人教版八年级数学第一学期期中试卷
2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。
答案:b2. 若a的绝对值是5,那么a可能是_________。
答案:5或53. 若a的三次方是27,那么a的平方是_________。
答案:94. 若a的平方根是b,那么b的平方根是_________。
答案:a5. 若a的绝对值是5,那么a的平方是_________。
答案:25三、解答题1. 若一个数的平方根是4,求这个数。
解:设这个数为x,根据题意,有√x = 4。
解这个方程,得到x= 4^2 = 16。
所以这个数是16。
2. 若一个数的三次方是8,求这个数。
解:设这个数为y,根据题意,有y^3 = 8。
解这个方程,得到y = 2。
所以这个数是2。
3. 若一个数的绝对值是7,求这个数的平方。
解:设这个数为z,根据题意,有|z| = 7。
由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。
无论z是正数还是负数,其平方都是49。
所以这个数的平方是49。
4. 若一个数的平方根是5,求这个数的立方。
解:设这个数为w,根据题意,有√w = 5。
解这个方程,得到w= 5^2 = 25。
求w的立方,得到w^3 = 25^3 = 15625。
所以这个数的立方是15625。
5. 若一个数的绝对值是3,求这个数的立方根。
解:设这个数为v,根据题意,有|v| = 3。
由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。
人教版八年级上册数学期中考试试题带答案

人教版八年级上册数学期中考试试卷一、单选题1.在下列以线段a 、b 、c 的长为边,能构成三角形的是()A .a =3,b =4,c =8B .a =5,b =6,c =11C .a =6,b =8,c =9D .a =7.b =17,c =252.如果三角形的一个内角等于另两个内角之差,则这个三角形为()A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形3.如图,点D 是△ABC 边BC 延长线上的点,∠ACD =105°,∠A =70°,则∠B 等于A .35°B .40°C .45°D .50°4.如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,则S △ABC 的面积为()A .52B .3C .72D .45.如图,ABC A B C ''△≌△,30BCB '∠=︒,则ACA '∠的度数为()A .30°B .45︒C .60︒D .110︒6.从十二边形的一个顶点出发,可引出对角线()条A .9条B .10条C .11条D .12条7.一个多边形的内角和等于1080°,则这个多边形的每个外角都等于()A.30°B.45°C.60°D.90°8.如图,已知∠ABC,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP.他这样做的依据是()A.在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.测量垂直平分线上的点到这条线段的距离相等9.如图所示,在△ABC中P为BC上一点,PR⊥BC,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP其中正确的是()A.①②B.②③C.①③D.①②③10.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°二、填空题11.已知三角形的两边长分别为1和4,第三边长为整数,则第三边长为______.12.一个六边形的内角和度数为_______.13.如图所示,△ABC≌△AED,∠E=55°,∠EAC=55°,∠C=45°,则∠DAC=______.14.如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD :CD =2:3,AD 、BE 交于点O ,若S △AOE ﹣S △BOD =1,则△ABC 的面积为_____.15.已知:如图,Rt ABC 中,AC BC =,D 为BC 上一点,CE AD ⊥于E ,若2CE =,则BEC S =△________.16.在Rt ABC △中,90A ∠=︒,3AB =,4AC =,ABC ∠,ACB ∠的平分线交于P 点,PE BC ⊥于E 点,则PE 的长是________.17.如图,在△ABC 中,∠B =30°,∠BAC =90°,AD ⊥BC ,CD =2,则BD =_.三、解答题18.已知一个正多边形的每个外角均为45°,则这个多边形的内角和是多少度.19.如图:111A B C △的面积为a ,分别延长111A B C △的三条边11B C 、11C A 、11A B 到点2B 、2C 、2A ,使得1211C B B C =,1211A C A C =,1211B A A B =,得到222A B C △:再分别延长222A B C △的三条边22B C 、22C A 、22A B 到点3B 、3C 、3A ,使得2322C B B C =,2322A C A C =,2322B A A B =,得到333A B C △:…….按照此规律作图得到n n n A B C ,求n n n A B C 的面积.20.如图,在ABC 中,AD 是高,AE 是角平分线,50BAC ∠=︒,60B ∠=︒.求DAC ∠和BEA ∠的度数.21.如图,已知AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,点E ,D 分别为垂足,CF CB =.求证:BE FD =.22.如图,△ABC为等边三角形,AE=CD,AD与BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求∠BPD的度数;(3)求AD的长.23.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,DE⊥AB 于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=12,求AC的长.24.如图,在△ABC中,AB=AC,点D,E.,F分别在AB、BC、AC边上,且BE=CF,BD=CE(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DFE的度数.25.如图,在△ABC 中,AC=BC ,点D 在边AB 上,AB=4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC=∠AEC=180°-∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为.26.(1)模型探究:如图1所示的“镖形”图中,请探究ADB ∠与A ∠、B Ð、C ∠的数量关系并给出证明;(2)模型应用:如图2,DE 平分ADB ∠,CE 平分ACB ∠,24A ∠=︒,66B ∠=︒,请直接写出E ∠的度数.参考答案1.C2.C3.A4.C5.A6.A7.B8.A9.A10.C11.4【分析】三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,根据三边关系可得第三边的范围,从而可得答案.【详解】解:设三角形的第三边为,x则41-<x <41+,即3<x <5,第三边长为整数,4,x ∴=故答案为:4.【点睛】本题考查的是三角形的三边关系,熟悉三角形的三边关系得到第三边的取值范围是解题的关键.12.720︒【分析】根据多边形的内角和公式()2180n -⋅o,其中n 为多边形的边数,进行计算即可.【详解】解:一个六边形的内角和等于()62180720-⨯=;故答案为:720°.【点睛】本题考查了多边形的内角和公式,熟悉多边形内角和公式是解题的关键.13.25°.【解析】【分析】根据全等三角形的性质得到∠D =∠C ,根据三角形内角和定理求出∠EAD ,结合图形计算,得到答案.【详解】∵△ABC ≌△AED ,∠C =45°,∴∠D =∠C =45°,∵∠E =55°,∴∠EAD =180°﹣∠E ﹣∠D =80°,∴∠DAC =∠EAD ﹣∠EAC =80°﹣55°=25°,故答案为:25°.14.10【分析】根据E 为AC 的中点可知,S △ABE =12S △ABC ,再由BD :CD =2:3可知,S △ABD =25S △ABC ,进而可得出结论.【详解】解:∵点E 为AC 的中点,∴S △ABE =12S △ABC .∵BD :CD =2:3,∴S △ABD =25S △ABC ,∵S △AOE ﹣S △BOD =1,S △AOE ﹣S △BOD=ABE ABD S S - ,∴12S △ABC ﹣25S △ABC =1,解得S △ABC =10.故答案为:10.15.2【分析】延长CE ,过B 点作BM CE ⊥于点M ,先证明()BMC CEA AAS ≌,即可得出2BM CE ==,运用三角形面积计算公式计算即可.【详解】解:延长CE ,过B 点作BM CE ⊥于点M ,,∵90MCB ACE ACE CAD ∠+∠=∠+∠=︒,∴MCB CAD ∠=∠,∵90BMC AEC ∠=∠=︒,AC BC =,∴()BMC CEA AAS ≌,∴2BMCE ==,∴1122222BECS CE BM=⨯=⨯⨯=,故答案为:2.【点睛】本题主要考查全等三角形的判定与性质,寻找BEC△EC边上的高作辅助线证明()BMC CEA AAS≌全等是解题的关键.16.1【解析】【分析】连接AP,作PF⊥AB于F,PG⊥AC于G,根据角平分线的性质得到PE=PF=PG,根据三角形的面积公式计算即可.【详解】解:连接AP,作PF⊥AB于F,PG⊥AC于G,∵∠A=90°,AB=3,AC=4,∴BC=5,∵BP、CP是∠ABC和∠ACB的平分线,∴PE=PF=PG,∴12×BC×PE+12×AB×PF+12×AC×PG=12×AB×AC,解得,PE=1.