) = sinalphacosbeta + cosalphasinbeta$。
该恒等式是三角函数和差化积公式的基础,可通过向量的数量积或复数
方法三
利用三角恒等式。通过已知的三角恒等式,如正弦、余弦定理等,推导出三角形内角和定 理。
三角形外角定理证明
方法一
利用平行线的性质。通过延长三角形的一条边,并在延长线上取一点,连接该点与三角形的另外两个顶点,形成新的 三角形。根据平行线的性质,可以证明原三角形的外角等于新三角形的两个内角之和。
方法二
分析法
从已知条件出发,逐步推导出结论 ,证明过程中需注意逻辑严密性。
综合法
将归纳法和分析法相结合,既考虑 特殊情况,又考虑一般情况,从而 证明恒等式的正确性。
实例分析与讨论
01
实例1
证明$sin^2alpha + cos^2alpha = 1$。该恒等式是三角函数的基本
恒等式之一,可通过勾股定理或三角函数定义进行证明。
简单的三角恒等变换(教学设计)

第四章 第二讲 简单的三角恒等变换(第一课时)【目标分解】1、诱导公式;2、同角三角函数的基本关系;1、同角三角函数的基本关系:平方关系: ;商数关系: ;倒数关系: .若α是三角形的一个内角,53cos =α,则sin _______, tan ______αα==.2、诱导公式:记忆方法(口诀): .由 ()2k k Z πα⋅±∈中k 是奇数还是偶数,确定__________是否改变;由该角所在的象限确定______.用诱导时先将α看作锐角. 如:计算 tan 600︒=_________; 17cos()3π=__________.3、 两角和与两角差公式:()βα±cos= ;()βα±sin = ;()βα±tan = .4、 二倍角公式及其变式:升幂公式:α2cos = = = ;α2sin = ; α2tan =降幂公式:sin cos αα=____________, 2cos α=______________, 2sin α=______________. 【考点剖析】考点1:诱导公式1.已知α是第三象限角,且)sin()cot()23tan()2cos()sin()(αππαπααπαπα----+---=f 。
(1)化简)(αf ; (2)若51)23cos(=-πα,求)(αf 的值;化简:sin()2 ()cos()2n n Z n παπα+∈+=________ 分类讨论要做到不重不漏. 考点2:同角三角函数的基本关系2. 见《备考指南》P.42例23.已知αsin 和αcos 是方程052=+-m x x 的两实根,求:(1)m 的值; (2)当),0(πα∈时,)3tan(απ-的值;已知sin cos sin -cos sin cos αααααα+、、中的一个值,可求另两个的值, 运用的公式是:_________________________________.”.【课后巩固练习】温故知新,请完成《备考指南》练习册 P.67 ~P.68 【课后提高练习】 1、)619sin(π-的值等于( )A 、21 B 、21-C 、23 D 、23-2、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π_______.3、已知a = 200sin ,则160t a n等于( ) A 、21aa --B 、21aa - C 、aa 21--D 、aa 21-4.若α是三角形的一个内角,且21)23cos(=+απ,则α=_______.5、已知x x f 3cos )(cos =,则)30(sin f 的值为_______. 答案:1、C 2、D 3、C 4、54-;5.1003-.一、教学整体把握上的反思:通过对近三年高考试题的分析可以看出,对于诱导公式和同角三角关系知识点的考查一般是以基础题为主,难度不会太大,属于低、中档题目,整个命题过程主要是侧重以三角函数的定义为载体,求三角函数值。
教学设计1:3.2 简单的三角恒等变换

必修四第3章 三角恒等变形3.2 简单的三角恒等变换教学目的:知识目标:掌握二倍角的正弦、余弦、正切公式能用所学知识解决有关综合问题情感目标:创设问题情境,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求.教学重点:二倍角的正弦、余弦、正切公式教学难点:二倍角的正弦、余弦、正切公式教学过程:导入新课思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sin α=53,α∈(2π,π),求sin2α,cos2α的值.学生会很容易看出:()22sin sin sin cos cos sin sin cos ααααααααα=+=+=的,以此展开新课,并由此展开联想推出其他公式.