列车运行控制(ATC)系统的接口与管理
简述atc列车自动控制系统的功能

简述atc列车自动控制系统的功能ATC列车自动控制系统(Automatic Train Control System)是一种广泛应用于高速铁路和城市轨道交通的列车自动驾驶系统。
它的主要功能是通过计算和监控列车的运行状态,避免事故和提高行车的安全性。
该系统的主要组成部分包括列车控制单元、线路监控单元、通讯单元和列车设备。
其中,列车控制单元是系统的核心部分,负责实时监测车速、运行状态、车辆位置和信号灯状态等,控制列车的加减速度和制动系统,保证列车在线路上的行驶安全。
ATC列车自动控制系统具有以下功能:
1.自动运行控制:系统能够自主决策,并配合控制单元自动实现列车的加速、减速、换道和停车等操作。
2.速度控制:系统能够精确地控制列车的车速,根据线路信息和列车状态进行自适应速度调整,在保证安全的同时提高运行效率。
3.信号控制:系统可以实时监测车辆状态并进行信号控制,及时发出警告和制动指令,避免事故发生。
4.故障诊断:系统能够实时监测车辆状态和部件状态,出现问题时能够自动诊断,通知相关维护工作人员进行维修和保养。
5.运行记录:系统能够记录整条线路上的列车运行情况,并可生成运行报告,供运营人员参考和分析,提高运输效率。
ATC列车自动控制系统的应用,不仅为列车行驶提供了更高的安全性保障,同时也提升了列车的运营效率和服务水平。
在未来,随着科技和工业技术的不断发展,ATC列车自动控制系统还将有更广泛的应用和发展。
列车运行自动控制(ATC)系统

功能
(1)集中控制功能 (2)集中显示功能 (3)列车运行时刻表管理功能 (4)运行数据记录与统计功能 (5)仿真功能 (6)监测与报警功能
ATS系统设备
ATP——列车自动防护子系统
ATP子系统是ATC系统的核心和关键。 ATP子系统具有实现列车的间隔控制、超速防护、
进路的安全监控、车门和站台屏蔽门的控制等功 能。
转换 (8)记录运行信息
ATS——列车自动监控子系统
ATS子系统主要实现对列车运行的监督和控制,辅 助行车调度人员对全线列车运行进行管理。
它给行车调度人员显示全线列车的运行状态,监 督和记录运行图的执行情况,在列车因故偏离运 行图时及时做出反应(提出调整建议或者自动修 整运行图)。
通过ATO的接口,向旅客提供运行信息通报(列 车到达、出发时间、运行方向、中途停靠站 名……)。
当检测到列车的速度为零,列车向地面送出列车 停站信号,列车收到开门信息,使相应的门控继 电器动作;
司机按压与门控继电器相对应的门控按钮后,才 可打开列车车门。
不同闭塞制式的ATC系统
按闭塞制式,城市轨道交通ATC可分为:固定闭 塞式ATC系统、准移动闭塞式ATC系统和移动闭 塞式ATC系统。
ATP轨旁功能
负责列车安全间隔和生成报文 ,完成任务对列车安全运行授 权许可的发布和报文的准备
1 列车安令间隔功能
保持列车之间的最小安全距 离,发出运行授权。在进路 已经排列,联锁功能中才发 出列车运行授权.
2 报文生成功能
完成整理数据、准备和格式 化要传送到ATP车载设备的 报文,并决定传输方向。 .
