八年级第十章频率与概率测试卷

合集下载

〖人教版〗八年级数学下册期末复习试卷第十章频率与概率检测题

〖人教版〗八年级数学下册期末复习试卷第十章频率与概率检测题

〖人教版〗八年级数学下册期末复习试卷第十章频率与概率检测题创作人:百里灵明 创作日期:2021.04.01审核人: 北堂正中 创作单位: 北京市智语学校一、选择题(每小题3分,共30分)1.(·哈尔滨中考)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( )A.116B.18C.14D.122.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14B.12C.34D.13.(·山东威海中考)一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )A.310B.925C.920D.354.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不.大于..2的概率是( ) A .21B .32 C .43 D .545.下列说法正确的是( )A .在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖 B .随机抛一枚硬币,落地后正面一定朝上C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是1136.某为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( ) A.12 B.13 C.14 D.16第4题图7.(·山东青岛中考)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.558.某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:奖金(元)1 000 500 100 50 10 2数量(个)10 40 150 400 1 000 10 000如果花2元钱买1张彩票,那么所得奖金不少于50元的概率是()A.12 000B.1200C1500D.35009.青青的袋中有仅颜色不同的红、黄、蓝、白球若干个,晓晓又放入5个除颜色外其他都相同的黑球,通过多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%、1 5%、40%、10%,则青青的袋中大约有黄球()A.5个B.10个C.15个D.30个10.航空兵空投救灾物资到指定的区域(大圆)如图所示,若要使空投物资落在中心区域(小圆)的概率为14,则小圆与大圆的半径比值为()A.14B.4C.12D.2二、填空题(每小题3分,共24分)11.(·河南中考)现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是______.12.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为;抽到黑桃的概率为;抽到红心3的概率为______.13.(·乌鲁木齐中考)在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率是34,则n=________.14.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是.15.图中所示的两个圆盘中,指针落在每一个区域内的机会均等,则两个指针同时落在偶数上的概率是.16.小华买了一套科普读物,有上、中、下三册,要整齐地摆放在书架上,有____种摆法,其中恰好摆成“上、中、下”顺序的概率是. 17.(·长沙中考)在一个不透明的盒子中装有n个小球,它们只有颜12354 12546第15题图第10题图色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.18.分数段18分以下18~20分21~23分24~26分27~29分30分人数 2 3 12 20 18 10那么该班共有人,随机地抽取1人,恰好是获得30分的学生的概率是.三、解答题(共46分)19.(6分)有两组卡片,第一组三张卡片上各写着A、B、B,第二组五张卡片上各写着A、B、B、D、E.试用列表法求出从每组卡片中各抽取一张,两张都是B的概率.20.(6分)一个桶里有60个除颜色外都相同的弹珠,一些是红色的,一些是蓝色的,一些是白色的.已知从中随机取出一个,是红色弹珠的概率是35%,是蓝色弹珠的概率是25%.则桶里每种颜色的弹珠各有多少?21.(6分)在一个布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,试求乙在游戏中能获胜的概率.22.(7分)(·武汉中考)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.23.(7分)如图,有两个可以自由转动的转盘A、B,转盘A被均匀分成4等份,每份标上1、2、3、4四个数字;转盘B被均匀分成6等份,每份标上1、2、3、4、5、6六个数字.有人为甲乙两人设计了一个游戏,其规则如下:(1)同时转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.24.(7分)甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是第23题图从甲盒中任意摸取一球为蓝球的概率的2倍. (1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率. 25.(7分)(·成都中考)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下: 请根据上表提供的信息,解答下列问题:(1)表中x 的值为_______,y 的值为________;(2)将本次参赛作品获得A 等级的学生依次用A 1,A 2,A 3,…表示,现该校决定从本次参赛作品获得A 等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A 1和A 2的概率.第十章频率与概率检测题参考答案一、选择题1.C 解析:画树状图如图所示.∵共有16种等可能情况,两次都摸出白球的情况有4种,∴两次都摸出白球的概率为41=164. 2.B解析:四个图案中是中心对称图形的有圆和矩形,故从中任意抽出一张,是中心对称图形的概率为12. 3.A 解析:列表分析出所有等可能结果如下:从表中发现共有20种摸球结果,其中两次都摸到红球的结果有6种,根据概率计算公式可得P (两次都摸到红球)63==2010. 4.D解析:设C 点对应的数为,则|x -(-1)|≤2,解得.此区域在数轴上对应的长度为4,AB 的长度为5,所以概率是54. 5.D6.D 解析:画出树状图可得.7.A解析:本题考查了简单随机事件的概率计算,设口袋中有x 个红球,由题意得,P (摸到白球)510=5100x =+,解得x =45. 8.D解析:10万张彩票中设置了10个1第1题答图000元,40个500元,150个100元,400个50元的奖项,所以所得奖金不少于50元的概率为10401504006003100 000100 000500+++==. 9.C解析:由于知道有5个黑球,又黑球所占的比例为1-30%―15%―40%―10%=5%,所以袋中球的总数为5÷5%=100(个),从而黄球的数量为100×15%=15(个). 10.C 解析:由题意可知小圆的面积是大圆面积的14,从而小圆的半径是大圆半径的12.二、填空题11.23解析:从标有数字-1,-2,3,4的卡片中随机抽取两张,所有等可能的情况有(-1,-2),(-1,3),(-1,4),(-2,3),(-2,4),(3,4),共6种,而数字之积为负数的情况有(-1,3),(-1,4),(-2,3),(-2,4),共4种,所以两张卡片上的数字之积为负数的概率是42=63.12.1414152解析:一副扑克牌共有54张,除去大、小王共有52张,其中红心有13张,黑桃有13张.13.9 解析:根据概率的计算公式列出方程:334n n =+,解得n =9. 14.13解析:画出树状图如下:可知两次都摸到黄色球的概率是13.15.62516.6 1617.10 解析:由题意可得20.2n=,解得n =10. 18.65213解析:=(人),1026513=. 三、解答题19.解:列出表格如下:第一组第二组A B B D E A(A,A ) (A,B ) (A,B ) (A,D ) (A,E ) B (B,A ) (B,B ) (B,B ) (B,D ) (B,E ) B(B,A )(B,B )(B,B )(B,D )(B,E )所有可能出现的情况有15种,其中两张都是B 的情况有4种,故从每组卡片中各抽取一张,两张都是B 的概率为415. 20.解:由题意可知取出白色弹珠的概率是1-35%-25%=40%.黄球2第一次 第二次 开始 红球 黄球1 黄球2 红球红球 黄球1 黄球1黄球2 第14题答图则红色弹珠有60×35%=21(个),蓝色弹珠有60×25%=15(个), 白色弹珠有60×40%=24(个).21.解:(1)树状图如下图所示:(2)由树状图可知所有可能情况共有9种,其中乙摸到与甲相同颜色的球的情况有(白,白),(红,红),(黑,黑)三种,故乙在游戏中能获胜的概率为13.22.分析:(1)每把锁都对应着4把钥匙,有4种等可能情况,两把锁共有8种等可能情况;(2)直接利用概率计算公式求解即可.解:(1)设两把不同的锁分别为A ,B ,能把A ,B 两锁打开的钥匙分别为a ,b ,其余两把钥匙分别为m ,n .根据题意,可以画出树状图,如图所示:由图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等. ∴P (一次打开锁)=28=14. 23.解:游戏不公平.列出表格如下:AB1 2 3 4 5 6 1 1 2 3 4 5 6 2 2 4 6 8 10 12 3 3 6 9 12 15 18 44812162024所有可能结果共24种,其中积为奇数的结果有6种,积为偶数的结果有18种,所以P (奇)=14;P (偶)=34,所以P (偶)>P (奇),所以不公平. 新规则:⑴同时自由转动转盘A 和B ;⑵转盘停止后,指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜. 理由:因为P (奇)=12;P (偶)=12,所以P (偶)=P (奇),所以公平. 24.解:(1)设乙盒中有x 个蓝球,则从乙盒中任意摸取一球,摸到蓝球的概率13xP x =+;甲乙 开始黑红 白 黑红红白 黑红 白白黑第21题答图 第22题答从甲盒中任意摸取一球,摸到蓝球的概率21 4P=.根据题意,得1 32xx=+,解得3x=,所以乙盒中有3个蓝球.甲乙白黄1 黄2 蓝1 蓝2 蓝3白1 白1,白白1,黄1 白1,黄2 白1,蓝1 白1,蓝2 白1,蓝3 白2 白2,白白2,黄1 白2,黄2 白2,蓝1 白2,蓝2 白2,蓝3 黄黄,白黄,黄1 黄,黄2 黄,蓝1 黄,蓝2 黄,蓝3 蓝蓝,白蓝,黄1 蓝,黄2 蓝,蓝1 蓝,蓝2 蓝,蓝3 由表格可以看出,可能的结果有24种,其中均为蓝球的有3种,因此从甲、乙两盒中各摸取一球,两球均为蓝球的概率31248P==.(也可以用画树状图法或枚举法)方法二:从甲盒中任意摸取一球,摸到蓝球的概率为14,从乙盒中任意摸取一球,摸到蓝球的概率为12.则从甲、乙两盒中各摸取一球,两球均为蓝球的概率为111428P=⨯=.25.分析:(1)表中x的值为50-35-11=4,y的值为1-0.08-0.22=0.7.(2)先用树状图或列表法求出随机抽取两名学生的所有等可能结果数和恰好抽到学生A1和A2的结果数,再根据概率的计算公式求出所求事件的概率.解:(1)4;0.7(2)由(1)知获得A等级的学生共有4人,则另外两名学生为A3和A4,画树状图,如图所示:所有等可能出现的结果是:(A1,A2),(A1,A3),(A1,A4),(A2,A1),(A2,A3),(A2,A4),(A3,A1),(A3,A2),(A3,A4),(A4,A1),(A4,A2),(A4,A3).或列表如下:由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A1,A2两名学生的结果有2种.第25题答∴P(恰好抽到A1,A2两名学生)21 126 ==。

