高考数学二轮专题复习 5.3用空间向量的方法解立体几何问题辅导与训练检测卷 理
高考数学(理)二轮专题练习【专题5】(3)立体几何中的向量方法(含答案)

第 3 讲立体几何中的向量方法考情解读 1.以多面体 (特别是棱柱、棱锥或其组合体)为载体,考察空间中平行与垂直的证明,常出此刻解答题的第(1)问中,考察空间想象能力,推理论证能力及计算能力,属低中档问题.2.以多面体 ( 特别是棱柱、棱锥或其组合体)为载体,考察空间角 (主假如线面角和二面角)的计算,是高考的必考内容,属中档题.3.以已知结论追求成立的条件(或能否存在问题)的探究性问题,考察逻辑推理能力、空间想象能力以及探究能力,是近几年高考命题的新亮点,属中高档问题.1.直线与平面、平面与平面的平行与垂直的向量方法设直线 l 的方向向量为a=(a1,b1,c1).平面α、β的法向量分别为μ= (a2,b2, c2),v=(a3,b3, c3)( 以下同样 ).(1) 线面平行l∥ α? a⊥ μ? a·μ= 0? a1a2+ b1b2+ c1c2= 0.(2) 线面垂直l⊥ α? a∥ μ? a= kμ? a1= ka2,b1=kb2, c1= kc2.(3)面面平行α∥ β? μ∥v? μ=λv? a2=λa, b =λb,c =λc32323.(4)面面垂直α⊥ β? μ⊥v? μ·v= 0? a2a3+b2b3+ c2c3= 0.2.直线与直线、直线与平面、平面与平面的夹角计算设直线 l ,m 的方向向量分别为a=( a1, b1,c1),b=(a2,b2, c2).平面α、β的法向量分别为μ= (a3, b3, c3),v= (a4, b4, c4)(以下同样 ).(1)线线夹角π设 l, m 的夹角为θ(0≤θ≤2),则|a·b|=|a1a2+ b1b2+ c1c2|cos θ=a12+ b12+ c12 a22+ b22+ c22.|a ||b|(2)线面夹角π设直线 l 与平面α的夹角为θ(0≤θ≤2),则 sin θ=||aa·μ||μ||= |cos〈a,μ〉 |.(3) 面面夹角设半平面 α、 β的夹角为 θ(0 ≤θ≤π),则 |cos θ|= ||μ·μ||v v ||= |cos 〈 μ,v 〉 |.提示 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中剖析.3.求空间距离直线到平面的距离,两平行平面的距离均可转变为点到平面的距离,点P 到平面 α的距离: d→=|PM ·n |(此中 n 为 α的法向量, M 为 α内任一点 ).|n |热门一 利用向量证明平行与垂直例 1 如图,在直三棱柱 ADE — BCF 中,面 ABFE 和面 ABCD 都是正方形且相互垂直, M 为 AB 的中点, O 为 DF 的中点.运用向量方法证明:(1) OM ∥平面 BCF ;(2) 平面 MDF ⊥平面 EFCD .思想启示从 A 点出发的三条直线AB 、 AD , AE 两两垂直,可成立空间直角坐标系.证明方法一由题意,得AB , AD , AE 两两垂直,以A 为原点成立如图所示的空间直角坐标系.设正方形边长为 1,则 A(0,0,0), B(1, 0,0),C(1,1,0) , D(0,1,0) ,F(1,0,1) , M 1,0, 0,O 1,1, 12 2 22 .→1 ,- 1 → 1,0,0),(1) OM = 0,- 2 2 , BA = (-→ → → →∴ OM ·BA = 0, ∴ OM ⊥BA.∵ 棱柱 ADE — BCF 是直三棱柱,∴ ⊥ 平面 , ∴ →是平面 的一个法向量,AB BCF BA BCF且 OM? 平面 BCF ,∴OM ∥平面 BCF .(2) 设平面 MDF 与平面 EFCD 的一个法向量分别为n 1= (x 1, y 1,z 1), n 2 = (x 2, y 2, z 2).→ → 1,- 1,0 → ,∵ DF = (1,- 1,1), DM = 2, DC = (1,0,0)→ →由 n 1·DF = n 1·DM = 0,x 1- y 1+ z 1= 0,1y 1= 2x 1,得 1解得1x 1- y 1= 0,1=-1,22xz1 1令 x 1= 1,则 n 1= 1, 2,-2 .同理可得 n 2= (0,1,1) .∵ n 1·n 2= 0, ∴平面 MDF ⊥ 平面 EFCD .方法二→→→ →1 → →1 →(1) OM = OF + FB + BM = DF - BF + 2BA21 → →→1 → 1 →1→ 1 →= (DB + BF)- BF + 2 BA =-2 BD - BF + BA222=- 1 → →1→ 1 →2 (BC + BA)-BF + BA221 → 1 →=- 2BC - 2BF.∴ 向量 → 与向量 →,→共面,OMBF BC 又 OM? 平面 BCF ,∴OM ∥平面 BCF .(2) 由题意知, BF ,BC , BA 两两垂直,→ → → → → ∵CD =BA ,FC =BC -BF ,→ →1 → 1 →→∴OM ·CD = -2 BC - BF·BA = 0,2→ →1 → 1 →→ →OM ·FC =- BC - BF·(BC - BF)22=- 1BC →2+ 1BF → 2= 0.2 2∴ OM ⊥ CD , OM ⊥ FC ,又 CD ∩FC = C ,∴OM ⊥平面 EFCD .又 OM? 平面 MDF ,∴ 平面 MDF ⊥ 平面 EFCD .思想升华(1) 要证明线面平行,只需证明向量→OM 与平面 BCF 的法向量垂直;另一个思路则是依据共面向量定理证明向量 → → →OM 与 BF , BC 共面. (2) 要证明面面垂直,只需证明这两个平面 的法向量相互垂直; 也可依据面面垂直的判断定理证明直线 OM 垂直于平面 EFCD ,即证 OM垂直于平面 EFCD 内的两条订交直线, 从而转变为证明向量→ →OM 与向量 FC 、→ CD 垂直.如图,在四棱锥 P - ABCD 中, PA ⊥平面 ABCD ,底面 ABCD是菱形, PA = AB =2,∠ BAD = 60°, E 是 PA 的中点.(1) 求证:直线 PC ∥平面 BDE ;(2) 求证: BD⊥ PC;证明设 AC∩BD= O.因为∠ BAD = 60°, AB =2,底面 ABCD 为菱形,所以BO= 1, AO= CO=3, AC⊥BD .如图,以O 为坐标原点,以OB,OC所在直线分别为x 轴, y 轴,过点 O 且平行于PA 的直线为z 轴,成立空间直角坐标系O- xyz,则 P(0,- 3,2),A(0,- 3,0),B(1,0,0) ,C(0, 3,0),D(- 1,0,0) ,E(0,-3,1).(1) 设平面→→,由BDE 的法向量为n1= (x1, y1, z1),因为 BE= (- 1,-3,1), BD = (- 2,0,0)→- 2x1= 0,n1·BD=0,→得- x1- 3y1+ z1= 0,n1·BE=0,令 z1= 3,得 y1= 1,所以n1= (0,1, 3).→→3=0,又 PC= (0,23,- 2),所以 PC·n1= 0+ 2 3- 2→即 PC⊥n1,又 PC?平面 BDE,所以 PC∥平面 BDE .→→(2) 因为 PC= (0,2 3,- 2), BD =( -2,0,0),→ →= 0.所以 PC·BD故 BD⊥PC.