ATS子系统根据联锁信息,列车自动办理进路。用 以指挥和监督列车的运行。它根据列车运行计划, 制定实时运行图,指挥列车的运行,包括办理列 车进路,控制列车发车时间,改变运行区间的模 式等;同时实时收集列车运行信息及线路的各种 信息,包括车次号、目的地号。由控制中心计算 机系统进行实时跟踪,并显示在中心表示盘上。
列车自动控制系统(ATC)

制作人ቤተ መጻሕፍቲ ባይዱ吕森、雷科
列车自动控制系统(ATC)
ATC系统综述
ATC系统的组成和功能
ATC系统的工作原理
一、ATC系统综述
ATC系统是在机车信号和列车自动停车装置基础上 发展起来的,后续列车根据与现行列车间的距离及 进路条件,在车内连续地显示出容许的速度信号, 并按该信号自动地控制列车运行。该系统取消了传 统的地面信号,而将机车信号变为主体信号,指示 列车应遵守的速度;系统能可靠地防止由于驾驶员 失误而冒进信号或追尾等事故。ATC是一套完整的 控制、监督、管理系统。
三、ATC系统的工作原理
轨旁设备通过车站数据传输系统与车站ATC系统 相连;车站的ATC系统通过ATP子系统发出列车 检测命令检查有无列车,并向车上送出ATP限速 命令、门控指令及定位停车的位置指令。车上 ATC系统通过ATP命令的数据和译码,控制列车 的运行和制动,完成定位。
谢谢观看
ATS 定位系统
ATO ATP
驱动、制动 控制设备
测速 传感器
列车数据
三、ATC系统的工作原理
位于管理级的ATS模块较多地采用软件方法实施 联网、通信及指挥列车安全运行;发送和接收各 种行车命令的ATP系统确保列车的安全运行;车 载ATP设备接收轨旁ATP设备传递的信号指令经 校验后送至ATO完成部分运行的功能
5、ATC功能
在联锁功能的约束下,根据ATS的要求实现列车运 行的控制。ATC功能有三个子功能:ATP/ATO轨 旁功能、ATP/ATO传输功能和ATP/ATO车载功 能。ATP/ATO轨旁功能负责列车间隔和报文生成; ATP/ATO传输功能负责发送感应信号,它包括报 文和ATC车载设备所需的其他数据;车载设备所需 的其他数据;ATP/ATO车载功能负责列车的安全 运营、列车自动驾驶,且给信号系统和司机提供 接口。
列车运行控制系统的五个级别

列车运行控制系统的五个级别一、列车运行控制系统的五个级别列车运行控制系统是保障列车安全运行的重要设备,它通过控制列车的速度、位置和运行模式,确保列车在轨道上的稳定运行。
根据功能和安全性等方面的不同,列车运行控制系统可以分为五个级别,分别是ATC、ATO、CBTC、CTBC和ETCS。
二、ATC(Automatic Train Control)级别ATC是列车运行控制系统的最基本级别,它主要通过信号系统和车载设备实现对列车的自动控制。
在ATC级别下,列车通过接收信号系统发出的信息,控制列车的速度和位置,以确保列车在规定的区间内安全运行。
ATC级别适用于高速铁路等需要保证列车安全运行的场所。
三、ATO(Automatic Train Operation)级别ATO是在ATC基础上进一步发展的列车运行控制系统级别。
ATO级别在保证列车安全运行的基础上,更加注重列车的运行效率和准点性。
相比于ATC级别,ATO级别的列车运行更加自动化,列车的运行速度和位置更加精确可控。
ATO级别适用于城市轨道交通等高密度、高频率的线路。
四、CBTC(Communications-Based Train Control)级别CBTC是一种基于通信技术的列车运行控制系统级别,它通过车载设备和地面设备之间的通信,实现对列车的精确控制。
CBTC级别不仅可以控制列车的速度和位置,还可以实现列车的精确停站、车辆调度和列车间的安全距离控制等功能。