频率与概率测试题(含答案)

频率与概率测试题(含答案)

频率与概率测试题一、选择题:(每小题3分,共30分)1.下列事件中,是必然事件的是 ( )A.打开电视机,正在播放新闻B.父亲年龄比儿子年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着雨伞 2.下列事件中:确定事件是 ( )A.掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上B.从一副扑克牌中任意抽出一张牌,花色是红桃C.任意选择电视的某一频道,正在播放动画片D.在同一年出生的367名学生中,至少有两人的生日是同一天. 3.10名学生的身高如下(单位:cm )159 169 163 170 166 165 156 172 165 162从中任选一名学生,其身高超过165cm 的概率是 ( ) A.12B.25C.15D.1104.下列说法正确的是 ( )①试验条件不会影响某事件出现的频率; ②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等; ④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①② B.②③ C.③④ D.①③ 5.如图1所示为一水平放置的转盘,使劲转动其指针,并让它自由停下,下面叙述正确的是( ) A.停在B 区比停在A 区的机会大 B.停在三个区的机会一样大C.停在哪个区与转盘半径大小有关D.停在哪个区是可以随心所欲的6.从标有号码1到100的100张卡片中,随意地抽出一张,其号码是3的倍数的概率是( )A.33100B.34100C.310D.不确定7.两个射手彼此独立射击一目标,甲射中目标的概率为0.9,乙射中目标的概率为0.8,在一次射击中,甲、乙同时射中目标的概率是( ) A.0.72 B.0.85 C.0.1 D.不确定 8.如图2所示的两个圆盘中,指针落在每一个数上 的机会均等,则两个指针同时落在偶数上的概率是( )A.525 B.625C.1025D.19259.有阜阳到合肥的某一次列车,运行途中停靠的车站依次是:阜阳—淮南—水家湖—合肥,那么要为这次列车制作的火车票有( )A.3种B.4种C.6种D.12种10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竟猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭图1图2脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三翻牌获奖的概率是()A.14B.15C.16D.320二、填空题(每小题3分,共15分)11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.12.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是.13.小红、小芳、小明在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定.请问在一个回合中三个人都出“布”的概率是.14.在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图如图3所示,这个图形中折线的变化特点是,试举一个大致符合这个特点的实物实验的例子(指出关注的结果) .15.某校九年级(3)班在体育毕业考试中,全班所有学生得分的情况如那么该班共有人,随机地抽取分的学生的概率是,从上表中,你还能获取的信息是(写出一条即可)三、解答题(共55分)16.(6分)有两组卡片,第一组三张卡片上都写着A、B、B,第二组五张卡片上都写着A、B、B、D、E.试用列表法求出从每组卡片中各抽取一张,两张都是B的概率.17.(6分)将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少图318.(8分)依据闯关游戏规则,请你探究“闯关游戏”的奥秘: (1)用列表的方法表示所有可能的闯关情况; (2)求出闯关成功的概率. 闯关游戏规则:图4所示的面板上,有左右两组开关按钮,每组中的两个按钮均分别控制一个灯泡和一个发音装置,同时按下两组中各一个按钮:当两个灯泡都亮时闯关成功;当按错一个按钮时,发音装置就会发出“闯关失败”的声音.19.(8分)有一个转盘游戏,被平均分成10份(如图5),分别标有1,2,……,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的数字即为转出的数字.两人进行游戏,一人转动转盘,另一人猜数,如果猜的数与转出的数情况相符,则猜数的人获胜,否则转盘的人获胜.猜数的方法为下列三种中的一种: (1)猜奇数或偶数;(2)猜是3的倍数或不是3的倍数; (3)猜大于4的数或不大于4的数.如果你是猜数的游戏者,为了尽可能取胜,你选哪种猜法?怎样猜?20.(6分)王老汉为了与客户签订购销合同,对自己的鱼塘的鱼的总质量进行估计,第一次捞出100条,称得质量为184千克,并将每条鱼作上记号放入水中;当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有标记的鱼有20条. ①请你帮王老汉估计池塘中有多少条鱼? ②请你帮王老汉估计池塘中的鱼有多重?图4 图521.(6分)(2007·湖州市)在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.22.(7分)如图6,有两个可以自由转动的转盘A 、B ,转盘A 被均匀分成4等份,每份标上数字1、2、3、4四个数字;转盘B 被均匀分成6等份,每份标上数字1、2、3、4、5、6六个数字.有人为甲乙两人设计了一个游戏,其规则如下: (1)同时转动转盘A 与B ;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.23.(8分)(2007·江西省)在一次数学活动中,黑板上画着如图7所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①AB DC = ②ABE DCE ∠=∠ ③AE DE = ④A D ∠=∠小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定BEC △是等腰三角形吗?说说你的理由; (2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使BEC △不能..构成等腰三角形的概率.参考答案一、1.B ; 2.D ; 3.B; 4.B; 5.A ; 6.A ; 7.A ; 8. B; 9.C ; 10.C. 二、11.13; 12. 12; 13.127; 14. 随着实验次数增加,频率趋于稳定.如:抛掷硬币实验中关注正面出现的频率;15.65,213,答案不惟一,只要合理均可. 三、16.415.17.(1)P (奇数)=23.(2)恰好是32的概率是16. 18.(1)略.(2)1419. 选(2)不是3的倍数 20.(1)1000条;(2)2000千克. 21.(1)树状图如下甲摸到的球 白 红 黑 乙摸到的球 白 红 黑 白 红 黑 白 红 黑 (2)乙摸到与甲相同颜色的球有三种情况 ∴乙能取胜的概率为3193=. 22. 不公平.∵P (奇)=1/4; P (偶)=3/4 ∴P (偶)>P (奇) ∴不公平. 新规则:⑴同时自用转动转盘A 和B ;⑵转盘停止后, 指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜. 理由:∵P (奇)=1/2; P (偶)=1/2 ∴P (偶)=P (奇) ∴公平 23.(1)能. 理由:由AB DC =,ABE DCE =∠∠,AEB DEC =∠∠, 得ABE DCE △≌△.BE CE ∴=,BEC ∴△是等腰三角形.(2)树状图: 先抽取的纸片序号所有可能出现的结果(①②)(①③)(①④)(②①)(②③)(②④)(③①)(③②)(③④)(④①)(④②)(④③)由表格(或树状图)可以看出,抽取的两张纸片上的等式可能出现的结果有12种,它们出现的可能性相等,不能构成等腰三角形的结果有4种,所以使BEC △不能构成等腰三角形的概率为13.① ② ④②①④ ③① ② ④④ ① ③开始后抽取的纸片序号。

初二概率和频率练习题

初二概率和频率练习题

初二概率和频率练习题1. 现有一个大小为50的抽奖箱,其中有20个红球和30个蓝球。

从中任意抽取一个球的概率为多少?解析:首先计算总共的球数,即红球和蓝球的总和,得到50。

然后计算红球的数量与总球数的比例,即20/50=0.4。

同样地,计算蓝球的数量与总球数的比例,即30/50=0.6。

所以从中任意抽取一个球的概率为0.4概率得到一个红球+0.6概率得到一个蓝球=0.4+0.6=1。

2. 在一批电子产品中,有60%的产品是正常的,而40%是有故障的。

某人随机选取了5个产品,问至少有一个故障产品的概率是多少?解析:首先计算至少有一个故障产品的概率是1减去没有故障产品的概率。

没有故障产品的概率为正常产品的概率的5次方,即(0.6)的5次方=0.6^5=0.07776。

所以至少有一个故障产品的概率为1-0.07776=0.92224。

3. 在一次骰子游戏中,投掷一枚六面骰子。

如果骰子点数为偶数,则玩家获胜;如果骰子点数为奇数,则玩家失败。

如果玩家投掷了100次,预测他获胜的次数。

解析:首先计算骰子点数是偶数的概率,即有3个偶数(2、4、6)和6个可能点数,所以概率为3/6=0.5。

然后,我们可以用预期获胜的概率乘以玩家投掷的总次数来预测他获胜的次数。

即0.5 ×100 = 50次。

所以预测玩家获胜的次数为50次。

4. 提供以下一组数据:2、5、7、8、3、5、6、8、10、3、4、1、8、6、9,计算数值3出现的频率。

解析:数值3出现的频率可以通过计算数值3在数据中出现的次数除以总的数据个数来得到。

在给定的数据中,数值3出现的次数为2次,数据的总个数为15个。

所以数值3出现的频率为2/15=0.1333。

5. 一家餐厅的每月来访次数数据如下:60、70、90、80、100、120、130、150、160、170、180、190。

如果我们定义每月来访次数大于100次为高频率,那么这家餐厅的高频率访问概率是多少?解析:首先计算高频率访问的次数,即出现次数大于100的数据个数。

鲁教五四版八年级(下) 中考题单元试卷:第10章 频率与概率(03)