故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.6【解析】【分析】先在Rt ACD △中,利用直角三角形的性质、勾股定理求出AD 的长,再在Rt ABD △中,利用直角三角形的性质、勾股定理即可得.【详解】解: 在ABC 中,30,90B BAC ∠=︒∠=︒,9006B C ︒-∠∴=∠=︒,AD BC ⊥ ,9030CAD C ∴∠=︒-∠=︒,在Rt ACD △中,2CD =,24,AC CD AD ∴===,则在Rt ABD △中,26ABAD BD ====,故答案为:6.18.1080︒【分析】由已知,根据正多边形的外角和为360度可以得到正多边形的边数,再由正多边形内角和的计算方法可以得解.【详解】解:由360458︒÷︒=可以得知正多边形的边数为8,∴这个正多边形的内角和为()821801080-⨯︒=︒.19.17n a-【分析】连接A 1B 2,B 1C 2,C 1A 2,C 2A 3,B 2C 3,A 2B 3,根据中线的性质求出△A 1C 1B 2的面积,再求出B 2C 2C 1的面积,同理可求出△A 1A 2C 2、△B 1B 2A 2,故可得到222A B C △的面积,进而发现规律得到n n n A B C 的面积.【详解】如图,连接A 1B 2,C 1A 2,B 1C 2,C 2A 3,B 2C 3,A 2B 3,∵1211C B B C =,∴112A C B S =111A B C △S =a∴2212B C C S a= ∵1211A C A C =,1211B A A B =同理1222A A C S a = ,1222B B A S a = ∴2222227A B C S a a a a a =+++=△=7111A B C △S ∵2322C B B C =,∴223A C B S =222A B C S △=7a ∴33214B C C S a= ∵2322A C A C =,2322B A A B =同理23314A AC S a = ,23314B B A S a= 同理可得333222749A B C A B C S S a ==△△=72a ∴1111177n n n n n A B C A B C S S a --== .【点睛】此题主要考查三角形面积的规律探索,利用了底倍长,高相等,面积加倍,解题的关键是熟知中线的性质.20.20,95DAC BEA ∠=︒∠=︒【解析】【分析】因为AD 是高,所以90ADC ∠=︒,又因为50,60BAC B ∠=︒∠=︒,根据三角形内角和定理求出70C ∠=︒,即可求出DAC ∠度数;因为50BAC ∠=︒,且AE 是角平分线,所以25BAE ∠=︒,再利用三角形内角和定理即可求解.【详解】解:AD BC⊥ 90ADC ∴∠=︒50,60BAC B ∠=︒∠=︒ ,180506070C ∴∠=︒-︒-︒=︒;在Rt ADC 中,180180907020DAC ADC C ∴∠=︒-∠-∠=︒-︒-︒=︒,50BAC ∠=︒ 且AE 是角平分线,25BAE ∴∠=︒,180180602595BEA B BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,综上所述:20,95DAC BEA ∠=︒∠=︒.【点睛】本题考查了角平分线的性质、与高有关的角度计算、三角形内角和定理,解题的关键是找准角之间的等量关系,利用三角形内角和定理进行求解.21.见解析【解析】【分析】根据角平分线性质可得CD CE =,90CDF CEB ∠=∠=︒,然后证Rt CDF Rt CEB △≌△(HL )即可.【详解】证明:∵AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,CD CE ∴=,90CDF CEB ∠=∠=︒,在Rt △DFC 和Rt △EBC 中,CD CE CF CB =⎧⎨=⎩,Rt CDF Rt CEB∴△≌△(HL),DF BE∴=.【点睛】本题考查角平分线的性质,三角形全等判定与性质,掌握角平分线的性质,三角形全等判定与性质,是解题关键.22.(1)详见解析;(2)60°;(3)7.【解析】【分析】(1)根据SAS证明△ABE与△CAD全等即可;(2)根据全等三角形的性质得出∠ABE=∠CAD,进而解答即可;(3)根据含30°的直角三角形的性质解答即可.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=∠C=60°,又∵AE=CD,在△ABE与△CAD中,AB AC=⎧⎪⎨⎪⎩∠BAC=∠CAE=CD,∴△ABE≌△CAD(SAS),∴BE=AD;(2)解:由(1)得∠ABE=∠CAD AD=BE,∴∠BPQ=∠BAD+∠ABE=∠BAD+∠CAD=60°;(3)解:∵BQ⊥AD,∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,又∵AD=BE,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查全等三角形的性质及含30度角的直角三角形,解题突破口是根据全等三角形的性质得出∠ABE =∠CAD .23.(1)证明见解析;(2)6.【解析】【分析】(1)先根据垂直的定义、直角三角形的性质可得A BED ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据全等三角形的性质可得,12AC BE BC DB ===,再根据线段中点的定义可得162BE BC ==,由此即可得出答案.【详解】证明:(1)90ACB DBC ∠=∠=︒ ,DE AB ⊥,9090,BED ABC A ABC ∴∠+∠=︒∠+∠=︒,A BED ∴∠=∠,在ACB △和EBD △中,90ACB EBD A BED AB ED ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACB EBD AAS ≅∴ ;(2)由(1)已证:ACB EBD ≅ ,,12AC BE BC DB ∴===,点E 是BC 的中点,24.(1)证明见解析;(2)证明见解析;(3)55︒.【分析】(1)先根据等腰三角形的性质可得B C ∠=∠,再根据三角形全等的判定定理证出DBE ECF ≅△△,然后根据全等三角形的性质可得DE EF =,最后根据等腰三角形的定义即可得证;(2)先根据全等三角形的性质可得BDE CEF ∠=∠,再根据三角形的外角性质即可得证;(3)先根据三角形的内角和定理可得70B ∠=︒,从而可得70∠︒=DEF ,再根据等腰三角形的性质即可得.【详解】证明:(1)AB AC = ,B C ∴∠=∠,在DBE 和ECF △中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE ECF SAS ∴≅ ,DE EF ∴=,DEF ∴ 是等腰三角形;(2)由(1)已证:DBE ECF ≅△△,BDE CEF ∴∠=∠,DEF CEF DEC B BDE ∠+∠=∠=∠+∠ ,B DEF ∴∠=∠;(3) 在ABC 中,40,A B C ∠=︒∠=∠,()1180702B C A ∴∠=∠=︒-∠=︒,由(2)已证:B DEF ∠=∠,70DEF ∴∠=︒,由(1)已证:DEF 是等腰三角形,()1180552DFE EDF DEF ∴∠=∠=︒-∠=︒.25.(1)①见解析;②全等,理由见解析;(2)3;(3)48【分析】(1)①连接BC ,由已知及∠AEC=180°-∠AED ,可得到∠ACB=∠AED .再证明∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②利用“ASA”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC=S △ECA ,所以S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,根据AB=4BD ,可得到S △DBC=14S △ABC=12,从而可得△ABC 的面积.【详解】解:(1)①∠FBC=∠ECA ,理由如下:∵∠BFC=∠AEC=180°-∠ACB ,且∠AEC=180°-∠AED ,∴∠ACB=∠AED .由外角定理可得∠AED=∠ACD+∠CAE ,又∠ACB=∠ACD+∠BCF ,∴∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,FBC ECA BC CA BCF CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBC ≌△ECA (ASA );(2)由(1)中②可知,FC=AE=11,BF=CE ,又EF=8,∴CE=FC-EF=11-8=3,∴BF=3,故答案为:3;(3)由(1)中结论可知S △FBC=S △ECA ,∴S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,又AB=4BD ,∴S △DBC=14S △ABC=12,∴S △ABC=48.故答案为:48.26.(1)ADB ∠=A ∠+B Ð+C ∠,理由见详解;(2)21°【分析】(1)连接CD 并延长到点E ,利用三角形的外角的性质求解即可;(2)由(1)可知:∠ADB-∠C=∠A+∠B=90°,从而得∠EDO-∠BCO=12×90°=45°,结合∠EDO+∠E=∠BCO+∠B ,即可求解.【详解】解:(1)ADB ∠=A ∠+B Ð+C ∠,理由如下:连接CD 并延长到点E ,∵∠ADE =∠ACD +∠A ,∠BDE =∠BCD +∠B ,∴∠ADE +∠BDE =∠ACD +∠A +∠BCD +∠B ,∴ADB ∠=A ∠+B Ð+ACB ∠.(2)由第(1)题可得:ADB ∠=A ∠+B Ð+ACB ∠,∴∠ADB-∠ACB=∠A+∠B=66°+24°=90°,∵DE 平分ADB ∠,CE 平分ACB ∠,∴∠EDO-∠BCO=12(∠ADB-∠C )=12×90°=45°,∵∠DOE=∠BOC ,∴∠EDO+∠E=∠BCO+∠B ,∴∠B-∠E=∠EDO-∠BCO=45°,∴∠E=∠B-45°=66°-45°=21°.。