CBTC级别适用于复杂的轨道交通系统,如地铁、轻轨等。
五、CTBC(Communication-Based Train Control)级别CTBC是一种基于通信技术的列车运行控制系统级别,它在CBTC的基础上进一步发展,主要用于高速铁路系统。
CTBC级别通过车载设备和地面设备之间的通信,实现列车的精确控制和列车间的安全距离控制。
CTBC级别的列车运行更加高效、精确和安全,适用于高速铁路等需要高速、高频的线路。
列车运行自动控制(ATC)系统方案

01
02
03
高效性
ATC系统需要具备高效的 控制能力,能够实现对列 车运行的精确控制,提高 列车运行效率。
安全性
系统需要保证列车运行的 安全,通过自动监测和预 警功能,及时发现并处理 潜在的安全隐患。
智能化
ATC系统需要具备智能化 的决策能力,能够根据实 际情况自动调整列车运行 策略,优化运行效果。
当前列车运行中存在效率不高的 问题,如列车晚点、运行速度不 稳定等,影响了乘客的出行体验
。
安全问题
列车运行中存在一定的安全隐患, 如人为操作失误、设备故障等,需 要通过技术手段进行改进和优化。
智能化水平不足
当前列车运行控制主要依赖人工操 作,智能化水平较低,难以满足未 来城市轨道交通的发展需求。
自动控制(ATC)系统需求
02
ATC系统架构设计
整体架构设计思路
基于分布式控制系统
实现列车运行的高效、安全和可靠控 制。
模块化设计
各功能模块独立设计,降低系统复杂 性和耦合度,提高可维护性。
分层架构设计
将系统划分为物理层、数据链路层、 网络层、传输层和应用层,便于管理 和维护。
关键功能模块划分
列车自动防护(ATP)模块
故障诊断机制及预警处理流程
故障诊断机制
结合实时状态监测数据和历史数 据,采用模式识别、统计分析等
方法进行故障诊断。
预警处理流程
根据故障诊断结果,制定相应的 预警处理流程,包括预警级别设 定、预警信息发布、应急处理措
施等。
远程故障诊断系统
建立远程故障诊断系统,实现列 车运行状态的远程实时监测与故 障诊断,提高列车运行安全性。
安全性保障措施
列车运行安全监测
列车自动控制系统atc的构成

列车自动控制系统atc的构成列车自动控制系统(Automatic Train Control System,简称ATC)是一种用于确保列车安全运行的关键技术和装置。
ATC系统由多个组件构成,主要包括列车控制中心、列车装备和信号设备等。
首先,列车控制中心是ATC系统的核心部分。
它负责接收、分析和处理来自信号设备的信息,然后向列车装备发送指令,控制列车的运行。
列车控制中心通常由一台计算机或服务器和相关的软件组成。
通过连接信号设备和列车装备,它可以实现对整个ATC系统的集中控制和管理。
其次,列车装备是ATC系统的重要组成部分。
它是安装在列车上的设备,用于接收来自列车控制中心的指令,并根据指令调整列车的速度和行驶方向。
列车装备通常包括列车自动停车控制装置(Automatic Train Stop,ATS)、列车自动运行控制装置(Automatic Train Operation,ATO)和列车通信装置等。
ATS主要负责监测列车的运行状态和速度,并在需要时通过紧急制动系统停车。
ATO则负责根据列车控制中心的指令自动驾驶列车,调整速度和行驶方向,以保证列车的安全运行。
列车通信装置则用于将列车装备与列车控制中心之间的信息传递。
信号设备是ATC系统的另一个重要组成部分。
它是铁路线路上的安装设备,用于向列车发送信号和信息。
信号设备通常包括信号灯、信号标志和轨道电路等。
信号灯和信号标志通过不同的颜色、形状和位置来传达不同的指示信息,指导列车的运行。