鲁教五四版八年级(下) 中考题单元试卷:第10章 频率与概率(03)

鲁教五四版八年级(下)中考题单元试卷:第10章频率与概率(03)一、选择题(共4小题)1.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.2.同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大3.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.4.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.二、填空题(共5小题)5.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为.6.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.7.从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.8.有4张看上去无差别的卡片,上面分别写着2,3,4,5.随机抽取1张后,放回并混合在一起,再随机抽取1张,则第二次抽出的数字能够整除第一次抽出的数字的概率是.9.从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是.三、解答题(共21小题)10.某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:复选人员统计表:(1)求a、b的值;(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.11.某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.根据以上信息,解答下列问题:(1)统计表中的a=,b;(2)统计表后两行错误的数据是,该数据的正确值是;(3)校园小记者决定从A,B,C三位“自强自立美德少年”中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.12.一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.13.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm 的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.14.为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.15.达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码A1、A2表示,女生分别用代码B1、B2表示)16.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求抽出的两支签中,1支为甲签、1支为丁签的概率.17.“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.18.老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.19.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m=;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.20.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.21.901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:(1)该班的学生共有名;(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.22.东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整;(2)求出该班学生人数;(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.23.小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.24.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.25.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.26.为鼓励大学生创业,政府制定了小型企业的优惠政策,许多小型企业应运而生.某市统计了该市2015年1﹣5月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:(1)某市2015年1﹣5月份新注册小型企业一共家,请将折线统计图补充完整.(2)该市2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营情况.请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.27.某校八年级(1)班语文杨老师为了了解学生汉字听写能力情况,对班上一个组学生的汉字听写成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图:(1)求D等级所对扇形的圆心角,并将条形统计图补充完整;(2)该组达到A等级的同学中只有1位男同学,杨老师打算从该组达到A等级的同学中随机选出2位同学在全班介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.28.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.29.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.30.2015年湘潭市中考招生政策发生较大改变,其中之一是:省级示范性高中批次志愿中,每个考生可填报两所学校(有先后顺序),我市某区域的初三毕业生可填报的省级示范性高中有A、B、C、D四所.(1)请列举出该区域学生填报省级示范性高中批次志愿的所有可能结果;(2)求填报方案中含有A学校的概率.第11页(共11页)鲁教五四版八年级(下)中考题单元试卷:第10章 频率与概率(03)参考答案一、选择题(共4小题)1.B ; 2.C ; 3.C ; 4.C ;二、填空题(共5小题)5.; 6.; 7.; 8.; 9.;三、解答题(共21小题)10. ; 11.4;0.15;0.32;0.30; 12. ; 13. ; 14. ; 15.40;20;40; 16. ; 17. ; 18. ; 19.40;15%; 20. ; 21.60;22. ; 23. ; 24.36;40;5; 25.144;3; 26.16; 27. ; 28.144;; 29.; 30. ;。

【中学教材全解】2013-2014学年八年级数学(下)(山东教育版)第十章频率与概率检测题(含答案解析)

【中学教材全解】2013-2014学年八年级数学(下)(山东教育版)第十章频率与概率检测题(含答案解析)

第4题图 第十章频率与概率检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2013·哈尔滨中考)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为() A.116 B.18 C.14 D.122.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为() A.14 B.12 C.34 D.13.(2013·山东威海中考)一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是() A.310 B.925 C.920 D.354.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是()A .21B .32C .43D .54 5.下列说法正确的是()A .在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖B .随机抛一枚硬币,落地后正面一定朝上C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是1136.某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是() A.12B.13C.14D.167.(2013·山东青岛中考)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.558.某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活率是()A.12 000B.1200C 1500D.35009.青青的袋中有仅颜色不同的红、黄、蓝、白球若干个,晓晓又放入5个除颜色外其他都相同的黑球,通过多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球()A.5个B.10个C.15个D.30个10.航空兵空投救灾物资到指定的区域(大圆)如图所示,若要使空投物资落在中心区域(小圆)的概率为14,则小圆与大圆的半径比值为()A.14 B.4 C.12 D.2二、填空题(每小题3分,共24分)11.(2013·河南中考)现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是第10题图______.12.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为 ;抽到黑桃的概率为 ;抽到红心3的概率为______.13.(2013·乌鲁木齐中考)在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球n 只,若从袋中任取一个球,摸出白球的概率是34,则n=________.14.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是 .15.图中所示的两个圆盘中,指针落在每一个区域内的机会均等,则两个指针同时落在偶数上的概率是 .16.小华买了一套科普读物,有上、中、下三册,要整齐地摆放在书架上,有____种摆法,其中恰好摆成“上、中、下”顺序的概率是 .17.(2013·长沙中考)在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是 .18.某校九年级(3)班在体育毕业考试中,全班所有学生得那么该班共有 人,随机地抽取30分的学生的概率是 .三、解答题(共46分)19.(6分)有两组卡片,第一组三张卡片上各写着A 、B 、B ,第二组五张卡片上各写着A 、B 、B 、D 、E.试用列表法求出第15题图从每组卡片中各抽取一张,两张都是B的概率.20.(6分)一个桶里有60个除颜色外都相同的弹珠,一些是红色的,一些是蓝色的,一些是白色的.已知从中随机取出一个,是红色弹珠的概率是35%,是蓝色弹珠的概率是25%.则桶里每种颜色的弹珠各有多少?21.(6分)在一个布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,试求乙在游戏中能获胜的概率.22.(7分)(2013·武汉中考)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.23.(7分)如图,有两个可以自由转动的转盘A、B,转盘A被均匀分成4等份,每份标上1、2、3、4四个数字;转盘B 被均匀分成6等份,每份标上1、2、3、4、5、6六个数字.有人为甲乙两人设计了一个游戏,其规则如下:(1)同时转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果第23题图所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.24.(7分)甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.(1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.25.(7分)(2013·成都中考)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:请根据上表提供的信息,解答下列问题:(1)表中x的值为_______,y的值为________;(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.参考答案一、选择题1.C解析:画树状图如图所示.∵共有16种等可能情况,两次都摸出白球的情况有4种,∴两次都摸出白球的概率为41=164. 2.B 解析:四个图案中是中心对称图形的有圆和矩形,故从中任意抽出一张,是中心对称图形的概率为12.3.A 解析:列表分析出所有等可能结果如下:从表中发现共有20种摸球结果,其中两次都摸到红球的结果有6种,根据概率计算公式可得P (两次都摸到红球)63==2010. 4.D 解析:设C 点对应的数为,则|x-(-1)|≤2,解得.此区域在数轴上对应的长度为4,AB 的长度为5,所以概率是54.5.D6.D 解析:画出树状图可得.7.A 解析:本题考查了简单随机事件的概率计算,设口袋中有x 个红球,由题意得,P (摸到白球)510=5100x =+,解得x=45.8.D 解析:10万张彩票中设置了10个1000元,40个500元,150个100元,400个50元的奖项,所以所得奖金不少于50元的概率为10401504006003100 000100 000500+++==. 9.C 解析:由于知道有5个黑球,又黑球所占的比例为1第1题答图-30%―15%―40%―10%=5%,所以袋中球的总数为5÷5%=100(个),从而黄球的数量为100×15%=15(个).10.C解析:由题意可知小圆的面积是大圆面积的14,从而小圆的半径是大圆半径的1 2.二、填空题11.23解析:从标有数字-1,-2,3,4的卡片中随机抽取两张,所有等可能的情况有(-1,-2),(-1,3),(-1,4),(-2,3),(-2,4),(3,4),共6种,而数字之积为负数的情况有(-1,3),(-1,4),(-2,3),(-2,4),共4种,所以两张卡片上的数字之积为负数的概率是42= 63.12.1414152解析:一副扑克牌共有54张,除去大、小王共有52张,其中红心有13张,黑桃有13张.13.9解析:根据概率的计算公式列出方程:334nn=+,解得n=9.14.13解析:画出树状图如下:可知两次都摸到黄色球的概率是1 3.15.6 2516.61617.10解析:由题意可得20.2n=,解得n=10.18.65213解析:=(人),1026513=.三、解答题种,故从每组卡片中各抽取一张,两张都是B的概率为415.20.解:由题意可知取出白色弹珠的概率是1-35%-25%=40%. 则红色弹珠有60×35%=21(个),蓝色弹珠有60×25%=15(个),白色弹珠有60×40%=24(个).21.解:(1)树状图如下图所示:(2)由树状图可知所有可能情况共有9种,其中乙摸到与甲相同颜色的球的情况有(白,白),(红,红),(黑,黑)三种,故乙在游戏中能获胜的概率为13. 22.分析:(1)每把锁都对应着4把钥匙,有4种等可能情况,两把锁共有8种等可能情况;(2)直接利用概率计算公式求解即可.解:(1)设两把不同的锁分别为A,B,能把A,B 两锁打开的钥匙分别为a,b,其余两把钥匙分别为m,n.根据题意,可以画出树状图,如图所示:由图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P(一次打开锁)=28=14.第22题答图偶数的结果有18种,所以P (奇)=14;P (偶)=34,所以P (偶)>P (奇),所以不公平.新规则:⑴同时自由转动转盘A 和B ;⑵转盘停止后,指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜.理由:因为P (奇)=12;P (偶)=12,所以P (偶)=P (奇),所以公平.24.解:(1)设乙盒中有x 个蓝球,则从乙盒中任意摸取一球,摸到蓝球的概率13xP x =+; 从甲盒中任意摸取一球,摸到蓝球的概率214P =.根据题意,得132x x =+, 解得3x =,所以乙盒中有3个蓝球.3种,因此从甲、乙两盒中各摸取一球,两球均为蓝球的概率31248P ==.(也可以用画树状图法或枚举法) 方法二:从甲盒中任意摸取一球,摸到蓝球的概率为14,从乙盒中任意摸取一球,摸到蓝球的概率为12. 则从甲、乙两盒中各摸取一球,两球均为蓝球的概率为111428P =⨯=.25.分析:(1)表中x 的值为50-35-11=4,y 的值为1-0.08-0.22=0.7.(2)先用树状图或列表法求出随机抽取两名学生的所有等可能结果数和恰好抽到学生A 1和A 2的结果数,再根据概率的计算公式求出所求事件的概率.解:(1)4;0.7(2)由(1)知获得A 等级的学生共有4人,则另外两名学生为A 3和A 4,画树状图,如图所示:所有等可能出现的结果是:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 2,A 1),(A 2,A 3),(A 2,A 4),(A 3,A 1),(A 3,A 2),(A 3,A 4),(A 4,A 1),(A 4,A 2),(A 4,A 3).或列表如下:由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A 1,A 2两名学生的结果有2种.∴P (恰好抽到A 1,A 2两名学生)21126==. 第25题答图11。