提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写) ②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式? ③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )-sin 2( ). ⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sin α吗?cos2α=2cos α吗?tan2α=2tan α?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(α+β)=sin αcos β+cos αsin βsin2α=2sin αcos α(S 2α);cos(α+β)=cos αcos β-sin αsin βcos2α=cos 2α-sin 2α(C 2α); tan(α+β)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21kπ+4π和α≠kπ+2π(k ∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=kπ+2π,k ∈Z 时,虽然tan α不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2π-α是4π-2a 的二倍等,所有这些都可以应用二倍角公式.例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a -sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cos 22α-sin 22α=cos4α,tan2α=2tanα(1-tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sin α,则2sin αcos α=2sin α,即sin α=0或cos α=1,此时α=kπ(k ∈Z ).若cos2α=2cos α,则2cos 2α-2cos α-1=0,即cos α=231-(cos α=231+舍去). 若tan2α=2tan α,则aa 2tan 1tan 2-=2tan α,∴tan α=0,即α=kπ(k ∈Z ). 解答:①—⑧(略)二、例题讲解例1 已知2sin 3α=,(,)2παπ∈,3cos 5β=-,3(,)2πβπ∈.求sin()αβ+的值.解 由2sin 3α=,(,)2παπ∈,得cosα又由3cos 5β=-,3(,)2πβπ∈,得sinβ=-45,∴sin()sin cos cos sin αβαβαβ+=+=234()()355-+-=. 点拨 本例主要介绍正弦和角公式的“正用”.让学生从条件、求解结果等方面展开讨论,自己改编习题,并予以解答.预设三:条件不变,求sin()αβ-的值.预设四:改变角的范围,仍然求sin()αβ+的值.期望学生出现改编后,角度范围与三角函数值不配套,对于预设四要请学生对改变条件的合理性进行探讨,如学生改变了角的取值范围,可能会出现矛盾等.教师再予以点拨.期望学生出现改编后,角度范围与三角函数值不配套,如已知2sin 3α=-,(,)2παπ∈,3cos 5β=-,3(,)2πβπ∈.求sin()αβ+的值. 预设五:把角度限制去掉,即已知2sin 3α=-,3cos 5β=-,求sin()αβ+的值.让学生讨论解的情况,通过以上讨论使学生能从正面熟练应用公式.例2 化简(1)sin14°cos16°+sin16°cos14°= 12; (2)sin()cos cos()sin αββαββ-+-= sinα ;(3)cos (70°+α)sin (170°-α)-sin (70°+α)cos (10°+α)=2. 点拨 本例目的在于让学生能熟悉两角和与差的正弦公式的逆用. 预设六:怎样求 3 sin15°+cos15°的值?引导学生利用特殊角的三角函数构造两角和的三角函数公式,为后面学习辅助角公式打下伏笔.例3 已知,,.()222k k k k z πππαβπαπβπ+≠+≠+≠+∈,4cos 5β=,α,β均为锐角,求sinα.帮助学生分析条件,寻找解题的突破口.即让学生发现α=(α+β)-β,这样问题就可以得到解决.解 ∵α,β均为锐角,则0°<α+β<180°,∴sinβ>0,sin (α+β)>0, 由5cos()13αβ+=得12sin()13αβ+=,由4cos 5β=得3sin 5β=. ∴sin[()]sin()cos cos()sin αββαββαββ+-=+-+124533313513565=⨯-⨯=. 点拨 本例主要介绍利用“变角”,创造应用和角公式的条件,使问题获得解决.常见变角有β=(α+β)-α,2α+β=(α+β)+α,2α=(α+β)+(α-β),2β=(α+β)-(α-β)……预设七:让学生讨论问题:“已知15cos(30),(30,90)17αα-︒=∈︒︒,求sinα的值”.请同学们提出解题方案. 可能性解决方案一:将15cos(30)17α-︒=展开,得到115sin 2217αα+=,由α∈(30°,90°)知sinα>0,cosα>0,再结合22sin cos 1αα+=,可求得sinα的值.