轨道电路则通过电气信号来监测轨道上的列车位置和速度,并将这些信息传递给列车控制中心,实现对列车的实时监控和控制。
在ATC系统中,还可以添加其他的辅助设备和功能模块,以提供更多的安全保障。
例如,列车位置检测装置(Train Location Detection System)可以通过雷达或全球定位系统等技术来确定列车的准确位置。
列车通信系统则可以实现列车装备、列车控制中心和其他列车之间的信息交换和共享,以提高整个铁路系统的运行效率和安全性。
列车运行自动控制(ATC)系统分析

24
(3)列车运行控制
1)列车进入系统的自动控制
2)站台控制
3)“跳停”(指列车在该站不停车的功能)
4)下一车号的设定
25
(四)时刻表控制功能 时刻表控制功能仅供调度员使用,以管理和调整在
线时刻表和计划时刻表,计划时刻表是指:准备投入 在线控制的时刻表,而在线时刻表是指:正投入在线
控制的时刻表。调度员选择时刻表管理员所创建的某
19
(二)列车的描述功能
列车描述包括三部分内容:即车次号、司机号和列
车号,它们各有五位数组成。
其中车次号的前三位为运行号,后二位为目的地号,
运行号是运行列车的标识,是系统把列车和时刻表相联
系的基础,也是系统控制和表示列车的基础。
20
目的地号指明列车运行的终点站,它是系统触发车 站信号控制的重要参数,据此可以为列车自动排列进 路。在运行过程中,系统将各次列车的目的地号,传 送给车站信号设备,以控制列车进路,所以车次号是 列车描述中很重要的部分。 司机号由司机在车上人工输入,并通知调度人员, 说明哪一位司机在操纵哪一列车。 列车号的设置,是为了使系统跟踪列车的运行,从 而产生车辆运行里程报告。
ATC系统的组成
控制中心是指挥整条线路列车运行的智囊,由 ATS子系统来完成这个功能,也可以理解为控制 中心只有ATS 子系统;联锁集中站的信号设备, 具体执行控制中心的操纵指令,负责列车的安全 运行,完成与列车的信息交换,所以联锁集中站 具有ATC 系统的三个子系统,也就是由ATS、 ATP、ATO 三个子系统相配合,来完成这些功能。
ATS子系统
列车自动监控(ATS)子系统,是指挥列
车运行的监控、监督设备。它主要完成列 车的调度和跟踪、列车进路的控制和表示、 系统状况、报警信息的显示和记录,统计 汇编、系统仿真和诊断。
地铁信号系统知识介绍

基于固定闭塞阶梯式速度控制方式示意图 固定闭塞ATC系统: 固定闭塞又称分级速度控制方式或阶梯式速度控制模式。其特点是采用固定划分区段的轨道区段、计轴区段,提供分级速度信息,实施台阶式的速度监督,使列车由最高速度逐步降至零。列车超速时由设备自动实施最大常用制动或紧急制动。 采用阶梯式速度控制方式的ATC系统设备构成简单,具有投资成本低,性能可靠等优点。固定闭塞轨道电路传输的信息是模拟信号,抗干扰能力差。此外,轨道电路传输的信息量有限,速度信息划分为若干等级,因此,采用阶梯式速度控制方式的ATC系统控制精度不高,不易实现列车优化和节能控制,也限制了行车效率的提高。
① ZDJ9型转辙机
功能: 转换道岔 锁闭道岔 表示道岔位置 挤岔保护
道岔
转辙机
安装装置
锁闭系统
表示系统
转辙机安装示意图
二.道岔转换系统组成和功能
多点多机
一机多点
② LED信号机 LED信号机是在地铁站场、区间作为进站、出站、进路、防护、预告、调车、复示、遮断、通过及引导等地面灯光信号之用,具有结构紧凑、能耗低、寿命长、无需调焦等特点。 国铁中信号机是给司机提供信号指示的 最主要的设备。而在地铁正线信号系统中, 正常CBTC信号模式下信号机是没有作用的 (亮蓝灯或直接灭灯),司机只依靠车载 人机界面上的信号显示来行车,不用观 看轨旁信号机指示。只有在CBTC故障降级 的情况下,正线信号机才发挥指示行车的 作用。