第十章 概率 单元测试卷(解析版)

第十章 概率 单元测试卷(解析版)

第十章概率单元测试卷一、单选题1.(2021·黑龙江·鹤岗一中高二阶段练习)将一枚骰子先后抛掷两次,若先后出现的点数分别为b,c,则方程20x bx c++=有实数根的样本点个数为()A.17B.18C.19D.20【答案】C【解析】【分析】直接列举即可得到.【详解】一枚骰子先后抛掷两次,样本点一共有36个;方程有实数根,需满足240b c-≥;样本点中满足240-≥的有(2,1)、(3,1)、(3,2)、(4,1)、(4,2)、(4,3)、(4,4)、(5,b c1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),共19个.故选:C2.(2021·全国·高一课时练习)某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则样本点共有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据基本事件的概念一一列举即可得出选项.【详解】解析:该生选报的所有可能情况是:数学和计算机、数学和航空模型、计算机和航空模型,所以样本点有3个.故选:C3.(2022·湖南·高一课时练习)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A=“两次都击中飞机”,B=“两次都没击中飞机”,C=“恰有一枚炮弹击中飞机”,D=“至少有一枚炮弹击中飞机”,下列关系不正确的是( )A .A ⊆DB .B ∩D =∅C .A ∪C =DD .A ∪B =B ∪D【答案】D【解析】【分析】按照事件间的互斥关系和包含关系分析求解即可.【详解】“恰有一枚炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一枚炮弹击中”包含两种情况:恰有一枚炮弹击中,两枚炮弹都击中.故A ⊆D ,A ∪C =DB ,D 为互斥事件,B ∩D =∅;A ∪B =“两个飞机都击中或者都没击中”,B ∪D 为必然事件,这两者不相等故选:D4.(2021·全国·高一单元测试)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.某天,齐王与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜,则田忌获胜概率为( ). A .112 B .16 C .14 D .13【答案】B【解析】【分析】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,列举所有比赛的情况,利用古典概型的概率公式计算即可得出结果.【详解】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,所有比赛的情况::11()a b ,、22(,)a b 、33(,)a b ,齐王获胜三局;11()a b ,、23(,)a b 、32(,)a b ,齐王获胜两局;12(,)a b 、21(,)a b 、33(,)a b ,齐王获胜两局;12(,)a b 、23(,)a b 、31(,)a b ,齐王获胜两局;13(,)a b 、21(,)a b 、32(,)a b ,田忌获胜两局;13(,)a b 、22(,)a b 、31(,)a b ,齐王获胜两局,共6种情况,则田忌胜1种情况,故概率为16P = 故选:B【点睛】本题考查了古典概型的概率计算问题,考查了理解辨析和数学运算能力,属于中档题目.5.(2021·全国·高一课时练习)10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( ) A .35B .23C .34D .415【答案】B【解析】【分析】 根据题意,分析甲先抽,并且中奖后剩余的奖券和“中奖”奖券的数目,由古典摡型的概率计算公式,即可求解.【详解】根据题意,10张奖券中有4张“中奖”奖券,甲先抽,并且中奖,此时还有9张奖券,其中3张为“中奖”奖券,则在甲中奖条件下,乙没有中奖的概率6293P ==. 故选:B.6.(2021·吉林·长春市第二十中学高一期末)从数字1,2,3,4中任取三个不同的数字,则所抽取的三个数字之和能被6整除的概率为( ) A .12 B .15 C .14 D .25【答案】C【解析】【分析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从数字1,2,3,4中任取三个不同的数字,方法有:123,124,134,234++++++++共4种,其中所抽取的三个数字之和能被6整除的有:1236++=共1种,故所求概率为1 4 .故选:C7.(2021·黑龙江实验中学高二阶段练习)在新冠疫情的冲击下,全球经济受到重创,右图是各国公布的2020年第二季度国内生产值(GDP)同比增长率,现从这5个国家中任取2个国家,则这2个国家中第二季度GDP同比增长率至少有1个低于15%-的概率为()A.310B.12C.35D.710【答案】D【解析】【分析】利用列举法求解即可【详解】解:令中国、澳大利亚、印度、英国、美国的2020年第二季度国内生产值(GDP)同比增长率分别为A,B,C,D,E,其中C,D都低于15%-,则从这5个国家中任取2个国家有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种,其中至少有1个低于15%-有AC,AD,BC,BD,CD,CE,DE共7种,所以所求概率为7 10.8.(2022·全国·高三专题练习(理))抛掷一颗质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( )A .A 与B 互斥B .A 与B 对立C .()23P A B +=D .()56P A B += 【答案】C【解析】根据互斥事件和对立事件的定义判断.求出事件A B +,然后计算概率.【详解】A 与B 不互斥,当向上点数为1时,两者同时发生,也不对立, 事件A B +表示向上点数为1,3,4,5之一,∴42()63P A B +==. 故选:C .【点睛】 关键点点睛:本题考查互斥事件和对立事件,考查事件的和,掌握互斥事件和对立事件的定义是解题关键.判断互斥事件,就看在一次试验中两个事件能不能同时发生,只有互斥事件才可能是对立事件,如果一次试验中两个事件不能同时发生,但非此即彼,即必有一个发生,则它们为对立事件.而不互斥的事件的概率不能用概率相加,本题()()()P A B P A P B +≠+.二、多选题9.(2021·重庆·高三开学考试)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12 【答案】ACD【解析】【分析】 根据题意可知,则从甲袋中摸出一个不是红球的概率是23,从乙袋中摸出一个不是红球的概率是12,根据对立事件和相互独立事件的概率计算公式,分别求出各选项中的概率,从而可判断得出答案.解:由题可知,从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,则从甲袋中摸出一个不是红球的概率是23,从乙袋中摸出一个不是红球的概率是12,对于A选项,2个球都是红球的概率为111326⨯=,A选项正确;对于B选项,2个球不都是红球的概率为1151326-⨯=,B选项错误;对于C选项,至少有1个红球的概率为2121323-⨯=,C选项正确;对于D选项,2个球中恰有1个红球的概率1211232132⨯+⨯=,D选项正确.故选:ACD.10.(2021·广东佛山·高二阶段练习)袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球【答案】BD【解析】【分析】根据互斥事件的定义和性质判断.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.【点睛】本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题.11.(2022·全国·高二单元测试)抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P ,则下列结论中正确的是( )A .1234P P P P ===B .312P P =C .12341P P P P +++=D .423P P =【答案】CD【解析】【分析】利用n 次的独立重复试验中事件A 恰好发生k 次的概率计算公式,分别求得1234,,,P P P P 的值,即可求解.【详解】由题意,抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P , 根据独立重复试验的概率计算公式, 可得:3322121233431111113113(),(),()(1),(1)2828228228P P P C P C =====-==⋅-=, 由1234P P P P =<=,故A 是错误的;由313P P =,故B 是错误的;由12341P P P P +++=,故C 是正确的;由423P P =,故D 是正确的.故选:CD【点睛】本题主要考查概率的计算及其应用,其中解答中熟练应用n 次独立重复试验中事件A 恰好发生k 次的概率计算公式求得相应的概率是解答的关键,着重考查了运算与求解能力.12.(2021·河北·石家庄市第二十二中学高二阶段练习)甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .()()()P A PB PC ==B .()()()P BC P AC P AB == C .1()8P ABC =D .1()()()8P A P B P C ⋅⋅= 【答案】ABD【解析】【分析】根据题意,分别求得(),(),()P A P B P C 可判断A ,由独立事件概率乘法公式,可判断BCD.【详解】由已知22221()44442P A =⨯+⨯=,21()()42P B P C ===, 由已知有1()()()4P AB P A P B ==,1()4P AC =,1()4P BC =, 所以()()()P A P B P C ==,则A 正确;()()()P BC P AC P AB ==,则B 正确;事件A 、B 、C 不相互独立,故1()8P ABC =错误,即C 错误 1()()()8P A P B P C ⋅⋅=,则D 正确; 综上可知正确的为ABD.故选:ABD .【点睛】本题考查了古典概型概率计算公式的应用,概率乘法公式的应用,属于基础题.三、填空题13.(2022·全国·高三专题练习)某工厂生产了一批节能灯泡,这批产品中按质量分为一等品,二等品,三等品.从这些产品中随机抽取一件产品测试,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________.【答案】0.21##21100【解析】【分析】设抽到一等品,二等品,三等品的事件分别为,,A B C ,利用互斥事件加法列出方程组即可求解.【详解】设抽到一等品,二等品,三等品分别为事件A ,B ,C 则()()0.86()()0.35()()()1P A P B P B P C P A P B P C +=⎧⎪+=⎨⎪++=⎩,则()0.21P B =故答案为:0.2114.(2021·全国·高一课时练习)从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的样本点个数为___________.【答案】4【解析】【分析】直接列举基本事件即可.【详解】从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数,共有4种.故答案为:4.15.(2021·黑龙江·哈师大附中高二开学考试)若三个原件A,B,C按照如图的方式连接成一个系统,每个原件是否正常工作不受其他元件的影响,当原件A正常工作且B,C中至少有一个正常工作时,系统就正常工作,若原件A,B,C正常工作的概率依次为0.7,0.8,0.9,则这个系统正常工作的概率为______【答案】0.686【解析】【分析】根据题意,先求得B与C至少有一个正常工作的概率,再结合独立事件概率的乘法公式,即可求解.【详解】由题意,系统正常工作的情况分成两个步骤,A正常工作且B,C至少有一个正常工作的情况,其中A正常工作的概率为0.7;B正常工作的概率为0.8,C正常工作的概率为0.9,---=,则B与C至少有一个正常工作的概率为1(10.8)(10.9)0.98所以这个系统正常工作的概率为:0.7×0.98=0.686;故答案为:0.686;【点睛】本题主要考查了对立事件和相互独立事件的概率的计算,其中解答中熟记相互独立事件的概率的计算公式,结合对立事件的概率计算公式求解是的关键,着重考查分析问题和解答问题的能力,属于基础题. 