必须指出此方案运算量大,不易求解.可能性解决方二:变角α=(α-30°)+30°,由α∈(30°,90°)知sin(30)0α-︒>,利用正弦的和角公式可以较快地解决此问题.必须指出通过变角,构造应用公式的条件,这是一种创造性的学习,有利于培养学生的创新精神.例4 求证: sin(2)sin 2cos()sin sin A B B A B A A+-+=. 预设八:由学生自主完成对本题的分析,找出解决本题的突破口,即将等式中的角统一用A +B 及A 来表示,以消除角的差异.证 左边=sin[()]2cos()sin sin A B A A B A A++-+ sin()cos cos()sin 2cos()sin sin A B A A B A A B A A+++-+=sin()cos cos()sin sin A B A A B A A +-+=sin[()]sin sin sin A B A B A A+-===右边. ∴等式成立.点拨 本题是通过变角达到灵活运用公式的一个典范,通过角的变换消除角的差异,这是三角变换的重要思路之一.例5 求2cos10sin 20cos 20︒-︒︒的值. 预设九:学生讨论,寻找角度之间的关系,使非特殊角与特殊角挂上钩.让学生发现解决本题的关键在于统一角度,不难得到10°=30°-20°.解 原式=2cos(3020)sin 202(cos30cos 20sin 30sin 20)sin 20cos 20cos 20︒-︒-︒︒︒+︒︒-︒=︒︒=12(cos 20sin 20)sin 2022cos 20︒+︒-︒=︒点拨 非特殊角的三角函数求值问题,通常要挖掘题目中的隐含条件,以达到创造使用公式的条件.课堂小结:二倍角的正弦、余弦、正切公式222cos cos sin ααα=-22sin sin cos ααα=22tan tan 21tan ααα=- 板书设计:。
321简单的三角恒等变换教学设计

根据角度在直角三角形中的对边、邻边和斜边的比值,定义了正弦、余弦和正 切等三角函数。
三角函数的性质
包括周期性、奇偶性、增减性、最值等。例如,正弦函数和余弦函数具有周期 性,周期为2π;正切函数具有周期性,周期为π,并且在每一个周期内是增函 数。
三角函数图像与变换
三角函数图像
正弦函数、余弦函数和正切函数的图像分别是正弦曲线、余 弦曲线和正切曲线。这些图像具有特定的形状和性质,如振 幅、周期、相位等。
三角函数问题具有重要意义。
通过本课程的学习,学生将掌握 三角恒等变换的基本方法和技巧 ,提高数学素养和解决问题的能
力。
教学目标与要求
知识目标
掌握基本的三角恒等变换公式, 如和差化积、积化和差、倍角公
式等。
能力目标
能够运用三角恒等变换解决简单的 三角函数问题,如求值、化简、证 明等。
情感目标
培养学生对数学的兴趣和热爱,提 高学生的数学素养和审美能力。
角的变换法
通过角的变换,将所求角用已知角表示,然后代 入公式计算。
3
公式变形法
将公式进行变形,使得所求值能够直接代入计算 。
证明类问题解决方法
分析法
从结论出发,逆向思维, 寻找使结论成立的条件, 逐步推导至已知条件。
综合法
从已知条件出发,通过逐 步推导,得出结论。
比较法
通过比较两个表达式之间 的差异,寻找联系,从而 证明结论。
题目二
化简 $sin^2alpha cos^2beta + cos^2alpha sin^2beta$。
题目三
求 $sin 2alpha cos 2beta + cos 2alpha sin 2beta$ 的值。
简单的三角恒等变换教案

06
三角恒等变换在实际问题中的 应用
在几何问题中的应用
角度和长度的计算
利用三角恒等变换,可以解决几何图 形中角度和长度的计算问题,如求三 角形的内角和、外角和、边长等。
几何图形的证明
在几何证明题中,三角恒等变换可以 作为证明工具,通过变换公式将复杂 的几何问题转化为简单的三角问题, 从而简化证明过程。
sin^2α + cos^2α = 1, 1 + tan^2α = sec^2α, 1 + cot^2α = csc^2α。
商数关系
tanα = sinα / cosα, cotα = cosα / sinα。
互余角关系
sin(90° - α) = cosα, cos(90° - α) = sinα, tan(90° - α) = cotα。
查表或使用计算器得出结果。
两角和与差的正弦公式
01
公式表述
$sin(alpha pm beta) = sin alpha cos beta pm cos alpha sin beta$
02
公式理解
该公式表达了两个角的和或差的正弦值可以通过这两个角的正弦值和余
弦值计算得出。
03
应用举例
计算 $sin(30^circ - 15^circ)$,可以使用该公式将表达式转换为 $sin
过程与方法
通过推导和证明三角恒等 变换公式,培养学生的逻 辑思维能力和数学推理能 力。