人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17B.22C.17或22D.132.已知一个正多边形的每个外角都等于72°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形3.如图,在ABC中,AB=AC,点D,E在BC上,连接AD,AE,如果只添加一个条件△≌△,则添加的条件不能为()使ABE ACD∠=∠A.BD=CE B.AD=AE C.BE=CD D.B C4.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°∠=︒,CD⊥AB于点D,5.如右图,在△ABC中,ACB90∠=︒,AD=2,则BD=()A60A.2B.4C.6D.86.小军在网格纸上将图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形,如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有A.3个B.4个C.5个D.无数个7.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①AG+EC=GE ;②GDE 45∠=︒;③BGE△的周长是一个定值;④连结FC ,BFC △的面积等于12BF FC .在以上4个结论中,正确的是()A .1B .2C .3D .48.如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为7,AB=4,DE=2,则AC 的长是()A .4B .3C .6D .59.如图所示,若DE ⊥AB ,DF ⊥AC ,则对于∠1和∠2的大小关系下列说法正确的是()A .一定相等B .一定不相等C .当BD=CD 时相等D .当DE=DF 时相等10.如图,△ABC 中,D ,E 分别是BC 上两点,且BD=DE=EC ,则图中面积相等的三角形有()A .4对B .5对C .6对D .7对二、填空题11.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则∠BDC =_____.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.13.如图,在△ABC中,AC垂直平分线DE分别与BC、AC交于D、E,△ABD的周长是13,AE=5,△ABC的周长是_________.14.如图,在△ABC中,∠BAC的平分线AD与边BC的垂直平分线ED相交于点D,过点D作DF⊥AC交AC延长线于点F,若AB=8,AC=4,则CF的长为_________.15.已知AB=AC,AD为∠BAC的角平分线,D、E、F…为∠BAC的角平分线上的若干点.如图1,连接BD、CD,图中有1对全等三角形;如图2,连接BD、CD、BE、CE,图中有3对全等三角形;如图3,连接BD、CD、BE、CE、BF、CF,图中有6对全等三角形;依此规律,第n个图形中有_____对全等三角形.16.如图,∠1=∠2,要利用“SAS”说明△ABD≌△ACD,需添加的条件是_________.三、解答题17.一个多边形的内角和比它的外角和的3倍少180 ,这个多边形的边数是多少?18.如图,在平面直角坐标系中,点O 为坐标原点,已知ABC ∆三个定点坐标分别为()4,1A -,()3,3B -,()1,2C -.(1)画出ABC ∆关于x 轴对称的111A B C ∆,点,,A B C 的对称点分别是点111A B C 、、,则111A B C 、、的坐标:1A (_________,_________),1B (_________,_________),1C (_________,_________);(2)画出点C 关于y 轴的对称点2C ,连接12C C ,2CC ,1C C ,则12CC C ∆的面积是___________.19.如图,点A ,B ,C ,D 在一条直线上,AB=DC ,AF//DE ,AF=DE ,求证:EB=FC .20.如图,在四边形ABCD 中,AD//BC ,AE 平分DAB ∠,BE 平分CBA ∠.(1)AE ⊥BE .(2)若AE=4,BE=6,求四边形ABCD 的面积.21.如图,△ABC和△CDE都是等边三角形,点E在BC上,AE的延长线交BD于点F.(1)求证:△ACE≌△BCD;的度数;(2)探究CFD(3)探究EF、DF、CF之间的关系.22.如图(1),AB=7cm,AC⊥AB,BD⊥AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t (s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,△ACP与△BPQ全等,此时PC⊥PQ吗?请说明理由.(2)将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s.当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=__________.(直接写出结果)23.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是_____;(2)点D 为BC 延长线上一点,过点D 作DE ∥AC ,交BA 的延长线于点E ,若∠E =55°,∠ACD =125°,求∠B 的度数.24.把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(多边形的内角和公式:(n-2)·180º)(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?25.如图,已知在ABC 中,B C ∠>∠,AD 是BC 边上的高,AE 是BAC ∠的平分线,求证:1()2DAE B C ∠=∠-∠.参考答案1.B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为4时,4+4<9,不能构成三角形;当腰为9时,4+9>9,所以能构成三角形,周长是:9+9+4=22.故选B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.2.A【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】这个正多边形的边数:360°÷72°=5.故选A .【点睛】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.3.D【分析】由AB AC =,可得B C ∠=∠,补充BD CE =,可得BE CD =,利用SAS 可判断A ,补充,AD AE =可得:,AED ADE ∠=∠利用AAS 可判断B ,补充BE CD =,利用SAS 可判断C ,补充B C ∠=∠,条件不足,从而可判断D .【详解】解:在ABE △与ACD △中,AB AC = ,B C ∴∠=∠,所以补充:BD CE =,则BE CD =,所以利用SAS 可得:ABE ACD △≌△,故A 正确;补充:,AD AE =,AED ADE ∴∠=∠所以利用AAS 可得:ABE ACD △≌△,故B 正确;补充:BE CD =,所以利用SAS 可得:ABE ACD △≌△,故C 正确;补充:B C ∠=∠,ABE △与ACD △不一定全等,故D 错误,故选.D 【点睛】本题考查的是三角形全等的判定,等腰三角形的性质,掌握等腰三角形的性质与三角形全等的判定方法并应用是解题的关键.4.A【分析】首先根据AD ∥BC ,求出∠FED 的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.【详解】解:∵AD ∥BC ,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°-2∠FED=50°.故∠AED′等于50°.故选A .【点睛】本题主要考查平行线的性质及折叠的性质,掌握两直线平行内错角相等是解题的关键.5.C【分析】根据已知条件,先求出AC ,再根据30°角所对直角边是斜边的一半计算即可;【详解】∵ACB 90∠=︒,CD ⊥AB ,A 60∠=︒,∴30ACD ∠=︒,∵AD=2,∴4AC =,又30B ∠=︒,∴248AB =⨯=,∴826BD AB AD =-=-=;故答案选C .【点睛】本题主要考查了直角三角形中30°角所对的直角边是斜边的一半,准确计算是解题的关键.6.C【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.7.D【分析】根据正方形的性质和折叠的性质可得AD=DF ,∠A=∠GFD=90°,于是根据“HL”判定Rt ADG Rt FDG ≌,再由GE GF EF AG CE =+=+,从而判断①,由对折可得:,CDE FDE ∠=∠由Rt ADG Rt FDG ≌,可得:,ADG FDG ∠=∠从而可判断②,设,,AG a CE b ==则12,12,,,BG a BE b GF a EF b =-=-==利用三角形的周长公式可判断③,如图,连接CF ,证明BCF △是直角三角形,从而可判断④,从而可得本题的结论.【详解】解:由正方形ABCD 与折叠可知,DF=DC=DA ,∠DFE=∠C=90°,,EC EF =∴∠DFG=∠A=90°,,DG DG = ∴()Rt ADG Rt FDG HL ≌,,AG GF ∴=,AG EC GF FE GE ∴+=+=故①正确;由对折可得:,CDE FDE ∠=∠Rt ADG Rt FDG ≌,,ADG FDG ∴∠=∠1452ADG CDE GDF EDF ADC ∴∠+∠=∠+∠=∠=︒,45GDE ∴∠=︒,故②正确;设,,AG a CE b ==则12,12,,,BG a BE b GF a EF b =-=-==121224,BGE C BG BE GE a b a b ∴=++=-+-++= 所以:BGE △的周长是一个定值,故③正确,如图,连接CF ,由对折可得:,EF EC =,EFC ECF ∴∠=∠,BE CE = BE EF ∴=,,EBF EFB ∴∠=∠1180902BFC EFB EFC ∴∠=∠+∠=⨯︒=︒,1.2BFC S BF FC ∴= 故④正确.