16.(2021·全国·高一课时练习)现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.【答案】34【解析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为153204=. 故答案为:34【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.四、解答题17.(2022·全国·高三专题练习(文))从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,,第八组[]190195,,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校的800名男生的身高的平均数和中位数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x ,y ,事件{}5E x y =-≤,求()P E .【答案】(1)0.06;(2)平均数为174.1,中位数为1745.;(3)()715P E =. 【解析】 【分析】(1)由频率分布直方图的性质求第七组的频率;(2)根据平均数和中位数的定义利用频率分布直方图求平均数和中位数; (3)确定样本空间,利用古典概型概率公式求概率. 【详解】解:(1)第六组的频率为400850.=, ∴第七组的频率为()100850008200160042006006......--⨯⨯++⨯+=. (2)由直方图得,身高在第一组[)155160,的频率为00085004..⨯=, 身高在第二组[)160165,的频率为00165008..⨯=, 身高在第三组[)165170,的频率为004502..⨯=, 身高在第四组[)170175,的频率为004502..⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=>,设这所学校的800名男生的身高中位数为m ,则170175m <<, 由()0040080217000405...m ..+++-⨯=得1745m .=,所以这所学校的800名男生的身高的中位数为174.5cm ,平均数为157.50.04162.50.08167.50.2172.50.2177.50.065182.50.08187.50.06⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+192.50.0085174.1⨯⨯=.(3)第六组[)180185,的抽取人数为4,设所抽取的人为a ,b ,c ,d , 第八组[]190195,的抽取人数为0.0085502⨯⨯=,设所抽取的人为A ,B ,则从中随机抽取两名男生有ab ,ac ,ad ,bc ,bd ,cd ,aA ,aB ,bA ,bB ,cA ,cB ,dA ,dB ,AB 共15种情况,因事件{}5E x y =-≤发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为ab ,ac ,ad ,bc ,bd ,cd ,AB 共7种情况.所以()715P E =. 18.(2021·江苏·高邮市临泽中学高一期末)袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求:(1)从中任取一球,得到黑球、黄球、绿球的概率各是多少? (2)从中任取两个球,得到的两个球颜色不相同的概率是多少? 【答案】(1)黑球、黄球、绿球的概率分别是13,29,49;(2)1318.【解析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C ,由已知列出()()()P A P B P C 、、的方程组可得答案;(2)求出从9个球中取出2个球的样本空间中共有的样本点,再求出两个球同色的样本点可得答案. 【详解】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C , 由于A ,B ,C 为互斥事件,根据已知,得()()()()()()()()()()59231P A B P A P B P B C P B P C P A B C P A P B P C ⎧+=+=⎪⎪⎪+=+=⎨⎪++=++=⎪⎪⎩,解得()()()132949P A P B P C ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以,任取一球,得到黑球、黄球、绿球的概率分别是13,29,49.(2)由(1)知黑球、黄球、绿球个数分别为3,2,4, 从9个球中取出2个球的样本空间中共有36个样本点,其中两个是黑球的样本点是3个,两个黄球的是1个,两个绿球的是6个, 于是,两个球同色的概率为31653618++=, 则两个球颜色不相同的概率是51311818-=. 【点睛】本题考查互斥事件和对立事件的概率,一般地,如果事件A 1、A 2、…、A n 彼此互斥,那么事件A 1+A 2+…+A n 发生(即A 1、A 2、…、A n 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).19.(2021·全国·高一课时练习)进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益,是关乎生态文明建设全局的大事.为了普及垃圾分类知识,某学校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p ,乙同学答对每题的概率都为()q p q >,且在考试中每人各题答题结果互不影响.已知每题甲,乙同时答对的概率为12,恰有一人答对的概率为512. (1)求p 和q 的值;(2)试求两人共答对3道题的概率. 【答案】(1)34p =,23q =;(2)512.【解析】(1)由互斥事件和对立事件的概率公式列方程组可解得,p q ;(2)分别求出两人答对1道的概率,答对两道题的概率,两人共答对3道题,则是一人答对2道题另一人答对1道题,由互斥事件和独立事件概率公式可得结论. 【详解】解:(1)设A ={甲同学答对第一题},B ={乙同学答对第一题},则()P A p =,()P B q =. 设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.由于二人答题互不影响,且每人各题答题结果互不影响,所以A 与B 相互独立,AB 与AB 相互互斥,所以()()()()P C P AB P A P B ==,()()P D P AB AB =+()()()()()()()()()()()()11P AB P AB P A P B P A P B P A P B P A P B =+=+=-+-.由题意可得()()1,2511,12pq p q q p ⎧=⎪⎪⎨⎪-+-=⎪⎩即1,217.12pq p q ⎧=⎪⎪⎨⎪+=⎪⎩解得3,42,3p q ⎧=⎪⎪⎨⎪=⎪⎩或2,33.4p q ⎧=⎪⎪⎨⎪=⎪⎩由于p q >,所以34p =,23q =.(2)设=i A {甲同学答对了i 道题},i B ={乙同学答对了i 道题},0i =,1,2.由题意得,()11331344448P A =⨯+⨯=,()23394416P A =⨯=,()12112433339P B =⨯+⨯=,()2224339P B =⨯=.设E ={甲乙二人共答对3道题},则1221E A B A B =+. 由于i A 和i B 相互独立,12A B 与21A B 相互互斥,所以()()()()()()()12211221349458916912P E P A B P A B P A P B P A P B =+=+=⨯+⨯=. 所以,甲乙二人共答对3道题的概率为512. 【点睛】关键点点睛:本题考查互斥事件与独立事件的概率公式,解题关键是把所求概率事件用互斥事件表示,然后求概率,如设A={甲同学答对第一题},B={乙同学答对第一题},设C={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB=,D AB AB=+.同样两人共答对3题分拆成甲答对2题乙答对1题与甲答对1题乙答对2题两个互斥事件.20.(2021·海南·海口市灵山中学高二期中)某餐厅提供自助餐和点餐两种服务,其单人平均消费相近,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,得到以下数据表格.(单位:人次)满意度老年人中年人青年人自助餐点餐自助餐点餐自助餐点餐10分(满意)1212022015分(一般)22634120分(不满意)116232(1)由样本数据分析,三种年龄层次的人群中,哪一类更倾向于选择自助餐?(2)为了和顾客进行深人沟通交流,餐厅经理从点餐不满意的顾客中选取2人进行交流,求两人都是中年人的概率;(3)若你朋友选择到该餐厅就餐,根据表中的数据,你会建议你朋友选择哪种就餐方式?【答案】(1)中年人更倾向于选择自助餐;(2)110P=;(3)建议其选择自助餐.【解析】(1)分别求出三种年龄层次的人群中,选择自助餐的概率,进行比较从而得出结论.(2)点餐不满意的人群中,老年人1人(设为a),中年人2人(设为b,c),青年人2人(设为d,e),列出选2人的基本事件,得出基本事件数和两人都是中年人所包含的事件数,由古典概率公式可得答案. (3)分别求出自助餐和点餐满意的均值,建议选择满意度平均值大.【详解】(1)由题知,老年人选择自助餐的频率115 19P=,中年人选择自助餐的频率23239P =, 青年人选择自助餐的频率32742P =, 则213P P P >>,即中年人更倾向于选择自助餐.(2)点餐不满意的人群中,老年人1人(设为a ),中年人2人(设为b ,c ),青年人2人(设为d ,e ). 从中选取2人,其基本事件有(,)a b ,(,)a c ,(,)a d ,(,)a e ,(,)b c ,(,)b d ,(,)b e ,(,)c d ,(,)c e ,(,)d e ,共10个基本事件,其中2人都是中年人仅有一个(,)b c 符合题意; 故两人都是中年人的概率为110P =. (3)由表可知,自助餐满意的均值为:1521012510058052121074x ⨯+⨯+⨯==++.点餐满意的均值为:241017550125417526x ⨯+⨯+⨯==++12x x >,故建议其选择自助餐.21.(2021·新疆·乌市八中高二阶段练习)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.(1)利用所有组频率和为1即可求得第七组的频率,然后利用81i i i x x p ==∑(其中i x 表示第i 组的中间值,ip 表示该组的频率)求出平均值;(2)利用古典概率模型概率的计算方法求解即可. 【详解】解:(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名, 基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个 他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 【点睛】本题考查利用频率分布直方图求解样本数据的平均值,考查古典模型概率的计算,难度一般. (1)计算样本数据的平均值时,只需利用每组中间值乘以本组频率求和即可得到答案; (2)古典概型的解答注意分析清楚基本事件总数及某事件成立时所包含的基本事件数.22.(2021·全国·高二课时练习)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率. 【答案】(1)49;(2)604729.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率. (2)根据对立事件的概率公式计算可得; 【详解】解:(1)设i A 表示事件:一个试验组中,服用A 有效的小鼠有i 只,0i =,1,2,i B 表示事件“一个试验组中,服用B 有效的小鼠有i 只“,0i =,1,2, 依题意有:1124()2339P A =⨯⨯=,2224()339P A =⨯=.0111()224P B =⨯=,1111()2222P B =⨯⨯=,所求概率为:010212()()()P P B A P B A P B A =++14141444949299=⨯+⨯+⨯= (2)依题意这3个试验组中至少有一个甲类组的对立事件为这3个试验组中没有一个甲类组的.所以概率34604119729P ⎛⎫=--= ⎪⎝⎭;【点睛】本题考查相互独立事件的概率公式的应用,以及对立事件的概率计算,属于中档题.。