情感态度与价值观
让学生感受到数学公式的 对称美和简洁美,激发学 生学习数学的兴趣和热情 。
教学内容
三角恒等变换的基本公式
包括正弦、余弦、正切的加法公式、 减法公式、倍角公式、半角公式等。
简单的三角恒等变换 教学设计 说课稿 教案

第2课时(一)导入新课思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(4π+α)-(4π-α),4π+α=2π-(4π-α)等,你能总结出三角变换的哪些策略?由此探讨展开.思路 2.(复习导入)前面已经学过如何把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx 的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能.(二)推进新课、新知探究、提出问题①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少? ②函数y=asinx+bcosx 的变形与应用是怎样的? ③三角变换在几何问题中有什么应用?活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2kπ(k∈Z 且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2kπ(k∈Z 且k≠0),且最小正周期是2π,函数y=sin2x 的周期是kπ(k∈Z 且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].函数y=asinx+bcosx=22b a +(2222sin ba b x ba a +++cosx ),∵(sin ,cos 1)()(2222222222=+=+=+++ba b ba aba b ba a ϕ从而可令φ,则有asinx+bcosx=22b a +(sinxcosφ+cosxsinφ)=22b a +sin (x+φ).因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tanφ=ab.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y=sin x ,y=cosx 的周期是2kπ(k∈Z 且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1.②—③(略)见活动.(三)应用示例思路1例1 如图1,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠C OP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积. 活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到: S=AB ·BC=(cosα33-sinα)sinα=sinαcosα-33-sin 2α. 求这种y=asin 2x+bsinxcosx+ccos 2x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:图1(1)找出S 与α之间的函数关系; (2)由得出的函数关系,求S 的最大值.解:在Rt△OBC 中,BC =cosα,BC=sinα,在Rt△OAD 中,OADA=tan60°=3, 所以OA=33DA=33BC=33sinα. 所以AB=OB-OA =cosα33-sinα. 设矩形ABCD 的面积为S,则 S=AB ·BC=(cosα33-sinα)sinα=sinαcosα33-sin 2α =21sin2α+63cos2α-63=31(23sin2α+21cos2α)-63=31sin(2α+6π)-63. 由于0<α<3π,所以当2α+6π=2π,即α=6π时,S 最大=31-63=63.因此,当α=6π时,矩形ABCD 的面积最大,最大面积为63. 点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠C OP =α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3312--),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.变式训练(2007年高考辽宁卷,19) 已知函数f(x)=sin(ωx+6π)+sin(ωx -6π)-2cos 22xω,x∈R(其中ω>0).(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为2π,求函数y=f(x)的单调增区间.解:(1)f(x)=23sinωx+21cosωx+23sinωx -21cosωx -(cosωx+1) =2(23sinωx -21cosωx)-1=2sin(ωx -6π)-1. 