综上:①②③④都正确.故选.D 【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,轴对称的性质,直角三角形的判定,掌握以上知识是解题的关键.8.B【解析】过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DE=DF=2,∴S △ABC =×4×2+AC×2=7,解得AC=3.故选B.9.D已知有点到∠BAC的两边的距离,根据角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上,要满足∠1=∠2,须有DE=DF,于是答案可得.【详解】根据到角的两边距离相等的点在角的平分线上,故选D.【点睛】此题主要考查角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上;做题时要明确题目中有什么条件,要达到什么目的.10.A【分析】根据三角形的面积公式,知:只要同底等高,则两个三角形的面积相等,据此可得面积相等的三角形.【详解】由已知条件,得△ABD,△ADE,△ACE,3个三角形的面积都相等,组成了3对,还有△ABE和△ACD的面积相等,共4对.故选A.【点睛】本题考查了三角形的相关知识,解题的关键是熟练的掌握三角形面积公式与运用. 11.75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点睛】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键. 12.120根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵ABC A B C ''' ≌,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【点睛】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.13.23【分析】根据垂直平分线的性质得到AD=CD ,AE=CE ,再由ABD △的周长及AE 的长即可计算出结果.【详解】∵DE 垂直平分AC ,∴AD=DC ,AE=CE ,∵ABD △的周长是13,即AB+BD+AD=13,∴AB+BD+DC=13,即AB+BC=13,又∵AE=5,∴AC=2AE=10,∴AB+BC+AC=13+10=23,即ABC 的周长是23.故答案为:23.【点睛】本题考查了垂直平分线的性质,熟练掌握性质是解题的关键.14.2【分析】连接CD ,DB ,过点D 作DM ⊥AB 于点M ,证明△AFD ≌△AMD ,得到AF=AM ,FD=DM ,证明Rt △CDF ≌Rt △BDM ,得到BM=CF ,结合图形计算,得到答案.【详解】如图,连接CD ,DB ,过点D 作DM ⊥AB 于点M,∵AD 平分∠FAB ,∴∠FAD=∠DAM ,在△AFD 和△AMD 中,FAD MAD AFD AMD AD AD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AFD ≌△AMD (AAS )∴AF=AM ,FD=DM ,∵DE 垂直平分BC∴CD=BD ,在Rt △CDF 和Rt △BDM 中,DC DB DF DM ⎧⎨⎩==,∴Rt △CDF ≌Rt △BDM (HL )∴BM=CF ,∵AB=AM+BM=AF+MB=AC+CF+MB=AC+2CF ,∴8=4+2CF ,解得,CF=2,故答案为:2.【点睛】本题考查的是全等三角形的判定和性质、线段垂直平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.15.(1)2n n +【分析】根据图形得出当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;根据以上结果得出当有n 个点时,图中有(1)2n n +个全等三角形即可.【详解】解:当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n 个点时,图中有(1)2n n +个全等三角形.故答案为(1)2n n +.【点睛】本题考查全等三角形的判定和数字规律,解题的关键是由题意得到数字规律.16.BD=CD【详解】BD=CD ,理由是:12∠=∠ ,ADC ADB∴∠=∠∵在△ABD 和△ACD 中DA DA ADB ADC DB DC =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACD (SAS ),故答案为BD=CD .17.这个多边形边数为7【分析】设这个多边形的边数为n ,由多边形的内角和公式(n-2)•180°与外角和定理得出方程,解方程即可.【详解】设这个多边形的边数为n ,根据题意,得(n-2)×180°=3×360°-180°,解得n=7.故答案为:7.【点睛】考查了多边形的内角和与外角和定理,解题关键熟记多边形内角和定理与任意多边形的外角和都是360°,与边数无关.18.(1)画图见解析;-4,-1;-3,-3;-1,-2;(2)画图见解析,4.【分析】(1)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接可得;(2)作出点C 关于y 轴的对称点,然后连接得到三角形,根据面积公式计算可得.【详解】(1)如图所示,111A B C ∆即为所求,()()()1114,1,3,3,1,2A B C ------;(2)如图所示,12CC C ∆的面积是12442⨯⨯=【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.19.证明过程见解析【分析】由平行线的性质证得∠A=∠D ,根据“SAS”证明△ACF ≌△DBE ,即可得出结论.【详解】证明:∵AB=DC ,∴AB+BC=DC+BC ,∴AC=DB ,∵AF//DE ,∴∠A=∠D ,在△ACF 和△DBE 中,AC DB A D AF DE =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△DBE (SAS )∴EB=FC .【点睛】本题考查了全等三角形的判定与性质及平行线的性质.解题的关键是证明三角形全等.20.(1)详见解析;(2)24【分析】(1)根据AD ∥BC ,求出∠DAB+∠ABC=180°,利用角平分线的性质得到∠BAE+∠ABE=90°,即可求出∠AEB=180°-(∠BAE+∠ABE)=90°,由此得到结论;(2)延长AE 、BC 交于点F ,根据平行线的性质推出∠BAE=∠F ,得到AB=FB ,根据等腰三角形的性质得到EF=AE=4,再证明△ADE ≌△FCE ,即可根据四边形ABCD 的面积=S △ABF 求出答案.【详解】(1)∵AD ∥BC ,∴∠DAB+∠ABC=180°,∵AE 平分DAB ∠,BE 平分CBA ∠,∴DAB ∠=2∠BAE ,CBA ∠=2∠ABE ,∴2∠BAE+2∠ABE=180°,∴∠BAE+∠ABE=90°,∴∠AEB=180°-(∠BAE+∠ABE)=90°,∴AE ⊥BE ;(2)延长AE、BC交于点F,∵AD∥BC,∴∠DAE=∠F,∵∠BAE=∠DAE,∴∠BAE=∠F,∴AB=FB,∵BE平分CBA∠,∴EF=AE=4,∴AF=8,∵∠AED=∠FEC,∴△ADE≌△FCE,∴四边形ABCD的面积=S△ABF =118624 22AF BE⋅=⨯⨯=.【点睛】此题考查平行线的性质定理,垂直的定义,角平分线的性质定理,等腰三角形的三线合一的性质,三角形全等的判定及性质,熟练掌握各知识点是解题的关键.21.(1)见解析;(2)60°;(3)CF=EF+DF,理由见解析【分析】(1)根据等边三角形的性质和“SAS”即可证明△ACE≌△BCD;(2)延长AF到Q,使FQ=DF,连接DQ,先证明△DFQ是等边三角形,再根据“SAS”证明△CDF≌△EDQ,即可求出∠CFD的度数;(3)由△CDF≌△EDQ,可得CF=EQ,进而可得到EF、DF、CF之间的关系.【详解】解:(1)∵△ABC和△CDE都为等边三角形,∴∠ACE=∠BCD=60°,AC=BC,CE=CD,在△ACE和△BCD中AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ;(2)延长AF 到Q ,使FQ=DF ,连接DQ ,∵△ACE ≌△BCD ,∴∠CAE=∠CBD ,又∵∠AEC=∠BEF ,∴∠AFB=∠ACB=60°.∴∠DFQ=60°,∴△DFQ 是等边三角形,∴∠FDQ=∠FQD=60°,DF=DQ ,∴∠CDF=∠EDQ ,在△CDF 和△EDQ 中CD DE CDF EDQ DF DQ =⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△EDQ ,∴∠CFD=∠DQF=60°;(3)∵△CDF ≌△EDQ ,∴CF=EQ ,∵EQ=DF+FQ=EF+DF ,∴CF=EF+DF .【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22.(1)PC ⊥PQ ,理由见解析;(2)t=1,x=2或t=74,x=207;(3)60°【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可;(3)根据题意得P 、Q 两点的运动速度为2,得到BP=AC ,根据全等三角形的性质得到∠C=∠BPQ ,于是得到结论.