热门二利用向量求空间角例 2如图,五面体中,四边形ABCD是矩形,AB∥EF,AD⊥平面ABEF ,且 AD = 1, AB= 1EF= 22, AF= BE= 2, P、Q 2分别为AE、 BD的中点.(1)求证: PQ∥平面 BCE;(2)求二面角 A- DF - E 的余弦值.思想启示 (1) 易知 PQ 为△ ACE 的中位线; (2)依据 AD⊥平面 ABEF (1)证明连结 AC,∵四边形 ABCD 是矩形,且 Q 为 BD 的中点,建立空间直角坐标系.∴Q 为 AC 的中点,又在△AEC 中, P 为 AE 的中点,∴ PQ∥ EC,∵EC? 面 BCE, PQ? 面 BCE,∴ PQ∥平面 BCE.(2)解如图,取 EF 的中点 M ,则 AF ⊥AM ,以 A 为坐标原点,以则 A(0,0,0) ,D (0,0,1) , M(2,0,0) ,F(0,2,0) .→→→,- 1).可得 AM= (2,0,0), MF = (-2,2,0), DF = (0,2→n·MF=0设平面 DEF 的法向量为n= (x, y, z),则.→n·DF=0- 2x+ 2y= 0x- y= 0.故,即2y-z=02y- z= 0令 x= 1,则 y= 1,z=2,故 n=(1,1,2)是平面DEF的一个法向量.→∵ AM ⊥面 ADF ,∴AM为平面 ADF 的一个法向量.→→2×1+ 0×1+0×26 n·AM∴ cos〈n,AM 〉=→ =6×2=6 .|n| ·|AM |由图可知所求二面角为锐角,∴二面角 A-DF - E 的余弦值为66.思想升华(1)运用空间向量坐标运算求空间角的一般步骤:① 成立合适的空间直角坐标系;② 求出有关点的坐标;③ 写出向量坐标;④ 联合公式进行论证、计算;⑤ 转变为几何结论.(2) 求空间角注意:① 两条异面直线所成的角α不必定是直线的方向向量的夹角β,即cosα=|cos β|.②两平面的法向量的夹角不必定是所求的二面角,有可能为两法向量夹角的补角.③ 直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.(2013 ·山东 )如下图,在三棱锥P- ABQ 中,PB⊥平面 ABQ,BA= BP =BQ,D ,C,E,F 分别是 AQ,BQ,AP ,BP 的中点, AQ=2BD,PD 与 EQ 交于点 G, PC 与 FQ 交于点 H,连结 GH.(1)求证: AB∥ GH ;(2)求二面角 D - GH -E 的余弦值.(1) 证明因为D,C,E,F分别是AQ, BQ,AP,BP的中点,所以EF∥ AB, DC ∥ AB.所以EF∥DC.又EF ?平面PCD ,DC ?平面PCD ,所以EF∥平面PCD .又EF?平面EFQ ,平面EFQ ∩平面PCD= GH ,所以EF∥GH.又EF ∥ AB,所以AB∥GH .(2) 解方法一在△ABQ中,AQ=2BD ,AD =DQ,所以∠ABQ= 90°,即 AB⊥ BQ.因为 PB⊥平面 ABQ ,所以 AB⊥ PB.又 BP∩BQ=B,所以 AB⊥平面 PBQ.由 (1)知 AB∥ GH ,所以 GH⊥平面 PBQ.又 FH ? 平面 PBQ ,所以 GH ⊥FH .同理可得GH⊥ HC ,所以∠FHC 为二面角D- GH-E 的平面角.设 BA= BQ= BP= 2,连结 FC ,在 Rt△ FBC 中,由勾股定理得FC=2,在 Rt△ PBC 中,由勾股定理得PC= 5.又 H 为△ PBQ 的重心,所以 HC =1PC=5.同理 FH =5.3335+5-2在△ FHC 中,由余弦定理得cos∠ FHC =9952×9=-4.即二面角 D - GH- E 的余弦值为-4.55方法二在△ ABQ 中, AQ= 2BD, AD = DQ ,所以∠ ABQ =90°又 PB⊥平面 ABQ ,所以 BA ,BQ, BP 两两垂直.以 B 为坐标原点,分别以 BA, BQ, BP 所在直线为 x 轴, y 轴, z 轴,成立如下图的空间直角坐标系.设 BA= BQ= BP= 2,则 E(1,0,1),F(0,0,1),Q(0,2,0) ,D(1,1,0) ,C(0,1,0) ,P(0,0,2) .→→→→.所以 EQ= (- 1,2,- 1), FQ =(0,2,- 1), DP = (- 1,- 1, 2),CP=(0,- 1,2)设平面 EFQ 的一个法向量为m=(x1,y1,z1),→→由 m·EQ=0, m·FQ=0,-x1+ 2y1-z1= 0,得取 y1=1,得m= (0,1,2) .2y1- z1= 0,设平面 PDC 的一个法向量为n=(x2,y2,z2),→→由 n·DP=0,n·CP= 0,得- x2- y2+ 2z2= 0,- y2+ 2z2=0,取 z2= 1,得n=(0,2,1).所以 cos〈m,n〉=m·n4= . |m||n|5因为二面角 D- GH- E 为钝角,所以二面角D- GH - E 的余弦值为-4 5 .热门三利用空间向量求解探究性问题例 3 如图,在直三棱柱 ABC- A1B1C1中,AB= BC= 2AA1,∠ABC = 90°,D 是 BC 的中点.(1)求证: A1B∥平面 ADC 1;(2)求二面角 C1- AD - C 的余弦值;(3) 试问线段 A1B1上能否存在点E,使 AE 与 DC1成 60°角?若存在,确立 E 点地点;若不存在,说明原因.(1)证明连结 A1C,交 AC1于点 O,连结 OD.由 ABC-A1B1C1是直三棱柱,得四边形ACC1A1为矩形, O 为 A1C 的中点.又 D为 BC的中点,所以 OD 为△ A1BC 的中位线,所以 A1B∥ OD .因为 OD? 平面 ADC1, A1B? 平面 ADC 1,所以 A1B∥平面 ADC 1.(2)解由 ABC-A1B1C1是直三棱柱,且∠ABC= 90°,得 BA , BC,BB 1两两垂直.以 BC, BA, BB1所在直线分别为x, y, z 轴,成立如下图的空间直角坐标系B- xyz.设 BA= 2,则 B(0,0,0) , C(2,0,0) , A(0,2,0), C1(2,0,1) , D(1,0,0) ,→→.所以 AD = (1,- 2,0), AC1= (2,- 2,1)设平面 ADC 1的法向量为n=(x,y,z),则有→n·AD=0,→n·AC1=0.x- 2y= 0,所以取 y=1,得n=(2,1,- 2).2x- 2y+ z= 0.易知平面ADC 的一个法向量为v=(0,0,1).n·v2所以 cos〈n,v〉=|n|·|v|=-3.因为二面角C1-AD -C 是锐二面角,2所以二面角C1-AD -C 的余弦值为3.(3)解假定存在知足条件的点 E.因为点 E 在线段 A1B1上, A1(0,2,1) , B1(0,0,1) ,故可设 E(0,λ, 1),此中 0≤λ≤2.→→.所以 AE= (0,λ- 2,1), DC 1= (1,0,1)因为 AE 与 DC 1成 60°角,→ →→ →1〉 |= |AE ·DC 1|所以 |cos 〈 AE , DC 1= ,→ → 1 2|AE| |DC · |即1= 1,解得 λ=1 或 λ= 3(舍去 ).λ-2+1· 2 2所以当点 E 为线段 A 1B 1 的中点时, AE 与 DC 1 成 60°角. 思想升华空间向量最合适于解决这种立体几何中的探究性问题,它无需进行复杂的作图、论证、推理,只需经过坐标运算进行判断.