由-1≤sin(ωx -6π)≤1,得-3≤2sin(ωx -6π)-1≤1,可知函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质,可知y=f(x)的周期为π,又由ω>0,得ωπ2=π,即得ω=2.于是有f(x)=2sin(2x-6π)-1,再由2kπ-2π≤2x -6π≤2kπ+2π(k∈Z),解得kπ-6π≤x≤kπ+3π(k∈Z).所以y=f(x)的单调增区间为[kπ-6π,kπ+3π](k∈Z).点评:本题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.例1 求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题. 解:y=sin 4x+23sinxcosx-cos 4x=(sin 2x+cos 2x)(sin 2x-cos 2x)+3sin2x=3sin2x-cos2x=2sin(2x-6π).故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,3π],[65π,π]. 点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.变式训练已知函数f(x)=cos 4x-2sinxcosx-sin 4x,(1)求f(x)的最小正周期; (2)若x∈[0,2π],求f(x)的最大、最小值.解:f(x)=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=2cos(2x+4π),所以,f(x)的最小正周期T=22π=π. (2)因为x∈[0,2π],所以2x+4π∈[4π,45π].当2x+4π=4π时,cos(2x+4π)取得最大值22, 当2x+4π=π时,cos(2x+4π)取得最小值-1.所以,在[0,2π]上的最大值为1,最小值为-2.和即sin(-ωx+φ)=sin(ωx+φ),所以-cosφsinωx=cosφsinωx 对任意x 都成立. 又ω>0,所以,得cosφ=0. 依题设0≤φ≤π,所以,解得φ=2π.由f(x)的图象关于点M 对称,得f(43π-x)=-f(43π+x).取x=0,得f(43π)=-f(43π),所以f(43π)=0.∵f(43π)=sin(43ωπ+2π)=cos 43ωπ,∴cos 43ωπ=0.又ω>0,得43ωπ=2π+kπ,k=0,1,2,….∴ω=32(2k+1),k=0,1,2,…. 当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2π]上是减函数;当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2π]上是减函数;当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π]上不是单调函数. 所以,综合得ω=32或ω=2.点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先21又∵tanα=tan[(α-β)+β]=ββαββαtan )tan(1tan )tan(--+-=31<1.且0<α<π,∴0<α<4π.∴0<2α<2π.又tanβ=71-<0,且β∈(0,π), ∴2π<β<π,-π<-β<2π-.∴-π<2α-β<0.∴2α-β=43π-. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cosα;若α∈(2π-,2π),则求sinα等.(四)课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.(五)作业。
23《简单的三角恒等变换》教案2024新版

已知条件的利用
充分利用已知三角函数值
根据题目中给出的三角函数值,可以 直接代入到恒等式中,简化计算过程 。
已知条件的变形
通过对已知条件进行变形,可以得到 一些有用的中间结果,为后续的推导 打下基础。
挖掘隐含条件
有些题目中的已知条件可能不是直接 给出的,需要通过观察和分析挖掘出 隐含的条件,进一步简化计算。
通过三角恒等变换,可以将三角形的三个内角表 示为两个直角,从而证明三角形内角和定理。
计算三角形面积
在已知三角形三边长度的情况下,可以利用三角 恒等变换求出三角形的高,进而计算三角形的面 积。
解决几何作图问题
在几何作图中,有时需要利用三角恒等变换来构 造特定的角度或长度,从而解决作图问题。
在三角函数中的应用
感受数学的美妙和实用性 ,提高对数学的兴趣和热 爱。
教学方法与手段
采用讲授法、讨论法、练习法等 多种教学方法,使学生全面深入 地理解三角恒等变换的知识和技
能。
利用多媒体教学手段,如PPT、 视频、动画等,使教学更加生动
形象和有趣。
组织学生进行小组讨论和合作学 习,培养学生的合作精神和交流