【详解】解:(1)当t=1时,AP=BQ=2,BP=AC=5又∵AC ⊥AB ,BD ⊥AB,∴∠A=∠B=90°在△ACP 和△BPQ 中AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩∴△ACP ≌△BPQ (SAS ),∴ACP BPQ ∠=∠,∴90APC BPQ APC ACP ∠+∠=∠+∠=∴∠CPQ=90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ,7-2t=5,2t=xt ,解得t=1,x=2,∴存在t=1,x=2,使得△ACP 与△BPQ 全等,②若△ACP ≌△BQP,则AC=BQ ,AP=BP ,5=xt ,2t=72解得t=74,x=207,∴存在t=74,x=207,使得△ACP与△BPQ全等,综上所述,存在t=1,x=2或t=74,x=207使得△ACP与△BPQ全等(3)∵∠A=∠B=60°∵P、Q两点的运动速度相同,∴P、Q两点的运动速度为2,∴t=1,∴AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中AP BQ A B AC BP=⎧⎪∠=∠⎨⎪=⎩∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=120°,∴∠APC+∠BPQ=120°,∴∠CPQ=60°.故答案为:60°.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,余角的性质,正确的识别图形是解题的关键.23.(1)1<BC<9;(2)70°【分析】(1)根据三角形三边关系即可得;(2)由∠ACD=125°,求得∠ACB=55°,再由DE∥AC,求得∠BDE=55°,再根据三角形的内角和即可求得.【详解】(1)由已知得:5-4<BC<5+4,即1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵DE∥AC,∴∠BDE=∠ACB=55°,∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.24.(1)12边形(2)分割成了6个小多边形【详解】试题分析:设原多边形的边数是n,分割成边数为a1,a2,…,a m的m个多边形,则m个多边形的总边数为a1+a2+…+a m;由题意,可得方程a1+a2+…+a m=n+13,180(a1-2)+180(a2-2)+…+180(a m-2)=1.3×180(n-2),再整理可得3n+20m=156,再讨论出二元一次方程的整数解即可.试题解析:设原多边形的边数是n,分割成边数为a1,a2,…,a m的m个多边形,则m个多边形的总边数为a1+a2+…+a m,由题意有a1+a2+…+a m=n+13,180(a1-2)+180(a2-2)+…+180(a m-2)=1.3×180(n-2),则3n+20m=156,即1563nm20-=,要使m为整数,则n的个位数一定是2,所以n可能是12,22,32,42,52,代入可解得n=12时,m=6;n=32时,m=3(不符合题意舍去).综上:m=6,n=12.点睛:此题主要考查了多边形,关键是掌握多边形内角和公式180°(n-2).25.证明见解析.【详解】试题分析:根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°-∠B,再根据AE平分∠BAC,求得∠BAE=12∠BAC=12(180°-∠B-∠C)=90°-12∠B-12∠C,最后根据∠DAE=∠BAE-∠BAD即可求解.试题解析:∵AD是BC边上的高,∴∠BAD=90°-∠B.∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°-∠B-∠C)=90°-12∠B-12∠C.∵∠DAE=∠BAE-∠BAD,1 2∠B-12∠C)-(90°-∠B)=12∠B-12∠C=12(∠B-∠C).∴∠DAE=(90°-。
人教版2024-2025学年八年级数学上册期中试卷(原卷版)

2024-2025八年级上册期中模拟试卷一、填空题(本题满分30分,每小题3分)1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D. 2. 已知长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形.若7a =,9b =,则c 的取值范围是( )A. 2>cB. 16c <C. 216c ≤≤D. 216c << 3. 如图,ACE △≌DBF ,若11cm AD =,5cm =BC ,则AB 长为( )A 6cm B. 7cm C. 4cm D. 3cm4. 下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6 cm AB =, 2.3 cm CD =,则四边形ABCD 的周长为( )A. 3.9cmB. 7.8cmC. 4cmD. 4.6cm 6. 如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是( ).A 2AB BF = B. 12ACE ACB ∠=∠ C. AE BE = D. CD BE ⊥7. 如图90B C ∠=∠=°,AD AE =,添加下列条件后不能..使ABD ECA △≌△的是( )A. 2AD BD =B. BD AC =C. =90DAE ∠°D. AB EC = 8. 一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是( )A. 12B. 15C. 18D. 21 9. 如图,在ABC 中,AB AC =,AB 的垂直平分线交AC 于点P ,若10cm AB =,6cm BC =,则PBC △的周长等于( )A. 16cmB. 12cmC. 8cmD. 20cm 10. 如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A. 17B. 23C. 25D. 28 11. 四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是()1,1−−,()1,1-,()2,1−,()3.2,1−,平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( ).A. 将B 向左平移4.2个单位B. 将C 向左平移4个单位C. 将D 向左平移5.2个单位D. 将C 向左平移4.2个单位12. 如图,在ABC ∆中,90A ∠=°,4AB =,3AC =,点O 为AB 的中点,点M 为ABC 内一动点且2OM =,点N 为OM 的中点,当BN CM +最小时,则ACM ∠的度数为( )A 15° B. 30° C. 45° D. 60°二.填空题(本题满分24分,每小题3分)13. 正五边形每个内角的度数为______.14. 若等腰三角形一个内角为36°,则这个等腰三角形顶角的度数为_____________. 15. 点P (1,-2)关于y 轴的对称点的坐标是_________.16. 过12边形的一个顶点可以画对角线的条数是____.17. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____.18. 如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN ,分别交边AB BC ,于点D 和E ,连接CD .若90BCA ∠=°,8AB =,则CD 的长为_______.三. 解答题(本大题满分62分).的19. 如图,B D BC DC ∠=∠=,.求证:AB AD =.20. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.21. 如图,ABC 中,16cm AC =,DE 为AB 的垂直平分线,交AC 于点E ,BCE 的周长为26cm ,求BC 的长.22. 如图所示,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=°,求ACE ∠的度数.23. 在 ABC 中,CD ⊥AB 于D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°.求∠BCD 和∠ECD 的度数.24. ABC 在平面直角坐标系中位置如图所示.(1)将ABC 先向下平移4个单位长度,再向右平移3个单位长度,画出平移后的111A B C △,并写出顶点1A ,1B ,1C 的坐标;(2)计算111A B C △的面积.25. 如图(1) ABC 和 DEC 都是等腰直角三角形,其中∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在 ABC 内部,直线AD 与BE 交于点F ,线段AF 、BF 、CF 之间存在怎么样的数量关系?(1)先将问题特殊化如图2,当点D 、F 重合时,直接写出线段AF 、BF 、CF 之间的数量关系式: ;(2)再探究一般情况如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立. (3)如图3,若 ABC 和 DEC 都是含30°的直角三角形,若∠ACB =∠DCE =90°,∠BAC =∠EDC =30°,点E 在 ABC 内部,直线AD 、BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.的26. 在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,∠ABC =90°,且AB BC =.(1)如图(1),(5,0)A ,(0,2)B ,点C 在第三象限,请直接写出点C 的坐标; (2)如图(2),BC 与x 轴交于点D ,AC 与y 轴交于点E ,若点D 为BC 的中点,求证:ADB CDE ∠=∠;(3)如图(3),(,0)A a ,M 在AC 延长线上,过点(,)M m a −作MN x ⊥轴于点N ,探究线段BM ,AN ,OB 之间的关系,并证明你的结论.。
人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
2024年最新人教版初二数学(上册)期中试卷及答案(各版本)

2024年最新人教版初二数学(上册)期中试卷及答案(各版本)一、选择题:每题1分,共5分1. 下列数中,既是有理数又是无理数的是:A. √2B. 0.333C. πD. 9/42. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是:A. 7B. 17C. 23D. 243. 下列哪个数是3的相反数?A. 3B. 3C. 1/3D. 1/34. 已知一个等差数列的首项是3,公差是2,那么第10项是:A. 21B. 19C. 17D. 155. 下列哪个图形不是正多边形?A. 正方形B. 正五边形C. 正六边形D. 正八边形二、判断题:每题1分,共5分1. 任何两个实数的和都是实数。