2024学年八年级数学经典好题专项(频率与概率)练习(附答案)

2024学年八年级数学经典好题专项(频率与概率)练习(附答案)

2024学年八年级数学经典好题专项(频率与概率)练习一、选择题1、一个事件发生的概率不可能是( )A 、 0B 、C 、 1D 、23 2、下列说法错误的是( )A.必然事件发生的概率是1B.不确定事件发生的概率是0.5C.不可能事件发生的概率是0D.随机事件发生的概率介于0和1之间 3、任意两个整数,它们的和还是整数的概率是 ( )A. 21 B. 31 C. 0 D . 14、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( ) A .6 B .16 C .18 D .245、下列说法正确的是( )A .如果一件事情发生的可能性达到99.9999%,说明这件事必然发生;B .如果一事件不是不可能事件,说明此事件是不确定事件;C .可能性的大小与不确定事件有关;D .如果一事件发生的可能性为百万分之一,那么这事件是不可能事件..6、口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是( ) A.从口袋中拿一个球恰为红球 B .从口袋中拿出2个球都是白球C .拿出6个球中至少有一个球是红球D .从口袋中拿出的5个球恰为3红2白 7、下列事件发生的可能性为0的是( ) A .掷两枚骰子,同时出现数字“6”朝上B .小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C .今天是星期天,昨天必定是星期六D .小明步行的速度是每小时40千米8、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有 ( ) A.16个 B.15个 C.13个 D.12个9、小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数 100 200 300 400 500 正面朝上的频数53 98 156 202 244 若抛掷硬币的次数为1000,则“正面朝上”的频数最接近 ( ) A .20 B .300 C .500 D .80010、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率 B.频率与试验次数无关C.概率是随机的,与频率无关 D.随着试验次数的增加,频率一般会越来越接近概率 11、商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( )A.抽10次奖必有一次抽到一等奖 B.抽1次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽1次肯定抽到一等奖 12、如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以“钉尖朝上”的概率是0.616; ②随着试验次数的增加,“钉尖朝上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖朝上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖朝上”的频率一定是0.620.其中合理的是( )A.① B.② C.①② D.①③13、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率 B.频率与试验次数无关C.概率是随机的,与频率无关 D.随着试验次数的增加,频率一般会越来越接近概率二、填空题14、 事件的概率为1, 事件的概率为0,如果A为 事件,那么0<P(A)<1。

10.3 频率与概率(精练)(解析版)

10.3 频率与概率(精练)(解析版)