能力。
02
基础知识回顾
三角函数的基本性质
01
02
03
04
周期性
三角函数具有周期性,例如正 弦函数和余弦函数的周期为
2π。
奇偶性
正弦函数为奇函数,余弦函数 为偶函数,即sin(-x) = -
sin(x),cos(-x) = cos(x)。
值域
正弦函数和余弦函数的值域为 [-1,1]。
特殊角三角函数值
例如30°、45°、60°等特殊角 度的三角函数值需要熟记。
2.3《简单的三角恒等变换》教学设计

2.3简单的三角恒等变换【教学目标】1.能运用两角差的余弦公式推导出两角差与和的正弦、正切公式和二倍角的正弦、余弦、正切公式.2.通过二倍角的正弦、余弦、正切公式推导出半角公式,万能公式以及积化和差与和差化积公式,了解它们的内在联系.3.能运用上述公式进行简单的恒等变换,增强学习的积极性,避免对公式的生搬硬套,培养学生的探究意识和严谨的思维品质.【教学重点】推导出半角公式,万能公式以及积化和差与和差化积公式.【教学难点】灵活运用上述公式进行简单的恒等变换.【教学方法】教师启发讲授,学生探究学习.【教学手段】多媒体平台.【核心素养】数学抽象,数学运算,逻辑推理.【教学过程】一、创设情境,引入课题复习回顾:我们刚刚学习了两角差与和的正弦、正切公式和二倍角的正弦、余弦、正切公式,同学们还能回顾一些这些公式的源头是谁吗?我们从哪个公式作为逻辑推理的起点的呢?没错,就是从向量的数量积推导出两角差的余弦公式,进而一步步得到了后续的公式,我们今天要学习的内容也是建立在前面内容的基础上,进行新的探究和推导.将一个三角函数式变为与之恒等的其他三角函数式的变换过程,称为三角恒等变换. 进行三角恒等变换时,一般要使用三角函数间的关系式,除了我们刚刚学过的那些公式,还有下面要推导的半角公式:二、归纳探索,形成概念半角公式首先提问同学,上节课学习的二倍角公式:再由老师板书:二倍角公式:αααcos sin 22sin =;ααα2tan 1tan 22tan -=ααα22sin cos 2cos -=1cos 22-=αα2sin 21-=在数学研究中,公式经常要灵活理解和运用,比如我们这两节课的学习内容:倍角公式和半角公式,“倍”与“半”都是相对而言的。
结合刚刚复习的倍角公式,你能由αcos 推导出2tan ,2cos ,2sin ααα的数值吗?给同学们一点的时间思考,提问:运用倍角公式,看看能不能得出什么新的关系式?请一位学生回答,由老师板书推导过程:我们从余弦的倍角公式入手,很容易得到正弦的半角公式.下面再给同学们1分钟的时间思考,提问:能不能仿照这个推导过程,得到余弦的半角公式呢?请一位学生回答,由老师板书推导过程:而根据同角三角函数关系,正切的半角公式是不是也就水到渠成了呢?再请一位学生回答,由老师板书推导过程:同学们都应该已经完成了,我们现在得到了正弦、余弦和正切的半角关系式,只不过它们还是平方的形式,我们将上面的三个等式左右两端分别开平方,可得由老师板书:我们就得到了三组半角公式.由于是开平方,具体的正负号,要根据半角所在的象限来判断.我们除了学习数学知识,更要学会通过现象看本质.相信细心的同学不难发现,半角公式和倍角公式实质上是对同一公式的不同变形.三、运用公式,适当延展例1.如果|cos θ|=,<θ<3π,求sin 的值? 解: 根据<θ<3π可知角θ是第二象限角,其余弦值为负,即cos θ=-,而<<,是为第三象限角,正弦值为负,于是利用半角公式即得结果-.这道题就是要求同学们注意半角的范围,进而确定所求三角函数值的符号.例2已知α∈(−π2,0),cosα=45,求tan α2的值? 解:由α∈(−π2,0)及cosα=45,得到sinα=−35, 故tan α2=sinα1+cosα=−351+45=−13. 可以在讲解时,引出这个解法,呼应教材中的例25125π2θ25π5145π2θ23π515积化和差与和差化积公式在求解三角函数的有关问题时,有时需要把三角函数的积化为和或者差的形式,有时又需要把和或差化为积的形式,这应如何转化呢?借鉴前面通过两个单位向量的数量积得出差角余弦公式的思路,我们继续尝试用向量的方法来探讨如何将三角函数的和或差转化为积的形式:我们下来就用和角与差角公式来证明.请一位学生回答,由老师板书推导过程:我们通过设两个参数来帮助我们的推导:由老师板书推导过程:类似地我们还可以证明:将上述四个公式称为和差化积的公式.例3:给同学们1分钟的时间思考,类比我们刚刚推导和差化积公式的思路,利用和角与差角公式能不能得到证明过程呢?提问同学,由老师板书推导过程:刚刚例题的结论实质上就是积化和差公式中的两个,剩下的两个同学们自己证明,给大家一点提升:将sin(α+ β)和sin(α-β)两组公式分别相加减,你还能得出哪些结论呢?下面,我们利用这节课所学的公式,证明下面这个问题:例4:观察一下等式两段,右边式子式三次的,我们一时间不好寻找突破口;所以我们从等式左边入手,发现了两个余弦之和的形式,可以尝试运用和差化积的公式进行推导:同时我们也利用三角形内角和的关系,将C转化为A+B的形式:四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.