解题时,把要成立的结论看作条件,据此列方程或方程组,把 “能否存在 ”问题转变为 “点的坐标能否有解,能否有规定范围内的解 ”等,所认为使问题的解决更简单、有效,应擅长运用这一方法.如图,在三棱锥 P — ABC 中, AC = BC = 2,∠ ACB = 90°, AP =BP = AB ,PC ⊥ AC ,点 D 为 BC 的中点.(1) 求二面角 A — PD — B 的余弦值;1(2) 在直线 AB 上能否存在点 M ,使得 PM 与平面 PAD 所成角的正弦值为 6, 若存在,求出点 M 的地点;若不存在,说明原因.解 (1)∵ AC = BC ,PA = PB , PC = PC , ∴△ PCA ≌△ PCB ,∴∠ PCA =∠ PCB ,∵ PC ⊥ AC , ∴PC ⊥CB ,又 AC ∩CB =C ,∴ PC ⊥ 平面 ACB ,且 PC ,CA ,CB 两两垂直,故以 C 为坐标原点, 分别以 CB ,CA ,CP 所在直线为 x ,y ,z 轴成立空间直角坐标系, 则 C(0,0,0),→ (1,- →,- 2),A(0,2,0) ,D(1,0,0) , P(0,0,2) , ∴ AD = 2,0), PD = (1,0 设平面 PAD 的一个法向量为n = (x , y ,z),→n ·AD = 0∴, ∴ 取 n = (2,1,1) ,→n ·PD = 0→,平面 PDB 的一个法向量为 CA =(0,2,0)→ 6 ∴ cos 〈 n ,CA 〉= 6 ,设二面角 A —PD —B 的平面角为 θ,且 θ为钝角,6 6∴ cos θ=- 6 , ∴ 二面角 A — PD — B 的余弦值为- 6.(2) 方法一 存在, M 是 AB 的中点或 A 是 MB 的中点.→设 M(x,2- x,0) (x ∈ R ), ∴ PM =( x,2-x ,- 2),→|x|1 ,∴ |cos 〈 PM , n 〉 |=x 2 + - x=2+4· 6 6解得 x =1 或 x =- 2, ∴ M(1,1,0) 或 M(- 2,4,0) ,∴ 在直线 AB 上存在点 M ,且当 M 是 AB 的中点或 A 是 MB 的中点时,使得 PM 与平面 PAD 所成角的正弦值为1 6.方法二 存在, M 是 AB 的中点或 A 是 MB 的中点.→ →设 AM = λAB ,→则 AM = λ(2,- 2,0)= (2λ,- 2λ,0) ( λ∈R ),→ → →∴ PM =PA +AM = (2λ, 2-2λ,- 2),→ |2λ|1∴ |cos 〈 PM , n 〉 |= 2 - 2λ 2+4· 6 = . λ + 6解得 λ= 1或 λ=- 1.2∴M 是 AB 的中点或 A 是 MB 的中点.∴ 在直线 AB 上存在点 M ,且当 M 是 AB 的中点或 A 是 MB 的中点时,使得 PM 与平面 PAD所成角的正弦值为16.空间向量在办理空间问题时拥有很大的优胜性, 能把 “非运算 ”问题 “运算 ”化,即经过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各种角、距离以向量的方式表达出来,把立体几何问题转变为空间向量的运算问题.应用的中心是充足认识形体特点,从而成立空间直角坐标系,经过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的正确性.提示三点: (1)直线的方向向量和平面的法向量所成角的余弦值的绝对值是线面角的正弦值,而不是余弦值.(2) 求二面角除利用法向量外,还能够依据二面角的平面角的定义和空间随意两个向量都是共面向量的知识,我们只假如在二面角的两个半平面内分别作和二面角的棱垂直的向量,而且两个向量的方向均指向棱或许都从棱指向外,那么这两个向量所成的角的大小就是二面角的大小.如下图.→ →→→(3) 关于空间随意一点 O 和不共线的三点 A ,B , C ,且有 OP = xOA + yOB + zOC(x , y , z ∈ R ),四点 P , A ,B , C 共面的充要条件是x + y + z = 1.空间一点 P 位于平面 MAB 内 ? 存在有序实数对 →→→x , y ,使 MP = xMA + yMB ,或对空间任必定点 O ,有序实数对 → →→ →x , y ,使 OP = OM + xMA + yMB .真题感悟(2014 ·京北 )如图,正方形 AMDE 的边长为 2, B , C 分别为 AM , MD 的中点,在五棱锥 P - ABCDE 中, F 为棱 PE 的中点,平面 ABF 与棱 PD , PC 分别交于点 G , H.(1) 求证: AB ∥ FG ;(2) 若 PA ⊥底面 ABCDE ,且 PA = AE ,求直线 BC 与平面 ABF 所成角的大小,并求线段 PH 的长.(1) 证明 在正方形 AMDE 中,因为 B 是 AM 的中点, 所以 AB ∥ DE.又因为 AB ? 平面 PDE , DE? 平面 PDE , 所以 AB ∥ 平面 PDE .因为 AB? 平面 ABF ,且平面 ABF ∩平面 PDE = FG , 所以 AB ∥ FG.(2) 解 因为 PA ⊥ 底面 ABCDE , 所以 PA ⊥ AB , PA ⊥ AE.如图成立空间直角坐标系Axyz ,→.则 A(0,0,0) ,B(1,0,0) , C(2,1,0) , P(0,0,2) ,F(0,1,1) , BC = (1,1,0) 设平面 ABF 的一个法向量为n = (x , y , z),则→x = 0,n ·AB = 0,→即y + z = 0.n ·AF = 0,令 z= 1,则 y=- 1,所以n=(0 ,-1,1).设直线 BC 与平面 ABF 所成角为α,→→1 n·BC则 sin α= |cos〈n, BC〉 |=→= .2|n||BC|所以直线 BC 与平面 ABF 所成角的大小为π,6设点 H 的坐标为 (u, v, w).→→λ<1),因为点 H 在棱 PC 上,所以可设 PH=λPC(0<即 (u, v, w- 2)=λ(2,1,- 2),所以 u=2λ, v=λ, w=2- 2λ.因为 n 是平面ABF的一个法向量,所以→n·AH=0,即 (0,- 1,1) ·(2λ,λ, 2- 2λ)=0,解得λ=2,所以点H 的坐标为 (4,2,2).3333所以 PH=42+22+-42= 2.333押题精练如下图,已知正方形 ABCD 和矩形 ACEF 所在的平面相互垂直,AB=2, AF= 1.(1)求直线 DF 与平面 ACEF 所成角的正弦值;→→(2)在线段 AC 上找一点 P,使 PF 与 DA 所成的角为 60°,试确立点 P的地点.解 (1)以 C 为坐标原点,分别以 CD , CB,CE 所在直线为 x 轴, y 轴,z 轴,成立如下图的空间直角坐标系,则E(0,0,1) ,D (2, 0,0), B(0,2, 0), A(2, 2, 0),F( 2,2, 1),连结 BD ,则 AC⊥ BD .因为平→面 ABCD ⊥平面 ACEF ,且平面 ABCD ∩平面 ACEF =AC,所以 DB 是平面 ACEF 的一个法向量.→→→→→ →3 DF ·DB又 DB= (-2, 2, 0), DF = (0,2,1),所以 cos〈DF ,DB〉=→ →= 3.|DF | ×|DB |故直线 DF 与平面 ACEF 所成角的正弦值为33.