10.3 频率与概率(精练)【题组一 频率与概率的概念区分】1.(2021·全国单元测试)下列说法正确的有( ) ①随机事件A 的概率是频率的稳定值,频率是概率的近似值. ②一次试验中不同的基本事件不可能同时发生. ③任意事件A 发生的概率()P A 总满足()01P A <<. ④若事件A 的概率为0,则A 是不可能事件. A .0个 B .1个C .2个D .3个【答案】C【解析】不可能事件的概率为0,但概率为0的事件不一定是不可能事件,如几何概率中“单点”的长度、面积、体积都是0,但不是不可能事件,∴④不对;抛掷一枚骰子出现1点和出现2点是不同的基本事件,在同一次试验中,不可能同时发生,故②正确;任意事件A 发生的概率P (A )满足()01P A ,∴③错误;又①正确.∴选C.2.(2020·全国高一课时练习)下列叙述随机事件的频率与概率的关系中,说法正确的是( ) A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关【答案】C【解析】频率指的是:在相同条件下重复试验下, 事件A 出现的次数除以总数,是变化的 概率指的是: 在大量重复进行同一个实验时, 事件A 发生的频率总接近于某个常数, 这个常数就是事件A 的概率,是不变的 故选:C3.(多选)(2020·山东省桓台第一中学)下列说法中,正确的是( ) A .频率反映随机事件的频繁程度,概率反映随机事件发生的可能性大小;B .频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;C .做n 次随机试验,事件发生次,则事件发生的频率mn就是事件的概率; D .频率是概率的近似值,而概率是频率的稳定值.【答案】ABD【解析】频率是在一次试验中某一事件出现的次数与试验总数的比值,随某事件出现的次数而变化概率指的是某一事件发生的可能程度,是个确定的理论值故选:ABD4.(多选)(2021·全国高一课时练习)下列说法正确的是()A.随着试验次数的增加,频率一般会越来越接近概率B.连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C.某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖D.某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水【答案】AB【解析】对于A,试验次数越多,频率就会稳定在概率的附近,故A正确对于B,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B正确.对于C,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故C错误.对于D,“明天本市降水概率为70%”指下雨的可能性为0.7,故D错.故选:AB.5.(多选)(2020·全国高一课时练习)下列说法正确的是()A.一个人打靶,打了10发子弹,有6发子弹中靶,因此这个人中靶的概率为0.6B.某地发行福利彩票,其回报率为47%,有个人花了100元钱买彩票,一定会有47元回报C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同D.大量试验后,可以用频率近似估计概率.【答案】CD【解析】A、某人打靶,射击10次,击中6次,那么此人中靶的频率为0.6,故A错误;B、买这种彩票是一个随机事件,中奖或者不中奖都有可能,但事先无法预料,故B错误;C、根据古典概型的概率公式可知C正确;D、大量试验后,可以用频率近似估计概率,故D正确.故选:CD .6.(2020·全国高一课时练习)下列说法:①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小; ②百分率是频率,但不是概率;③频率是不能脱离试验次数n 的实验值,而概率是具有确定性的不依赖于试验次数的理论值; ④频率是概率的近似值,概率是频率的稳定值. 其中正确的是______________. 【答案】①③④【解析】对于①,由频率和概率概念: 频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小.可知①正确;对于②,概率也可以用百分率表示,故②错误.对于③,频率与试验次数相关,而概率与试验次数无关,所以③正确;对于④,对于不同批次的试验,频率不一定相同,但概率相同,因而频率是概率的近似值,概率是频率的稳定值,所以④正确.由概率和频率的定义中可知①③④正确. 故答案为: ①③④ 【题组二 概率的计算】1.(2020·全国高一课时练习)某地为了整顿电动车道路交通秩序,考虑对电动车闯红灯等违章行为进行处罚,为了更好地了解情况,在某路口骑车人中随机选取了100人进行调查,得到如下数据,其中10a b =+.(1)用表中数据所得频率代替概率,求对骑车人处罚10元与20元的概率的差;(2)用分层抽样的方法在处罚金额为10元和20元的抽样人群中抽取5人,再从这5人中选取2人参与路口执勤,求这两种受处罚的人中各有一人参与执勤的概率. 【答案】(1)110;(2)35. 【解析】(1)由条件可得1050100a b a b =+⎧⎨++=⎩,解得3020a b =⎧⎨=⎩,所以处罚10元的有30人,处罚20元的有20人.所以对骑车人处罚10元与20元的概率的差为3020110010010-=. (2)用分层抽样的方法在受处罚的人中抽取5人,则受处罚10元的人中应抽取3人,分别记为a ,b ,c , 受处罚20元的人中应抽取2人,分别记为A ,B ,若再从这5人中选2人参与路口执勤,共有10种情况:(),a b ,(),a c ,(),a A ,(),a B ,(),b c ,(),b A ,(),b B ,(),c A ,(),c B ,(),A B ,其中两种受处罚的人中各有一人的情况有6种:(),a A ,(),a B ,(),b A ,(),b B ,(),c A ,(),c B , 所以两种受处罚的人中各有一人参与执勤的概率为63105=. 2.(2020·全国高一课时练习)2020年新型冠状病毒席卷全球,美国是疫情最严重的国家,截止2020年6月8日美国确诊病例约为200万人,经过随机抽样,从感染人群中抽取1000人进行调查,按照年龄得到如下频数分布表:(Ⅰ)求a 的值及这1000例感染人员的年龄的平均数;(同一组中的数据用该组区间的中点值作代表) (Ⅱ)用频率估计概率,求感染人群中年龄不小于60岁的概率. 【答案】(Ⅰ)250a =,平均数为52.2;(Ⅱ)0.38. 【解析】(Ⅰ)由题意知50320300801000a ++++=, ∴250a =, 年龄平均数1050302505032070300908052.21000⨯+⨯+⨯+⨯+⨯==.(Ⅱ)1000人中年龄不小于60岁的人有380人, 所以年龄不小于60岁的频率为3800.381000=, 用频率估计概率,所以感染人群中年龄不小于60岁的概率为0.38.3.(2020·全国高一课时练习)某制造商2019年8月份生产了一批乒乓球,随机抽取100个进行检查,测得每个乒乓球的直径(单位:mm ),将数据分组如下表:(1)请将上表补充完整;(2)已知标准乒乓球的直径为40.00mm ,试估计这批乒乓球的直径误差不超过0.03mm 的概率. 【答案】(1)表见解析(2)0.9 【解析】(1)(2)标准尺寸是40.00mm ,若要使误差不超过0.03mm ,则直径落在[]39.97,40.03内.由(1)中表知,直径落在[]39.97,40.03内的频率为0.20.50.20.9++=, 所以这批乒乓球的直径误差不超过0.03mm 的概率约为0.9.4.(2020·全国高一课时练习)某水产试验厂进行某种鱼卵的人工孵化,6个试验小组记录了不同的鱼卵数所孵化出的鱼苗数,如下表所示:(1)表中①②对应的频率分别为多少(结果保留三位小数)? (2)估计这种鱼卵孵化成功的概率.(3)要孵化5000尾鱼苗,大概需要鱼卵多少个(精确到百位)?【答案】(1)0.889,0.901(2)0.9(3)50005600 0.9≈【解析】(1)106721630.889,0.90112002400≈≈,所以①②对应的频率分别为0.889,0.901.(2)从表中数据可看出,虽然频率都不一样,但随着试验的鱼卵数不断增多,孵化成功的频率稳定在0.9附近,由此可估计该种鱼卵孵化成功的概率为0.9.(3)大概需要鱼卵500056000.9≈(个).5.(2021·全国高一课时练习)某个制药厂正在测试一种减肥药的疗效,有500名志愿者服用此药,结果如下:如果另有一人服用此药,估计下列事件发生的概率:(1)这个人的体重减轻了;(2)这个人的体重不变;(3)这个人的体重增加了.【答案】(1)0.552;(2)0.288;(3)0.16.【解析】(1)由频率估计概率可得:体重减轻了的概率估计值为2760.552 500=;(2)由频率估计概率可得:体重不变的概率估计值为1440.288 500=;(3)由频率估计概率可得:体重增加了的概率估计值为800.16 500=.6.(2021·全国高一课时练习)某中学有教职工130人,对他们进行年龄状况和受教育程度的调查,其结果如下:从这130名教职工中随机地抽取一人,求下列事件的概率; (1)具有本科学历; (2)35岁及以上;(3)35岁以下且具有研究生学历. 【答案】(1)813;(2)926;(3)726. 【解析】(1)具有本科学历的共有50201080++=(人),故所求概率为80813013=. (2)35岁及以上的共有331245+=(人),故所求概率为45913026=. (3)35岁以下且具有研究生学历的有35人,故所求概率为35713026=. 【题组三 生活中的概念】1.(2021·全国高一课时练习)一个游戏包含两个随机事件A 和B ,规定事件A 发生则甲获胜,事件B 发生则乙获胜.判断游戏是否公平的标准是事件A 和B 发生的概率是否相等.在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么? 【答案】支持甲对游戏公平性的判断,理由见解析【解析】:当游戏玩了10次时,甲、乙获胜的频率都为0.5; 当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7,根据频率的稳定性,随着试验次数的增加,频率偏离概率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近.而游戏玩到1000次时,甲、乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的.因此,应该支持甲对游戏公平性的判断.2.(2021·全国高二课时练习)有人说:“掷一枚骰子一次得到的点数是2的概率是16,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是16,所以掷一枚骰子6次得到一次点数是2的概率P=16×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗?请说出你的理由.【答案】见解析【解析】这种说法是错误的.上述认为说法正确的同学,其计算概率的方法自然也是错误的.为了弄清这个问题,我们不妨用类比法,即把问题变换一下说法.原题中所说的问题,类似于“在一个不透明的盒子里放有6个标有数字1,2,3,4,5,6的同样大小的球,从盒中摸一个球恰好摸到2号球的概率是16.那么摸6次球是否一定会摸到一次2号球呢?”在这个摸球问题中,显然还缺少一个摸球的规则,即每次摸到的球是否需要放回盒子里?显然,如果摸到后不放回,那么摸6次球一定会摸到一次2号球.如果摸到球后需要放回,那么摸6次球就不一定会摸到一次2号球了.由此看来,我们先要弄清这个摸球问题与上面的掷骰子问题是否完全类同,是否应当有每次摸到的球还要放回盒子里的要求.我们先看看上面掷骰子问题中的规则,在掷骰子问题中,表面上好像没写着什么规则,但实际上却藏有一个自然的规则,即第一次如果掷得某个数(如3),那么后面还允许继续掷得这个相同的数.于是摸球问题要想与掷骰子问题中的规则相同,显然每次摸到的球必须要放回盒子里才妥当.那么摸6次球就不一定会摸到一次2号球了.3.(2021·全国课时练习)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(,)i j分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.【答案】12,23,不公平【解析】(1)甲乙二人抽到的牌的所有情况(方片4用4’表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:(2,3)、(2,4)、(2,4’)、(3,2)、(3,4)、(3,4’)、(4,2)、(4,3)、(4,4’)、(4’,2)、(4’,3)、(4’,4)共12种不同情况(没有写全面时:只写出1个不给分,2-4个给1分,5-8个给8分,9-11个给3分)(2)甲抽到3,乙抽到的牌只能是2,4,4’因此乙抽到的牌的数字大于3的概率为2 3(3)由甲抽到的牌比乙大的有(3,2)、(4,2)、(4,3)、(4’,2)、(4’,3)5种,甲胜的概率15 12p=,乙获胜的概率为27 12p=,∵57 1212<∴此游戏不公平.4.(2021·全国高一课时练习)有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:A.猜“是奇数”或“是偶数”B.猜“是4的整数倍数”或“不是4的整数倍数”C.猜“是大于4的数”或“不是大于4的数”请回答下列问题:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应制定哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.【答案】(1) 应选方案B ,猜“不是4的整数倍数”;(2) 应当选择方案A;(3) 可以设计为:猜“是大于5的数”或“不是大于5的数”【解析】 (1)如题图,方案A中“是奇数”或“是偶数”的概率均为=0.5;方案B中“不是4的整数倍数”的概率为=0.8,“是4的整数倍数”的概率为=0.2;方案C中“是大于4的数”的概率为=0.6,“不是大于4的数”的概率为=0.4.乙为了尽可能获胜,应选方案B,猜“不是4的整数倍数”.(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.(3)可以设计为:猜“是大于5的数”或“不是大于5的数”,此方案也可以保证游戏的公平性.5.(2020·全国课时练习)有人说:“掷一枚骰子一次得到的点数是2的概率是16,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是16,所以掷一枚骰子6次得到一次点数是2的概率P=16×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗?请说出你的理由. 【答案】见解析【解析】这种说法是错误的.上述认为说法正确的同学,其计算概率的方法自然也是错误的. 为了弄清这个问题,我们不妨用类比法,即把问题变换一下说法.原题中所说的问题,类似于“在一个不透明的盒子里放有6个标有数字1,2,3,4,5,6的同样大小的球,从盒中摸一个球恰好摸到2号球的概率是16.那么摸6次球是否一定会摸到一次2号球呢?” 在这个摸球问题中,显然还缺少一个摸球的规则,即每次摸到的球是否需要放回盒子里?显然,如果摸到后不放回,那么摸6次球一定会摸到一次2号球.如果摸到球后需要放回,那么摸6次球就不一定会摸到一次2号球了.由此看来,我们先要弄清这个摸球问题与上面的掷骰子问题是否完全类同,是否应当有每次摸到的球还要放回盒子里的要求.我们先看看上面掷骰子问题中的规则,在掷骰子问题中,表面上好像没写着什么规则,但实际上却藏有一个自然的规则,即第一次如果掷得某个数(如3),那么后面还允许继续掷得这个相同的数.于是摸球问题要想与掷骰子问题中的规则相同,显然每次摸到的球必须要放回盒子里才妥当.那么摸6次球就不一定会摸到一次2号球了. 【题组四 随机模拟】1.(2021·河南)农历正月初一是春节,俗称“过年”,是我国最隆重、最热闹的传统节日.家家户户张贴春联,欢度春节,其中“福”字是必不可少的方形春联.如图,该方形春联为边长是40cm 的正方形,为了估算“福”字的面积,随机在正方形内撒100颗大豆,假设大豆落在正方形内每个点的概率相同,如果落在“福”字外的有65颗,则“福”字的面积约为( )A .2500cmB .2560cmC .2820cmD .21040cm【答案】B【解析】设“福”字的面积为2cm x ,根据几何概型可知21006510040x -=,解得()2560cm x =.故选:B. 2.(2020·全国高一课时练习)袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好抽取三次就停止的概率为( )A .19B .318C .29D .518【答案】C【解析】由随机产生的随机数可知恰好抽取三次就停止的有021,001,130,031,共4组随机数, 恰好抽取三次就停止的概率约为42189=,故选C. 3.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 013 320 122 103 233由此可以估计,恰好第三次就停止的概率为( )A .19B .16C .29D .518【答案】B【解析】由题意得18组随机数中,巧好第三次就停止的数为023,123,132,故恰好第三次就停止的概率为31186=,故选:B . 4.(2020·全国高一课时练习)下列不能产生随机数的是 ( )A .抛掷骰子试验B .抛硬币C .计算器D .正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体【答案】D【解析】D项中,出现2的概率为13,出现1,3,4,5的概率均是16,则D项不能产生随机数,故选D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学学科第十章《频率与概率》质量检测试题
总分:100 考试时间:60分钟
一、精心选一选,相信自己的判断!
1、向空中随意抛掷两枚硬币,则下列事件发生的概率大的是( ) A .两正面都朝上
B .两背面都朝上
C .一个正面朝上,另一个背面朝上
D .三种情况的可能性一样大
2、在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成
“小房子”(如图2)的概率等于 ( ) (A ) 1 (B ) 12
(C )
13
(D ) 23
3、准备两组相同的牌,每组3张,分别是1、2、3,两张牌的牌面数之和等于5 的频数是( )
A 、12
B 、1
C 、2
D 、14
4、下列事件发生的概率为0的是( )
A 、随意掷一枚均匀的硬币两次,至少有一次反面朝上;
B 、今年冬天茂名会下雪;
C 、随意掷两个均匀的骰子,朝上面的点数之和为1;
D 、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