()2. 两个锐角相加一定大于90度。
()3. 任何两个奇数相加的结果都是偶数。
()4. 任何两个不同的点都可以确定一条直线。
()5. 1千克棉花和1千克铁的重量是一样的。
()三、填空题:每题1分,共5分1. 2的平方根是______。
2. 如果一个等边三角形的边长是6,那么它的面积是______。
3. 1千米等于______米。
4. 如果一个圆的半径是5,那么它的直径是______。
5. 3x 7 = 11,解得x =______。
四、简答题:每题2分,共10分1. 请简要解释有理数和无理数的区别。
2. 请解释等差数列和等比数列的区别。
3. 请解释平行四边形和矩形的关系。
4. 请解释正弦函数和余弦函数的定义。
5. 请解释一次函数的图像特点。
五、应用题:每题2分,共10分1. 一个长方形的长是10,宽是5,求它的面积。
2. 一个等差数列的首项是3,公差是2,求前10项的和。
3. 一个圆的半径是7,求它的面积。
4. 解方程3x + 4 = 19。
5. 如果一个三角形的两边分别是8和15,第三边的长度可能是多少?六、分析题:每题5分,共10分1. 请分析一次函数y = 2x + 3的图像特点,并画出图像。
2. 请分析二次函数y = x^2 4x + 3的图像特点,并求出它的顶点坐标。
人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、单选题1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.若正多边形的一个外角是60°,则该正多边形的边数是()A .4B .5C .6D .73.如图,△ABC 中BC 边上的高是()A .BDB .AEC .BED .CF4.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为()A .3B .4C .3或5D .3或4或55.如图,在△ABC 中,点D 为BC 边上一点,连接AD ,取AD 的中点P ,连接BP ,CP .若△ABC 的面积为4cm 2,则△BPC 的面积为()A .4cm 2B .3cm 2C .2cm 2D .1cm 26.如图,在ABC 中,D 、E 分别为AB 、AC 边上的点,DA DE =,DB BE EC ==.若130ABC ∠=︒,则C ∠的度数为()A .20︒B .22.5︒C .25︒D .30°7.如图,将一副含30°,45°的直角三角板如图摆放,则∠1+∠2等于()A.200°B.210°C.180°D.225°8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD9.在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40°B.80°C.60°D.100°10.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题11.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).12.已知ABC∆是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为__________.13.若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.14.如图,在△ABC 中,∠ACB =90º,∠ABC =60º,CD ⊥AB ,垂足为D ,若BD =1,则AD 的长为___________.15.如图,△ABC ≌△ADE ,且点E 在BC 上,若∠DAB =30°,则∠CED =_____.16.如图,ABC 为等边三角形,以边AC 为腰作等腰ACD △,使AC CD =,连接BD ,若32ABD ∠=︒,则CAD ∠=__________°.三、解答题17.如图,已知CD 为ACB ∠的平分线,AM CD ⊥于,46,8M B BAM ∠=︒∠=︒,求ACB ∠的度数.18.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .19.如图,已知△ABC.(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D,(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是_______.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.22.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=12 BF.23.如图,在△ABC中,AB=AC,∠BAC=90°,点D、E分别在AB、BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF.(2)判断BD和CF的数量关系,并说明理由.24.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.(1)若OF+BE=AB,求证:CF=CE.(2)如图2,∠ECF=45°,S△ECF=6,求S△BEF的值.参考答案1.A【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,就可得到答案。
人教版八年级上学期期中考试数学试卷及详细答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(每小题3分,共36分)1.下列图形中被虚线分成的两部分不是全等形的是()A. B. C D.2.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.3.下列各式﹣2a,,, a2﹣ b2,,中,分式有()A.1个B.2个C.3个D.4个4.如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC5.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.6.当△ABC和△DEF具备()条件时,△ABC≌△DEF.A.所有的角对应相等B.三条边对应相等C.面积相等D.周长相等7.下列分式是最简分式的是()A.B.C.D.8.若点O是△ABC三边垂直平分线的交点,则有()A.OA=OB≠OC B.OB=OC≠OA C.OC=OA≠OB D.OA=OB=OC9.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°10.如图,把两个一样大的含30度的直角三角板,按如图方式拼在一起,其中等腰三角形有()A.1个B.2个C.3个D.4个11.已知两个分式:A=﹣,B=,其中x≠3且x≠0,则A与B的关系是()A.相等B.互为倒数C.互为相反数 D.不能确定12.如图,用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是()A.SAS B.SSS C.ASA D.AAS二、填空题(本大题共8小题,每小题3分,共计24分)13.已知=,则的值为.14.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是.15.分式,,﹣的最简公分母是.16.已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为.17.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你再补充一个条件,使△ABC≌△DEF,你补充的条件是.18.已知点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,则(a+b)2016= .19.若x:y=1:3,且2y=3z,则的值是.20.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为.三、解答题(本大题满分60分)21.作图题小明不小心在一个三角形上撒一片墨水,请用尺规帮小明重新画一个三角形使它与原来的三角形完全相同.(保留作图痕迹,不写作法)22.已知﹣=4,求的值.23.如图所示,△DEF是等边三角形,且∠1=∠2=∠3,试问:△ABC是等边三角形吗?请说明理由.24.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.25.如图,在△ABC中,BD=CD,∠1=∠2,小颖说:“AD⊥BC”,你认为她说的对吗?说明你的理由.26.计算:(1)÷(2)÷(﹣x﹣2)(3)(4)(1﹣)÷.27.已知△ABC的两条高AD,BE相交于点H,且AD=BD,试问:(1)∠DBH与∠DAC相等吗?说明理由.(2)BH与AC相等吗?说明理由.参考答案与试题解析一、选择题(每小题3分,共36分)1.下列图形中被虚线分成的两部分不是全等形的是()A. B.C.D.【考点】K9:全等图形.【分析】根据全等形的概念进行判断即可.【解答】解:长方形被对角线分成的两部分是全等形;平行四边形被对角线分成的两部分是全等形;梯形被对角线分成的两部分不是全等形;圆被对角线分成的两部分是全等形,故选:C.2.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.【考点】P1:生活中的轴对称现象.【分析】认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C 是符合要求的.【解答】解:观察选项可得:只有C是轴对称图形.故选:C.3.下列各式﹣2a,,, a2﹣b2,,中,分式有()A.1个B.2个C.3个D.4个【考点】61:分式的定义.【分析】根据分式的定义,可得答案.【解答】解:,,,是分式,故选:D.4.