→2-a,→= (0,2,0).(2) 设 P(a, a,0)(0≤a≤ 2),则 PF= (2- a,1), DA→→22- a1因为〈 PF ,DA〉= 60°,所以 cos 60 °== .2×2- a2+ 12解得 a =2或 a =322, 2, 0)为 AC 的中点.22 (舍去 ),故存在知足条件的点P( 22(介绍时间: 60 分钟 )一、选择题1.已知平面 ABC ,点 M 是空间随意一点,点→ 3 → 1 → 1 → M 知足条件 OM = OA +OB +OC ,则直线488AM( )A .与平面 ABC 平行B .是平面 ABC 的斜线 C .是平面 ABC 的垂线D .在平面 ABC 内 答案D分析由已知得 M 、A 、 B 、 C 四点共面.所以 AM 在平面 ABC 内,选 D.2.在棱长为 1 的正方体 ABCD - A 1B 1C 1D 1 中, M 是 BC 的中点, P ,Q 是正方体内部或面上的→ →两个动点,则 AM ·PQ 的最大值是 ()1A. 2 B . 135 C.2 D. 4答案 C分析以 A 为坐标原点,分别以AD ,AB ,AA 1 所在直线为 x 轴, y 轴, z轴成立如下图的空间直角坐标系,则A(0,0,0) ,M (1,1,0),2→1 , 1,0).所以 AM =(2- 1≤x ≤1, →-1≤y ≤1, 设 PQ = (x , y , z),由题意可知-1≤z ≤1. → → 11因为 AM ·PQ = ·x +1·y + 0·z = x + y ,22又- 1≤x ≤1,- 1≤y ≤1,所以- 1 1 1≤ x ≤ .2 2 2 所以-3 1 3≤ x + y ≤ .2 2 2→ →3故 AM ·PQ 的最大值为.23.在棱长为 1 的正方体 ABCD - A 1B 1C 1D 1 中, M ,N 分别为 A 1B 1,BB 1 的中点,那么直线 AM 与 CN 所成角的余弦值为 ()310A. 2B. 1032 C.5D. 5答案D分析 以 D 点为坐标原点,分别以DA , DC ,DD 1 所在直线为 x 轴, y1 轴,z 轴成立如下图的空间直角坐标系,则 A(1,0,0) ,M(1,,1),C(0,1,0) ,21N(1,1,2).→1 →1 ).所以 AM = (0,, 1), CN =(1,0,22 → →1 1 1 ,故 AM ·CN = 0×1+×0+ 1×=22 2→ 21 225|AM |=0 +2+ 1 = 2 ,→ 221 2= 5|CN|=1+0+22 ,→ →1→→22AM ·CN=所以 cos 〈AM , CN 〉== .→ → 5 5 5|AM||CN|2 ×24.已知正三棱柱 ABC - A 1B 1C 1 的侧棱长与底面边长相等,则AB 1 与侧面 ACC 1A 1 所成角的正弦等于 ()6 10 A. 4B. 4 2 3C. 2D. 2答案 A分析如下图成立空间直角坐标系, 设正三棱柱的棱长为2,O(0,0,0) ,B( 3,0,0),A(0,- 1,0),B 1(→ →=(- 3,0,0)为侧3,0,2),则 AB 1= ( 3,1,2),则 BO→ →|AB 1·BO|6面 ACC 1A 1 的法向量,由sin θ= →→= 4 .|AB 1||BO|5.在正方体 ABCD — A 1B 1C 1 D 1 中,点 E 为 BB 1 的中点,则平面 A 1ED 与平面 ABCD 所成的锐二面角的余弦值为 ()1 2 3 2 A. 2 B. 3 C. 3 D. 2答案 B分析以 A 为原点成立如下图的空间直角坐标系A - xyz ,设棱长为 1,1则 A 1(0,0,1) ,E 1, 0,2 , D(0,1,0) ,→ = (0,1,- 1)→1, 0,- 1 , ∴ A 1,A 1 =DE2设平面 A 1ED 的一个法向量为n 1= (1, y , z),y - z = 0,y = 2,则 1∴1-2z = 0,z = 2.∴ n 1= (1,2,2) .∵ 平面 ABCD 的一个法向量为n 2=(0,0,1) ,22∴ cos 〈 n 1, n 2〉= 3×1=3.即所成的锐二面角的余弦值为23.6.如图,三棱锥 A -BCD 的棱长全相等, E 为 AD 的中点,则直线 CE 与 BD 所成角的余弦值为 ()33 A. 6B. 2 33 1C. 6D. 2答案 A分析设 AB = 1,→ → → → → →则 CE ·BD = (AE -AC ) ·(AD - AB)1→21→→ →→ →→= 2AD - 2AD ·AB - AC ·AD +AC ·AB1 1 -°cos 60 +°cos 60 1 = - cos 60 =° .2 24→ →1→ →4 3CE ·BD=∴ cos 〈 CE , BD 〉=→ → =6.选A.3|CE||BD |2二、填空题7.在向来角坐标系中已知 A(- 1,6), B(3,- 8),现沿 x 轴将坐标平面折成 60°的二面角,则折叠后 A 、 B 两点间的距离为 ________.答案 2 17分析如图为折叠后的图形,此中作 AC ⊥ CD , BD ⊥ CD ,则 AC = 6,BD = 8, CD =4,两异面直线 AC 、 BD 所成的角为 60°,→ → → →故由 AB = AC + CD +DB ,→ 2 → → → 2得 |AB| = |AC +CD + DB| = 68,→ 17. ∴ |AB|= 28.正方体 ABCD - A 1B 1C 1 D 1 的棱长为 1,E 、F 分别为 BB 1、CD 的中点, 则点 F 到平面 A 1D 1E 的距离为 ______________ .3 5 答案10分析以 A 为坐标原点, AB 、AD 、 AA 1 所在直线分别为x 轴、 y 轴、 z 轴建立空间直角坐标系,如下图,11则 A 1(0,0,1) ,E(1,0, 2), F(2,1,0), D 1(0,1,1) .→1→∴ A 1E = (1,0,- 2),A 1D 1= (0,1,0) . 设平面 A 1D 1E 的一个法向量为n = (x ,y , z),→=0, 1则 n ·A 1E即 x - 2z = 0,→y = 0.n ·A 1D 1= 0,令 z = 2,则 x = 1.∴ n = (1,0,2) .又→=1,,- ,A 1F(1 1)2∴ 点 F 到平面 A 1D 1E 的距离为→ |1- 2||A 1F ·n |= 2= 3 5d =|n |510.9.已知正方形 ABCD 的边长为 4, CG ⊥平面 ABCD , CG = 2, E , F 分别是 AB ,AD 的中点, 则点 C 到平面 GEF 的距离为 ________.答案 6 1111分析 成立如下图的空间直角坐标系 C -xyz ,则 G(0,0,2) , E(2,4,0) ,F(4,2,0) .→→→.所以 GF = (4,2,- 2), GE= (2,4,- 2), CG= (0,0,2)设平面 GEF 的法向量为n=(x,y,z),→GF·n= 0,由→GE·n= 0,得平面 GEF 的一个法向量为n=(1,1,3),所以点 C 到平面 GEF 的距离→|n·CG| 6 11d==.|n|11→→→ 2→ 2→ →→10.