5、小明手里有红桃1、2、3三张牌,小凤手里有黑桃1、2、3三张牌,他们各出一张牌,其和有( )种。

A 、9 ;
B 、5 ;
C 、6 ;
D 、7
6、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上 (如右图),从中任意一张是数字3的概率是( ) A 、1/6 B 、1/3 C 、1/2 D 、2/3
7、有保证至少有两个人在同一个月生日,起码要有( )人 A 、12;B 、 6 ;C 、24 ;D 、13
8、 转动两个转盘,当指针所指的数之和为奇数时, 小明胜,否则小亮胜,则小明获胜的概率是( ) A 、12 ;B 、49 ;C 、59
;D 、5
9、(1)若果你班上共有48人,那么你班上,一定有2个同学是同一天过生日的;(2)把100个乒乓球放进99个抽屉里,一定有一个抽屉里至少有2个乒乓球;(3)小李将一枚硬币连抛两次,结果都是正面朝上,于是他说:抛掷硬币正面朝上的概率是1;(4)从13张同一花(1—13)的扑克中,任取一张,抽得牌号为偶数的概率是
13
6。

上述正确的说法个数
是( ) A 、
1个;B 、2个;C 、3个;D 、4个
10.在可以不同年的条件下,下列结论叙述不正确的是( )
(A )400个人中至少有两人生日相同 (B )300个人至少有两人生日相同 (C )2个人的生日不可能相同 (D )2个人的生日很有可能相同
二、耐心填一填:
11、小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定。

请问在一个回合中三个人都出“布”的概率是 ; 12、随机掷一枚均匀的硬币2次,至少有一次正面朝上的概率是
13、小明不小心把电话本的一个亲戚的手机号给弄糊了,中间两个数字已经无法看清,那么小明一次就能打通该手机号码的概率是 14、在一个不透明的袋中装有除颜色外其余都相同的3个小
球,其中一个红色球、两个黄色球.如果第一次先从袋中摸
出一个球后不再放回,第二次再从袋中摸出一个,那么两次
都摸到黄色球的概率是 ;
15、图中所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是 ;
16、小华买了一套科普读物,有上、中、下三册,要整齐的摆放在书架上,有哪几种摆法?其中恰好摆成“上、中、下”顺序的概率是 ;
17、小王手里拿着黑桃1和黑桃2两张牌,小亮手里拿着梅花1和梅花2两张牌,他们各出一张,共有 种不同的出牌方式,其中牌面数之和为4的概率是
18、如图,一点随机地落在A,B,C 三个区域中的某一个之中,
你认为这个点所落在的区域可能性最大的是 .
三、细心做一做:
19、有两组卡片,第一组三张卡片上都写着A 、B 、B ,第二组五张卡片上都写着A 、B 、B 、D 、E 。

试用列表法求出从每组卡片中各抽取一张,两张都是B 的概率。

20、、一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样。

小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球。

请你利用(列表或画树状图)分析并求出小亮两次都能摸到白球的概率。

21、将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上。

(1)随机抽取一张,求抽到奇数的概率;
(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少?
22、利用下面的转盘做“配紫色”的游戏,求出“配紫色”的概率。

23、两人一组,每人在纸上随机写出一个不大于3的正整数,两人所写的正整数恰好相同的概率是多少?你能用树状图画出求解结果吗?
四、勇敢闯一闯:
24、小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝色=紫色,配成紫色者胜)
25、依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;
(2)求出闯关成功的概率.
在左图开关。

相关文档
最新文档