ATC
列车在线位置+进路条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列车运行控制(ATC)系统的接口与管理
摘要:城市轨道交通信号系统是将区间闭塞、车站联锁、调度集中等独立系统的功能予与融合,重新整合的列车运行控制系统(ATC系统)。
系统结构复杂,各个系统之间、系统与子系统之间以及子系统与子系统之间的接口较多,多数接口之间传输着关系行车安全的数字信息,接口之间安全管理在列车控制系统中占据着重要的地位。
本文主要介绍ATC系统所涉及到的与其他设备系统接口。
城市轨道交通信号系统,并不像国有铁路传统信号系统那样将区间闭塞、车站联锁、调度集中等进行合成,而是将这些独立系统的功能予与融合,重新整合的列车运行控制系统(ATC系统)。
列车运行控制(ATC)系统,包括列车自动监控ATS、列车自动防护ATP、列车自动运行ATO三个子系统,它是一套完整的管理、控制、监控系统。
位于管理级得ATS子系统,较多地采用软件方法实施联网、通讯及指挥列车安全运行;发送和接收各种行车命令的ATP子系统,确保列车的运行安全,完成列车运行进路控制、速度控制和实现列车间隔控制;车载ATP子系统,接收轨旁ATP 设备传递的指令信息,进行列车运行超速防护,相关信息经校验后,送至车载ATO子系统,实现列车运行速度的自动调整控制和列车在车站的程序对位停车控制。
各子系统之间相互渗透,实现地面控制与车上控制相结合、现地控制与中央控制相结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的自动控制系统。
三个子系统既相互独立,又相互联系,以保证列车和乘客的安全,实现列车快速、高密度、短间隔、有序运行的功能。
ATC系统设备分布于控制中心、车站信号设备室、轨旁及车上。
系统结构复杂,各个系统之间、系统与子系统之间以及子系统与子系统之间的接口较多,多数接口之间传输着关系行车安全的数字信息,接口之间安全管理在列车控制系统中占据着重要的地位,因此,在城市轨道交通信号ATC 系统建设和运行中,与其他设备系统的接口及其管理亦显得非常重要,现就ATC系统所涉及到的其他设备系统接口进行简单介绍。
一、与通信系统接口
(一)控制中心ATS至正线设备集中站的主、备传输通道(点对点)。
(二)为设备集中站、控制中心、车辆段提供一条共线数据通道。
(三)通信系统对中央ATS 系统提供标准时钟信号。
(四)向控制中心调度指挥无线通信系统传送实时变化列车识别号、车载无线号、乘务号等信息;向列车的无线装置传送列车占用车辆段转换区段的信息以及出、入段线的入段信号机的列车信号开放等信息。
(五)向车站广播提供列车接近条件,作为列车到达预报的自动广播触发信号。
以上传输通道的接口分界点均在通信设备室配线架外线端。
二、与车辆的接口
(一)列车两端司机室安装ATP 、ATO 车载设备(包括ATP/ATO 机柜、操纵台及控制设备)及通信调制解调设备。
(二)在列车首车前端安装接收、发送天线。
(三)在列车首车中部安装应答器接收天线。
(四)在列车每端的两个拖车轮轴上分别安装两台测速传感器。
(五)车辆提供信号车载设备供电电源。
(六)ATO 与车辆的加速和制动系统。
(七)ATP与车辆的紧急制动系统。
(八)ATP 与车门控制系统。
(九)ATP 与主选择开关。
信号系统与车辆控制系统接口分界点在车辆控制柜外线接线端。
三、与机电设备监控(EMCS)的接口
信号系统提供区间列车超时报警以及列车位置信息,当列车占用隧道轨道电路或停车的时间超过某一限定值,信号系统就向EMCS 系统发送报警信息,只要列车一直占用该轨道电路或停车,报警信息就不断被更新,若列车重新启动,报警信息的更新就停止。