已知 ABCD -A1B1C1D1为正方体,① (A1A+A1D 1+ A1B1)= 3A1B1;②A1C·(A1B1- A1A) =0;→→→ → →③向量 AD 1与向量 A1B的夹角是 60°;④正方体ABCD - A1B1C1D1的体积为 |AB·AA1·AD|.此中正确命题的序号是 ________.答案①②分析→→→ 2→ 2→2→设正方体的棱长为 1,①中 (A1A+ A1D 1+ A1B1)= A1C = 3(A1B1) = 3,故①正确;②中 A1B1→→→- A1A= AB1,因为 AB1⊥ A1C,故② 正确;③中 A1B 与 AD1两异面直线所成的角为60°,但 AD 1→→ → →与 A1B的夹角为120°,故③不正确;④中|AB ·AA1·AD |= 0.故④也不正确.三、解答题11.如图,在底面是矩形的四棱锥P—ABCD 中, PA⊥底面 ABCD ,E, F 分别是 PC, PD 的中点, PA= AB=1, BC= 2.(1)求证: EF∥平面 PAB;(2)求证:平面 PAD⊥平面 PDC .证明 (1) 以 A 为原点, AB 所在直线为 x 轴,AD 所在直线为 y 轴,AP 所在直线为 z 轴,成立如下图的空间直角坐标系,则 A(0,0,0) ,B(1,0,0) , C(1,2,0) , D(0,2,0) , P(0,0,1) ,∵ E,F 分别是 PC, PD 的中点,∴E 1,1,1,F 0,1,1,222→1, 0,0→→→→→EF=-,PB= (1,0,- 1),PD= (0,2,- 1),AP= (0,0,1),AD = (0,2,0),DC= (1,0,0),2→= (1,0,0) .AB→1→→→∵EF=-2AB,∴EF∥AB ,即 EF∥AB,又 AB? 平面 PAB, EF?平面 PAB,∴ EF ∥ 平面 PAB.→→= (0,0,1) (1,0,0)· = 0,(2) ∵AP ·DC→ →AD ·DC = (0,2,0) (1,0,0)· =0,→ → → →∴ AP ⊥ DC , AD ⊥DC ,即 AP ⊥ DC , AD ⊥DC .又 AP ∩AD =A , ∴ DC ⊥ 平面 PAD.∵ DC? 平面 PDC ,∴平面 PAD ⊥平面 PDC .12. (2014 ·标全国Ⅱ课 )如图,四棱锥 P - ABCD 中,底面 ABCD 为矩形,PA ⊥平面 ABCD ,E 为 PD 的中点.(1) 证明: PB ∥平面 AEC ;(2) 设二面角 D - AE -C 为 60°,AP =1, AD = 3,求三棱锥 E - ACD 的体积.(1)证明连结 BD 交 AC 于点 O ,连结 EO.因为 ABCD 为矩形,所以 O 为 BD 的中点.又 E 为 PD 的中点,所以EO ∥PB .因为 EO? 平面 AEC ,PB?平面 AEC ,所以 PB ∥ 平面 AEC .(2) 解 因为 PA ⊥ 平面 ABCD , ABCD 为矩形,所以 AB , AD , AP 两两垂直.如图,以→ 的方向为→ A 为坐标原点, AB x 轴的正方向, |AP|为单位长,建立空间直角坐标系 A - xyz ,则 D(0,3, 0), E(0,3 1→3 1 ). 2, ),AE = (0,,22 2设 B(m,0,0)( m>0) ,则 C(m ,设 n 1= (x , y , z)为平面 ACE→ n 1·AC =0,则→n 1·AE = 0,→3, 0), AC = (m , 3, 0).的法向量,mx + 3y = 0,即3 12 y + 2z = 0,3可取 n 1=( ,- 1, 3).又 n2=(1,0,0)为平面DAE的法向量,1由题设 |cos〈n1,n2〉 |=,即32=1,3+ 4m23解得 m=2.因为 E 为 PD 的中点,1所以三棱锥E- ACD 的高为,1131=3三棱锥 E- ACD 的体积 V=× × 3× ×.3222813.如图,在三棱柱ABC - A1B1C1中,侧面AA 1C1C⊥底面 ABC, AA1=A1C= AC= 2, AB= BC, AB⊥BC, O 为 AC 的中点.(1)证明: A1O⊥平面 ABC;(2)求直线 A1C 与平面 A1AB 所成角的正弦值;(3)在 BC1上能否存在一点E,使得 OE∥平面 A1AB?若存在,确立点 E 的地点;若不存在,请说明原因.(1)证明∵ AA1= A1C= AC= 2,且 O 为 AC 的中点,∴A1O⊥ AC.又侧面 AA 1C1C⊥底面 ABC,交线为AC, A1O? 平面 AA 1C1C,∴A1O⊥平面 ABC.(2)解连结 OB ,如图,以 O 为原点,分别以 OB、OC、OA1所在直线为 x、y、z 轴,成立空间直角坐标系,则由题意可知 B(1,0,0) ,C(0,1,0) ,A1(0,0, 3), A(0,- 1,0).→,- 3),设平面A1AB 的法向量为→∴ A1C= (0,1n=(x,y,z),则 n·AA1→→,→n=(3,-3,3),= n·AB=0,而AA1=(0,13), AB= (1,1,0) ,可求得一个法向量→→621|n·A1 C|==,∴ |cos〈 A1 C,n〉 |=→2× 217|n| |A·1C|故直线 A1C 与平面 A1AB 所成角的正弦值为21. 7(3)解存在点 E,且 E 为线段 BC 1的中点.连结 B1C 交 BC1于点 M,连结AB1、 OM,则 M 为 B1C 的中点,从而 OM 是△ CAB1的一条中位线, OM ∥ AB1,又 AB1? 平面 A1AB,OM ?平面 A1AB,∴OM ∥平面 A1 AB,故 BC1的中点 M 即为所求的 E 点.。
数学高三立体几何与空间向量专题复习检测(含答案)

数学高三立体几何与空间向量专题复习检测(含答案)平面几何是3维欧氏空间的几何的传统称号,下面是平面几何与空间向量专题温习检测,请考生练习。
一、选择题1.(2021武汉调研)一个几何体的三视图如下图,那么该几何体的直观图可以是()解析 A、B、C与仰望图不符.答案 D2.将长方体截去一个四棱锥,失掉的几何体如下图,那么该几何体的侧(左)视图为()解析抓住其一条对角线被遮住应为虚线,可知正确答案在C,D中,又结合直观图知,D正确.答案 D3.(2021安徽卷)一个多面体的三视图如下图,那么该多面体的外表积为()A.21+3B.18+3C.21D.18解析由三视图知,该多面体是由正方体割去两个角所成的图形,如下图,那么S=S正方体-2S三棱锥侧+2S三棱锥底=24-231211+234(2)2=21+3.答案 A4.S,A,B,C是球O外表上的点,SA平面ABCD,ABBC,SA=AB=1,BC=2,那么球O的外表积等于()A.4B.3C.2解析如下图,由ABBC知,AC为过A,B,C,D四点小圆直径,所以ADDC.又SA平面ABCD,设SB1C1D1-ABCD为SA,AB,BC为棱长结构的长方体,得体对角线长为12+12+22=2R,所以R=1,球O的外表积S=4.故选A.答案 A5.(2021湖南卷)一块石材表示的几何体的三视图如下图.将该石材切削、打磨,加工成球,那么能失掉的最大球的半径等于()A.1B.2C.3D.4解析由三视图可得原石材为如下图的直三棱柱A1B1C1-ABC,且AB=8,BC=6,BB1=12.假定要失掉半径最大的球,那么此球与平面A1B1BA,BCC1B1,ACC1A1相切,故此时球的半径与△ABC内切圆的半径相等,故半径r=6+8-102=2.应选B.答案 B6.