如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC【考点】KB:全等三角形的判定.【分析】已知两边相等,要使两三角形全等必须添加这两边的夹角,即∠BAD=∠CAE,因为∠CAD是公共角,则当∠1=∠2时,即可得到△ABD≌△ACE.【解答】解:∵AB=AC,AD=AE,∠B=∠C不是已知两边的夹角,A不可以;∠D=∠E不是已知两边的夹角,B不可以;由∠1=∠2得∠BAD=∠CAE,符合SAS,可以为补充的条件;∠CAD=∠DAC不是已知两边的夹角,D不可以;故选C.5.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的性质对各选项分析判断即可得解.【解答】解:A、是轴对称图形,B、不是轴对称图形,C、是轴对称图形,D、是轴对称图形,所以,B与其他三个不同.故选B.6.当△ABC和△DEF具备()条件时,△ABC≌△DEF.A.所有的角对应相等B.三条边对应相等C.面积相等D.周长相等【考点】KB:全等三角形的判定.【分析】由SSS证明三角形全等即可.【解答】解:∵三条边对应相等的两个三角形全等,∴B选项正确;故选:B.7.下列分式是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】根据最简分式的定义分别对每一项进行判断,即可得出答案.【解答】解:A、=,不是最简分式,故本选项错误;B、=,不是最简分式,故本选项错误;C、,是最简分式,故本选项正确;D、=,不是最简分式,故本选项错误;故选C.8.若点O是△ABC三边垂直平分线的交点,则有()A.OA=OB≠OC B.OB=OC≠OA C.OC=OA≠OB D.OA=OB=OC【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质判断即可.【解答】解:∵点O是△ABC三边垂直平分线的交点,∴OA=OB,OA=OC,∴OA=OB=OC,故选:D.9.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】K7:三角形内角和定理;K8:三角形的外角性质;PB:翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.10.如图,把两个一样大的含30度的直角三角板,按如图方式拼在一起,其中等腰三角形有()A.1个B.2个C.3个D.4个【考点】KI:等腰三角形的判定.【分析】由于图形是由两个一样大的含30°角的直角三角板按如图的方式拼在一起,故有AB=AE,AD=AC,∠B=∠E=30°,∠ACE=∠ADB=60°,则∠DAE=∠CAB=30°,所以得到等腰三角形△ABE,△ACD,△ACB,△ADE.【解答】解:根据题意△ABE,△ACD都是等腰三角形,又由已知∠ACE=∠ADB=60°,∴∠DAE=∠CAB=30°,已知∠B=∠E=30°,∴又得等腰三角形:△ACB,△ADE,所以等腰三角形4个.故选:D.11.已知两个分式:A=﹣,B=,其中x≠3且x≠0,则A与B的关系是()A.相等B.互为倒数C.互为相反数 D.不能确定【考点】6B:分式的加减法.【分析】将两个分式化简即可判断.【解答】解:A===B故选(A)12.如图,用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是()A.SAS B.SSS C.ASA D.AAS【考点】N3:作图—复杂作图;KB:全等三角形的判定.【分析】直接利用基本作图方法结合全等三角形的判定方法得出答案.【解答】解:用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是,在△DOM和△NCE中,,∴△DOM≌△NCE(SSS),∴∠DOM=∠NCE,∴CN∥OA.故选:B.二、填空题(本大题共8小题,每小题3分,共计24分)13.已知=,则的值为﹣.【考点】S1:比例的性质.【分析】根据两内项之积等于两外项之积可得x=3y,然后代入比例式进行计算即可得解.【解答】解:∵=,∴x=3y,∴==﹣.故答案为:﹣.14.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是(﹣2,0).【考点】KA:全等三角形的性质;D5:坐标与图形性质.【分析】根据全等三角形对应边相等可得OD=OB,然后写出点D的坐标即可.【解答】解:∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(﹣2,0).故答案为:(﹣2,0).15.分式,,﹣的最简公分母是36a4b2.【考点】69:最简公分母.【分析】找出系数的最小公倍数,字母的最高次幂,即可得出答案.【解答】解:分式,,﹣的最简公分母是36a4b2,故答案为36a4b2.16.已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为 1 .【考点】S2:比例线段.【分析】根据四条线段成比例,列出比例式,再把a=4,b=2,c=2,代入计算即可.【解答】解:∵线段a、b、c、d是成比例线段,∴=,∵a=4,b=2,c=2,∴=,∴d=1.故答案为:1.17.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你再补充一个条件,使△ABC≌△DEF,你补充的条件是FD=AC(答案不唯一).【考点】KB:全等三角形的判定.【分析】已知△ABC与△DEF中有一组边与一组角相等,根据全等三角形的判定可知,只需要添加一组边或一组角即可全等.【解答】解:添加FD=AC,∵BF=EC,∴BF﹣CF=EC﹣CF∴BC=EF在△ABC与△DEF中,∴△ABC≌△DEF(SAS)故答案为:FD=AC(答案不唯一)18.已知点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,则(a+b)2016= 1 .【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,∴a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,所以,(a+b)2016=(3﹣4)2016=1.故答案为:1.19.若x:y=1:3,且2y=3z,则的值是﹣5 .【考点】64:分式的值.【分析】用含y的代数式表示x、z,代入分式,计算即可.【解答】解:∵x:y=1:3,2y=3z,∴x=y,z=y,∴==﹣5,故答案为:﹣5.20.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为7.5 .【考点】KF:角平分线的性质.【分析】如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.【解答】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,=BC•DE=×5×3=7.5.∴S△BCD故答案为:7.5.三、解答题(本大题满分60分)21.作图题小明不小心在一个三角形上撒一片墨水,请用尺规帮小明重新画一个三角形使它与原来的三角形完全相同.(保留作图痕迹,不写作法)【考点】N4:作图—应用与设计作图;KE:全等三角形的应用.【分析】先画出线段BA,然后从B,A两点,以线段BA为一边作∠A=∠E,∠F=∠B,两角另一边的交点就是就是第三点的位置,顺次连接即可.【解答】解:按尺规作图的要求,正确作出△ABC的图形:22.已知﹣=4,求的值.【考点】6D:分式的化简求值.【分析】先根据﹣=4求出ab与a﹣b之间的关系,再代入原式进行计算即可.【解答】解:∵﹣=4,∴=4,即a﹣b=﹣4ab,∴原式====6.23.如图所示,△DEF是等边三角形,且∠1=∠2=∠3,试问:△ABC是等边三角形吗?请说明理由.【考点】KM:等边三角形的判定与性质.【分析】由△DEF是等边三角形,得到∠DEF=60°,由邻补角的定义得到∠BEC=120°,得到∠BCE+∠2=120°,推出∠ACB=60°,于是得到结论.【解答】解:△ABC是等边三角形,理由:∵△DEF是等边三角形,∴∠DEF=60°,∴∠BEC=120°,∴∠BCE+∠2=120°,∵∠2=∠3,∴∠BCE+∠3=60°,∴∠ACB=60°,同理∠ABC=∠BAC=60°,∴△ABC是等边三角形.24.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.25.如图,在△ABC中,BD=CD,∠1=∠2,小颖说:“AD⊥BC”,你认为她说的对吗?说明你的理由.【考点】KD:全等三角形的判定与性质.【分析】由BD=DC,可得∠DBC=∠DCB,点D在BC的垂直平分线,继而可得AB=BC,则可证得AD是BC的垂直平分线,即可得AD⊥BC.【解答】解:小颖说的对,理由如下:∵BD=DC,∴∠DBC=∠DCB,点D在BC的垂直平分线,∵∠1=∠2,∴∠ABC=∠ACB,∴AB=AC,∴点A在BC的垂直平分线,∴AD是BC的垂直平分线,即AD⊥BC.26.计算:(1)÷(2)÷(﹣x﹣2)(3)(4)(1﹣)÷.【考点】6C:分式的混合运算.【分析】根据因式分解和分式的基本性质即可进行化简运算.【解答】解:(1)原式=•﹣×=﹣==(2)原式=÷=﹣×=﹣(3)原式=﹣==(4)原式=÷=×a(a﹣1)=﹣a27.已知△ABC的两条高AD,BE相交于点H,且AD=BD,试问:(1)∠DBH与∠DAC相等吗?说明理由.(2)BH与AC相等吗?说明理由.【考点】KD:全等三角形的判定与性质.【分析】(1)相等.根据同角的余角相等即可证明.(2)相等.只要证明△BDH≌△ADC即可.【解答】解:(1)相等.理由如下:∵AD、BE是△ABC的高,∴∠ADB=∠AEB=90°,∴∠DBH+∠C=90°,∠DAC+∠C=90°,∠DBH=∠DAC.(2)相等.理由如下:在△BDH和△ADC中,,∴△BDH≌△ADC,∴BH=AC.人教版八年级上学期期中考试数学试卷(二)一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.123.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是.10.