接口在控制中心ATS机柜端子盘。
四、与接地系统的接口
在车站、控制中心、车辆段信号设备室、试车线设备室由综合接地系统
提供接地排,在区间设置区间信号设备的接地母排,接地电阻不大于0 . 5Ω 。
五、与牵引供电系统的接口
对信号系统采用轨道电路方案,根据其特性要求,在确保轨道电路以及其他信号轨旁设备正常工作的前提下,对牵引回流电缆的联接位置以及均流电缆在钢轨上的联接位置出具体的要求,对于要设置单向导通装置的位置,需设置轨道绝缘节。
对于采用计轴的系统方案,其牵引供电的回流、均流电缆的连接位置将由牵引供电系统自己确定。
六、与中低压供电的接口
信号系统提出设备用电点的供电要求,中低压供电专业在车站电源室、控制中心、车辆段信号设备室、试车线设备室提供一级负荷供电配电箱或转换箱,接口分界点在信号设备室配电箱二次侧出线端。
根据设备室及维修管理用房的工艺要求,还应配置相应的组侧及电源插座。
七、与线路专业的接口
(一)在满足折返间隔以及最短折返运行时间的前提下,确定折返线的长度。
(二)充分利用车站配线,准确确定道岔和装设绝缘节的位置。
(三)确定列车在各类曲线上最高运行速度。
八、与杂散电流防护的接口
向信号专业提出杂散电流防护绝缘节的位置以及对轨旁信号设备的接地防护要求。
九、与轨道专业的接口
(一)根据列车运行速度一距离曲线以确定曲线外轨超高。
(二)根据道岔类型和结构确定道岔的牵引方式以及相应的安装装置。
(三)提出机坑以及联接杆件沟槽的预留要求。
十、与建筑专业的接口
要提出全部信号设备用房的要求,包括面积、层高、位置、环境、照明、装修、电缆通道等。
十一、与屏蔽门的接口
(一)正常情况下,站台屏蔽门的“开启”和“关闭”均受信号系统ATP/ATO 设备控制,只有列车停在站台区,并满足站台屏蔽门对停车精度要求的情况下(停车误差不超过±0. 3m ) ,信号系统才允许向列车和站台屏蔽门发送开门命令;车门和屏蔽门均已关闭后,才允许启动列车。
开左或右门应符合站台的位置和运行方向。
(二)信号系统应安全、可靠、不间断地从屏蔽门系统接收屏蔽门的状态信息(开/闭)以及由PSC (终端接口盘)对DCU(门控单元)发出的开门信息,以满足ATP 对屏蔽门状态连续安全监督的要求。
(三)在屏蔽门状态信息不能有效传输到信号的ATP 时,站台有关工作人员将在站台端部的控制盘上给信号ATP 送出“允许发车”的信息。
信号系统应安全、可靠接收此信息。
十二、与防淹门的接口
(一)某一防淹门失去完全开启状态表示,由两端车站均不能再向相应线路“过江隧
道”内设置进路,如已设置进路,则防淹门防护信号机立即关闭。
(二)当防淹门操作员需要关闭防淹门时,如两端车站尚未向相应线路的“过江隧道”内设置进路,防淹门防护信号机实行封锁,禁止向“过江隧道”设置进路;如已设置进路,则防淹门防护信号机立即关闭并实行封锁,如果列车尚未进入其“接近区段”,并且隧道内无车(通过轨道电路检查),进路将立即被解锁,并向防淹门控制设备发回同意关闭防淹门信息;如列车已越过防淹门防护信号机,则信号系统不能发出同意关闭防淹门的信息。
(三)信号联锁操作员不能取消“防淹门关闭请求”,在信号联锁接收到“防淹门关闭请求”以及信号系统向防淹门控制设备发送“允许防淹门关闭”信息期间,“防淹门关闭请求”条件必须被信号联锁计算机连续检查。
(四)对于由于防淹门请求关闭而引起的防淹门防护信号机的“封锁”,必须经过安全操作命令才能解除“封锁”。
十三、与主控制系统的接口
原则上主控制系统与信号系统相对独立,主控制系统仅在控制中心与ATS子系统接口。
信号系统向主控制系统输出列车运营信息、信号系统设备状态等信息,从主控制系统输入包括SCADA 、EMCS 等信息。