点A,B,C,D均在同一球面上,其中△ABC是正三角形,AD平面ABC,AD=2AB=6,那么该球的体积为()A.323B.48C.643D.163解析如下图,O1为三角形ABC的外心,过O做OEAD,OO1面ABC,AO1=33AB=3.∵OD=O A,E为DA的中点.∵AD面ABC,AD∥OO1,EO=AO1=3.DO=DE2+OE2=23.R=DO= 23.V=43(23)3=323.答案 A二、填空题7.某四棱锥的三视图如下图,该四棱锥的体积是________. 解析由三视图可知,四棱锥的高为2,底面为直角梯形ABCD.其中DC=2,AB=3,BC=3,所以四棱锥的体积为132+3322=533. 答案 5338.如图,在三棱柱A1B1C1-ABC中,D,E,F区分是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC 的体积为V2,那么V1V2=________.解析设三棱柱A1B1C1-ABC的高为h,底面三角形ABC的面积为S,那么V1=1314S12h=124Sh=124V2,即V1V2=124. 答案 1249.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,那么四面体ABCD的外接球的外表积为________.解析结构一个长方体,使得它的三条面对角线区分为4、5、6,设长方体的三条边区分为x,y,z,那么x2+y2+z2=772,而长方体的外接球就是四面体的外接球,所以S=4R2=772. 答案 772三、解答题10.以下三个图中,左边是一个正方体截去一个角后所得多面体的直观图.左边两个是其正(主)视图和侧(左)视图. (1)请在正(主)视图的下方,依照画三视图的要求画出该多面体的仰望图(不要求表达作图进程).(2)求该多面体的体积(尺寸如图).解 (1)作出仰望图如下图.(2)依题意,该多面体是由一个正方体(ABCD-A1B1C1D1)截去一个三棱锥(E-A1B1D1)失掉的,所以截去的三棱锥体积VE-A1B1D1=13S△A1B1D1A1E=1312221=23,正方体体积V正方体AC1=23=8,所以所求多面体的体积V=8-23=223.11.(2021安徽卷)如图,四棱柱ABCD-A1B1C1D1中,A1A底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过 A1,C,D三点的平面记为,BB1与的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面所分红上下两局部的体积之比.解 (1)证明:由于BQ∥AA1,BC∥AD,BCBQ=B,ADAA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以BQBB1=BQAA1=BCAD=12,即Q为BB1的中点.(2)如图,衔接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面所分红上下两局部的体积区分为V上和V下,BC=a,那么AD=2a.VQ-A1AD=13122ahd=13ahd,VQ-ABCD=13a+2a2d12h=14ahd,所以V下=VQ-A1AD+VQ-ABCD=712ahd,又V四棱柱A1B1C1D1-ABCD=32ahd,所以V上=V四棱柱A1B1C1D1-ABCD-V下=32ahd-712ahd=1112ahd.故V上V下=117.B级才干提高组1.(2021北京卷)在空间直角坐标系Oxyz中,A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).假定S1,S2,S3区分是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,那么()A.S1=S2=S3B.S2=S1且S2S3C.S3=S1且S3 S2D.S3=S2且S3S1解析作出三棱锥在三个坐标平面上的正投影,计算三角形的面积.如下图,△ABC为三棱锥在坐标平面xOy上的正投影,所以S1=1222=2.三棱锥在坐标平面yOz上的正投影与△DE F(E,F 区分为OA,BC的中点)全等,所以S2=1222=2.三棱锥在坐标平面xOz上的正投影与△DGH(G,H区分为AB,OC 的中点)全等,所以S3=1222=2.所以S2=S3且S1S3.应选D. 答案 D2.(2021山东卷)三棱锥P-ABC中,D,E区分为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,那么V1V2=________.解析由于VP-ABE=VC-ABE,所以VP-ABE=12VP-ABC,又因VD-ABE=12VP-ABE,所以VD-ABE=14VP-ABC,V1V2=14.答案 143.(理)(2021课标全国卷Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60,AP=1,AD=3,求三棱锥E-ACD的体积.解 (1)衔接BD交AC于点O,衔接EO.由于ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO平面AEC,PB平面AEC,所以PB∥平面AEC.(2)由于PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,|PA|为单位长,树立空间直角坐标系A-xyz.那么D(0,3,0),E0,32,12, AE=0,32,12.设B(m,0,0)(m0),那么C(m,3,0),AC=(m,3,0),设n1=(x,y,z)为平面ACE的法向量,那么n1AC=0,n1AE=0,即mx+3y=0,32y+12z=0,可取n1=3m,-1,3.又n2=(1,0,0)为平面DAE的法向量,由题设|cos〈n1,n2〉|=12,即 33+4m2=12,解得m=32.由于E为PD的中点,所以三棱锥E-ACD的高为12.三棱锥E-ACD的体积V=131233212=38.3.(文)如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF 的位置(点A与P重合),使得PEB=30.(1)求证:EF(2)试问:当点E在何处时,四棱锥P-EFCB的正面PEB的面积最大?并求此时四棱锥P-EFCB的体积.解 (1)证明:∵AB=BC,BCAB,又∵EF∥BC,EFAB,即EFBE,EFPE.又BEPE=E,EF平面PBE,EFPB.(2)设BE=x,PE=y,那么x+y=4.S△PEB=12BEPEsinPEB=14xy14x+y22=1.当且仅当x=y=2时,S△PEB的面积最大.此时,BE=PE=2.由(1)知EF平面PBE,平面PBE平面EFCB,在平面PBE中,作POBE于O,那么PO平面EFCB.即PO为四棱锥P-EFCB的高.又PO=PEsin30=212=1.S梯形EFCB =12(2+4)2=6.VP-BCFE=1361=2.平面几何与空间向量专题温习检测及答案的全部内容就是这些,查字典数学网预祝考生可以取得更好的效果。
高考数学(理)二轮专题复习用空间向量的方法解立体几何问题Word版含解析

一、选择题
1.已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k的值为()
A.1 B.