若正n边形的每个内角都等于150°,则n= ,其内角和为.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE= .12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为cm.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A 1B1C1,平移后点A的对应点A1的坐标是.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)参考答案与试题解析一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】K6:三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.3.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故选:C.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形【考点】K7:三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】KJ:等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则从而求解.依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C△ODE【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,=10cm.BC=BD+DE+EC=OD+DE+OE=C△ODE故选C.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;KI:等腰三角形的判定;KW:等腰直角三角形;M6:圆内接四边形的性质.【分析】求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.【解答】解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,∵M为EF的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴②正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴③正确;即正确的有4个,故选D.二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是两点之间线段最短.【考点】K6:三角形三边关系.【分析】三角形三边关系定理:三角形两边之和大于第三边,可以运用两点之间线段最短的性质进行判断.【解答】解:“三角形任意两边之和大于第三边”,得到这个结论的理由是:两点之间线段最短.故答案为:两点之间线段最短.10.若正n边形的每个内角都等于150°,则n= 12 ,其内角和为1800°.【考点】L3:多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE= 125°.【考点】KD:全等三角形的判定与性质.【分析】在△ADC和△ABE中,由∠C=∠E,∠A=∠A和AD=AB证明△ADC≌△ABE,得到∠ADC=∠ABE,由∠CDE=55°,得到∠ADC=125°,即可求出∠ABE的度数.【解答】解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=55°,∴∠ADC=125°,∴∠ABE=125°,故答案为125°.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5 .【考点】KF:角平分线的性质;KQ:勾股定理.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为8 cm.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,解得AD=6cm,∴S△ABC∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为 4 .【考点】KI:等腰三角形的判定;D5:坐标与图形性质.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P 是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;P是OA的中垂线与x轴的交点,有1个,共有4个.【解答】解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故填:4.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.【考点】K7:三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.【考点】KD:全等三角形的判定与性质.【分析】可证明△ABC≌△DBE,得到AC=BE DE=BC,即可证明AC+DE=CE.【解答】证明:∵∠ABD=90°,AC⊥CB,DE⊥BE,∴∠ABC+∠DBE=∠ABC+∠A,∴∠A=∠DBE;在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴AC=BE,BC=DE,∴AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,解:∵∠B=∠ACB=15°,∴∠CAD=∠B+∠A CB=15°+15°=30°,∵AC=4cm,CD是AB边上的高,∴CD=AC=×2=1.∴AB边上的高是1.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.【考点】KD:全等三角形的判定与性质;K6:三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=2,在△ABE中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=2,在△ABE中,AB﹣BE<AE<AB+BE,∴4﹣2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2,22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A 1B1C1,平移后点A的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5 .【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:13.5.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)【考点】KY:三角形综合题.【分析】(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.等腰三角形有一个角为100°,则底角为()
(A)100°或40°(B)100°(C)80°(D)40°
7.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是()
(A) (B) (C) (D)
③带根号的数都是无理数;④有限小数是有理数;
(A)1个(B)2个(C)3个(D)4个
4.在实数 ,- ,-3.14,0, 中,无理数有()
(A)1个(B)2市完成国内生产总值(GDP)达3466.53亿元,用四舍五入法取近似值,保留3个有效数字并用科学记数法表示为()
(1)如图1,若点O在边BC上,试说明:AB=AC;
(2)如图2,若点O在△ABC的内部,AB=AC成立吗?为什么?
二、填空题(每题5分,共30分)
11.如图以数轴的单位长度为边作正方形,以数轴上的原点O为圆心,正方形的对角线的长为半径作弧与数轴交于一点A,则点A表示的数为.
第11题
12. ; =.
13. 的值是; _______.
14.比较大小: ; .
14.16的平方根是_________________.
15.已知x、y为实数,且 ,则 值的为.
八年级第一学期数学期中试卷
班级姓名得分
一、选择题(每题5分,共计50分)
1.一个数的平方根是它本身,这个数是().
(A)0(B)0和1(C)±1(D)±1和0
2.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的有()
(A)1个(B)2个(C)3个(D)4个
3.下列说法正确的有()
①无限小数是无理数;②正方形的对角线的长度都是无理数;
第7题
8.三角形内到三条边的距离相等的点是().
(A)三角形的三条角平分线的交点(B)三角形的三条高的交点
(C)三角形的三条中线的交点(D)以上答案都不正确
9.如图,∠1=∠2,∠3=∠4,OE=OF,则图中全等三角形有().
(A)1对(B)2对(C)3对(D)4对
10. ,则 的度数为( ).
(A) (B) (C) (D)
16.等边三角形是轴对称图形它有条对称轴.
三、化简与求解(共12分)
17.(1).求下列各式中的
① ②
四、画图(本题共5分)
18.把下图补成关于直线a的轴对称图形(保留作图痕迹不写画法)
五、解答题(19题8分,20——24题9分。)
19. + ÷ .
20.已知△ABC中,∠A=120°,∠B=40°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中所画的等腰三角形内用标出所有角的度数)
21.已知如图:AB=BC,AD=CD.
求证:AE=CE
22.已知:如图,E、F是AB上的两点,AE=BF,AC∥BD,∠C=∠D;
求证:CF=DE.
23.已知:如图,四边形ABCD中,AB∥CD , AB=CD.
求证:△ABD≌△CDB.
24.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.