总结:1.半角公式:2.积化和差公式:cos αcos β=12[cos(α+β)+cos(α-β)]; sin αsin β=-12[cos(α+β)-cos(α-β)]; sin αcos β=12[sin(α+β)+sin(α-β)]; cos αsin β=12[sin(α+β)-sin(α-β)]. 3.和差化积公式:设α+β=x ,α-β=y ,则α=x +y 2,β=x -y 2.上面的四个式子可以写成,sin x +sin y =2sin x +y 2cos x -y 2; sin x -sin y =2cos x +y 2sin x -y 2; cos x +cos y =2cos x +y 2cos x -y 2; cos x -cos y =-2sin x +y 2sin x -y 2. 在这一节课中,主要学习了半角公式,积化和差与和差化积公式,学习了它们的推导过程.对于我们所学的这些三角公式,同学们一定要在理解的基础上去记忆,多在课下进行推导,才能熟练运用这些公式解决问题.作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《简单的三角恒等变换》教学设计
一、课标要求:
本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.
二、编写意图与特色
本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.
三、教学目标
通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.
四、教学重点与难点
教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.
五、学法与教学用具 学法:讲授式教学 六、教学设想:
学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.
例1、试以cos α表示2
2
2
sin ,cos ,tan 2
2
2
α
α
α
.
解:我们可以通过二倍角2cos 2cos 12
α
α=-和2cos 12sin 2
α
α=-来做此题.
因为2cos 12sin 2
α
α=-,可以得到2
1cos sin 2
2α
α
-=
; 因为2
cos 2cos 12
α
α=-,可以得到2
1cos cos 2
2
α
α
+=
.
又因为2
2
2
sin 1cos 2tan 2
1cos cos 2
α
α
ααα-=
=+. 思考:代数式变换与三角变换有什么不同?
代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.
例2、求证: (1)、()()1
sin cos sin sin 2
αβαβαβ=
++-⎡⎤⎣⎦; (2)、sin sin 2sin
cos
2
2
θϕ
θϕ
θϕ+-+=.
证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.
()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1
sin cos sin sin 2
αβαβαβ=
++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设
,αβθαβϕ
+=-
=, 那么,2
2
θϕ
θϕ
αβ+-=
=
.
把,αβ的值代入①式中得sin sin 2sin cos
2
2
θϕ
θϕ
θϕ+-+=.
思考:在例2证明中用到哪些数学思想?
例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化
积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.
例3、求函数sin 3cos y x x =+的周期,最大值和最小值. 解:sin 3cos y x x =+这种形式我们在前面见过,
13sin 3cos 2sin cos 2sin 223y x x x x x π⎛⎫⎛
⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭
, 所以,所求的周期22T π
πω
=
=,最大值为2,最小值为2-.
点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数
()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.
小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.
作业:
157158P P - 14T T -。