C. D.
解析:由题意知,ka+b=(k-1,k,2),2a-b=(3,2,-2),∵ka+b与2a-b垂直,∴3(k-1)+2k-4=0,解得k= .
解析:取CC1的中点E,连接AC,AE.因为正方体ABCD-A′B′C′D′的棱长为1,设=a,=b,=c,则a+b+ c=++=.所以 =||= = = .
答案:
三、解答题
9.如图所示的多面体中,AD⊥平面PDC,ABCD为平行四边形,E为AD的中点,F为线段BP上一点,∠CDP=120°,AD=3,AP=5,PC=2 .
A.EF至多与A1D,AC之一垂直
B.EF⊥A1D,EF⊥AC
C.EF与BD1相交
D.EF与BD1异面
解析:以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体的棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E ,F ,B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),= ,=(-1,-1,1),=- ,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.
∴a=2 ,△ABC的外接圆半径为 AB=1,三棱柱的外接球的球心为上、下底面直角三角形斜边中点连线的中点O,∴外接球的半径R= =2,∴外接球的表面积S=4π×22=16π.故选A.
答案:A
二、填空题
8.(2016·河北衡水武邑中学期中)已知正方体ABCD-A′B′C′D′的棱长为1,设=a,=b,=c,则 =__________.
高考数学二轮:5.3《立体几何中的向量方法》试题(含答案)

第 3 讲立体几何中的向量方法1. (2014课·标全国Ⅱ )直三棱柱 ABC- A1B1C1中,∠ BCA= 90°,M ,N 分别是 A1B1, A1C1的中点, BC= CA= CC1,则 BM 与 AN 所成角的余弦值为 ()12302A. 10B.5C. 10D. 22. (2015安·徽 ) 如图所示,在多面体A1B1D1DCBA 中,四边形AA1B1B,ADD 1A1, ABCD 均为正方形, E 为 B1D 1的中点,过A1,D ,E 的平面交CD1于 F.(1)证明: EF∥ B1C;(2)求二面角E-A1D- B1的余弦值.以空间几何体为载体考查空间角是高考命题的重点,与空间线面关系的证明相结合,热点为二面角的求解,均以解答的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上 .热点一利用向量证明平行与垂直设直线 l 的方向向量为a=(a1,b1,c1),平面α、β的法向量分别为μ=( a2,b2,c2),v=(a3,b3, c3)则有:(1)线面平行l∥ α? a⊥ μ? a·μ= 0? a1a2+ b1b2+ c1c2= 0.(2)线面垂直l⊥ α? a∥ μ? a= kμ? a1=ka2, b1= kb2, c1= kc2.(3)面面平行α∥ β? μ∥v? μ=λv? a2=λa, b =λb, c =λc32323.(4)面面垂直α⊥ β? μ⊥v? μ·v= 0? a2a3+ b2b3+c2c3= 0.例 1 如图,在直三棱柱 ADE— BCF 中,面 ABFE 和面 ABCD 都是正方形且互相垂直, M 为 AB 的中点, O 为 DF 的中点.运用向量方法证明:(1)OM ∥平面 BCF ;(2)平面 MDF ⊥平面 EFCD .思维升华用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥ b,只需证明向量a=λb(λ∈ R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.跟踪演练1如图所示,已知直三棱柱ABC— A1B1C1中,△ ABC 为等腰直角三角形,∠BAC= 90°,且 AB= AA1, D、 E、 F 分别为 B1A、 C1C、BC 的中点.求证:(1)DE ∥平面 ABC;(2)B1F ⊥平面 AEF .热点二利用空间向量求空间角设直线 l ,m 的方向向量分别为a=( a1,b1,c1),b=(a2,b2,c2).平面α,β的法向量分别为μ= (a3, b3, c3),v= (a4, b4, c4)(以下相同 ) .(1)线线夹角π设 l , m 的夹角为θ(0≤θ≤2),则|a·b|=|a1a2+ b1b2+ c1c2 |cosθ=|a||b|a12+ b12+ c12a22+ b22+ c22.(2)线面夹角π设直线 l 与平面α的夹角为θ(0≤θ≤2),则 sin θ=|a·μ|=|cos〈a,μ〉 |. |a||μ|(3)面面夹角设平面α、β的夹角为θ(0≤θ<π),则 |cos θ|=|μ·v|= |cos〈μ,v〉 |. |μ||v|例 2 (2015 ·江苏 )如图,在四棱锥P-ABCD 中,已知PA⊥平面 ABCD ,πABCD 为直角梯形,∠ ABC=∠ BAD=, PA= AD = 2, AB= BC2=1.(1)求平面 PAB 与平面 PCD 所成二面角的余弦值;(2)点 Q 是线段 BP 上的动点,当直线CQ 与 DP 所成的角最小时,求线段BQ 的长.思维升华(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cosα=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.跟踪演练 2 (2014 ·福建 )在平面四边形ABCD中, AB=BD=CD=1,AB⊥ BD,CD ⊥BD.将△ABD沿BD折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证: AB⊥ CD ;(2)若 M 为 AD 中点,求直线AD 与平面 MBC 所成角的正弦值.热点三利用空间向量求解探索性问题存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等 )是否存在或某一结论是否成立.解决这类问题的基本策略是先假设题中的数学对象存在(或结论成立 )或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.例 3 如图,在直三棱柱 ABC- A1B1C1中,AB= BC= 2AA1,∠ ABC=90°,D 是 BC 的中点.(1)求证: A1 B∥平面 ADC 1;(2)求二面角C1- AD- C 的余弦值;(3)试问线段A1B1上是否存在点E,使 AE 与 DC 1成 60°角?若存在,确定 E 点位置;若不存在,说明理由.思维升华空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.跟踪演练3如图所示,四边形ABCD 是边长为 1 的正方形, MD ⊥平面 ABCD ,NB⊥平面 ABCD ,且 MD =NB =1, E 为 BC 的中点.(1)求异面直线NE 与 AM 所成角的余弦值;(2)在线段 AN 上是否存在点 S,使得 ES⊥平面 AMN ?若存在,求线段AS 的长;若不存在,请说明理由.如图,五面体中,四边形ABCD 是矩形, AB∥EF , AD⊥平面 ABEF ,1且 AD =1, AB=2EF= 22, AF= BE= 2,P、 Q 分别为 AE 、BD 的中点.(1)求证: PQ∥平面 BCE;(2)求二面角A- DF -E 的余弦值.提醒:完成作业专题五第3讲二轮专题强化练专题五第 3 讲立体几何中的向量方法A 组专题通关1.已知平面 ABC,点 M 是空间任意一点,点→3→1→1→M 满足条件 OM= OA+OB+ OC,则直线488AM()A .与平面ABC 平行B .是平面ABC 的斜线C.是平面ABC 的垂线D.在平面ABC 内2.如图,点P 是单位正方体ABCD - A1B1C1D1中异于 A 的一个顶点,→ →则 AP·AB的值为 ()A . 0B.1C.0或1D.任意实数3.如图所示,正方体ABCD -A1B1C1D1的棱长为a, M、 N 分别为A1B和 AC 上的点, A1M= AN=23a,则 MN 与平面 BB1C1C 的位置关系是()A .相交B.平行C.垂直D.不能确定4.如图,三棱锥 A- BCD 的棱长全相等, E 为 AD 的中点,则直线 CE 与 BD 所成角的余弦值为 ()33A.6B. 2331C.6D. 25.已知正三棱柱 ABC-A1B1C1的侧棱长与底面边长相等,则 AB1与侧面 ACC 1A1所成角的正弦值等于 ()610A.4B. 423C. 2D. 26.在棱长为 1 的正方体ABCD - A1B1C1D1中,M,N 分别为 A1B1,BB1的中点,那么直线 AM 与 CN 所成角的余弦值为 ________.7.在一直角坐标系中,已知A(-1,6), B(3,- 8),现沿 x 轴将坐标平面折成60°的二面角,则折叠后 A、B 两点间的距离为 ________.→→→ 2→ 2→→→8.已知 ABCD -A1B1C1D1为正方体,① (A1A+ A1D 1+ A1B1) =3A1B1;②A1C·(A1B1- A1 A)= 0;→→→ → →③向量 AD 1与向量 A1B的夹角是 60°;④正方体ABCD - A1B1C1D 1的体积为 |AB ·AA 1·AD |.其中正确命题的序号是________.9.如图,在底面是矩形的四棱锥P— ABCD 中, PA⊥底面 ABCD,E,F 分别是 PC, PD 的中点, PA= AB= 1, BC= 2.(1)求证: EF∥平面 PAB;(2)求证:平面PAD ⊥平面 PDC .10.(2015 ·庆重 )如图,三棱锥 P-ABC 中,PC⊥平面 ABC,PC= 3,∠ ACB π=2.D, E 分别为线段AB, BC 上的点,且CD=DE =2, CE= 2EB=2.(1)证明: DE⊥平面 PCD;(2)求二面角APDC 的余弦值.B 组 能力提高11. (2014 ·川四 )如图,在正方体 ABCD -A 1B 1C 1D 1 中,点 O 为线段 BD 的中点.设点 P 在线段 CC 1 上,直线 OP 与平面 A 1BD 所成的角为 α,则 sin α的取值范围是 ()3,1]B . [6, 1]A .[ 33 62 2 2 2, 1]C .[3,3]D .[ 312.如图, 在正方体 ABCD - A 1B 1C 1D 1 中,点 P 在直线 BC 1 上运动时,有下列三个命题:①三棱锥 A - D 1PC 的体积不变;②直线 AP 与平面ACD 1 所成角的大小不变;③二面角 P - AD 1- C 的大小不变.其中真命题的序号是 ________.13.已知正方体 ABCD - A 1 B 1 C 1D 1 的棱长为 1, E 、 F 分别为 BB 1、 CD 的中点,则点 F 到平面 A 1D 1E 的距离为 ______________.14.如图, 在三棱锥 P —ABC 中, AC = BC =2,∠ ACB =90°,AP = BP =AB ,PC ⊥ AC ,点 D 为 BC 的中点.(1)求二面角A— PD —B 的余弦值;1(2)在直线 AB 上是否存在点M,使得 PM 与平面 PAD 所成角的正弦值为6,若存在,求出点M的位置;若不存在,说明理由.学生用书答案精析第 3 讲 立体几何中的向量方法高考真题体验1. C [方法一补成正方体,利用向量的方法求异面直线所成的角.由于∠ BCA = 90°,三棱柱为直三棱柱,且 BC = CA = CC 1,可将三棱柱补成正方体.建立如图 (1)所示空间直角坐标系.设正方体棱长为 2,则可得 A(0,0,0) ,B(2,2,0) , M(1,1,2) , N(0,1,2) ,→∴ BM = (-1,- 1,2),→.AN = (0,1,2)→ → → →BM ·AN∴ cos 〈BM , AN 〉= → →|BM||AN|- 1+ 4=-2+- 2+ 22× 02+ 12+ 22330=6×5=10.方法二 通过平行关系找出两异面直线的夹角,再根据余弦定理求解.如图 (2) ,取 BC 的中点 D ,连接 MN ,ND ,AD ,由于 MN 綊1 B 1C 1 綊 BD ,因此有 ND 綊 BM ,2则 ND 与 NA 所成的角即为异面直线BM 与 AN 所成的角.设 BC = 2,则 BM = ND = 6, AN= 5, AD = 5,因此 cos ∠ AND = ND 2+ NA 2- AD 230 2ND ·NA=10.]2. (1)证明由正方形的性质可知A 1B 1∥ AB ∥ DC ,且 A 1B 1= AB = DC ,所以四边形A 1B 1CD为平行四边形,从而 B 1 C ∥ A 1D ,又 A 1D ? 面 A 1DE , B 1 C?面 A 1DE ,于是 B 1C ∥面 A 1DE.又B 1C? 面 B 1 CD 1.面 A 1DE ∩面 B 1CD 1= EF ,所以 EF ∥ B 1C.(2)解 因为四边形 AA 1B 1B ,ADD 1A 1, ABCD 均为正方形,所以 AA 1⊥ AB , AA 1⊥AD , AB ⊥ AD 且AA 1 =AB =AD .以 A 为原点,分别以 → → →AB , AD ,AA 1为 x 轴, y 轴和 z 轴 单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0) ,B(1,0,0) ,D(0,1,0) ,A 1(0,0,1) , B 1(1,0,1) ,D 1 (0,1,1) ,而 E 点为 B 1D 1 的11中点,所以 E 点的坐标为, , 1 .设面 A 1DE 的法向量n 1= (r 1, s 1, t 1),而该面上向量→1 1 →A 1E = , , 0, A 1D = (0,1,- 1),由2 2→n 1⊥A 1E ,→11r 1+ s 1= 0,n 1⊥ A 1D 得 r 1, s 1, t 1 应满足的方程组2 2s 1- t 1= 0,(- 1,1,1)为其一组解,所以可取 n 1= (- 1,1,1).设面 A 1B 1CD 的法向量 n 2= (r 2,s 2,t 2),而该面上向量 →→A 1B 1= (1,0,0) ,A 1 D = (0,1,- 1),由此同理可得 n 2= (0,1,1) .所以结合图形知二面角E-A 1D -B 1 的余弦值为 |n 1·n 2| = 2 = 6.|n 1| ·|n 2| 3× 2 3热点分类突破例1 证明 方法一由题意,得 AB , AD ,AE 两两垂直,以 A 为原点建立如图所示的空间直角坐标系.设正方形边长为 1,则 A(0,0,0) , B(1,0,0), C(1,1,0) ,D (0,1,0) ,11 1 1 F(1,0,1),M 2, 0, 0 , O 2, 2,2 .→ 1 1 →1,0,0) , (1)OM = 0,-,- , BA = (- 2 2→ → → →∴OM ·BA =0, ∴OM ⊥BA.∵棱柱 ADE —BCF 是直三棱柱,→∴ AB ⊥平面 BCF ,∴ BA 是平面且 OM?平面 BCF ,∴ OM ∥平面BCF 的一个法向量,BCF .(2)设平面 MDF 与平面 EFCD 的一个法向量分别为n 1= (x 1, y 1, z 1 ),n 2= ( x 2, y 2 , z 2).→→∵ DF = (1,- 1,1), DM =n 1 ·DF →= 0, 由→n 1 ·DM = 0.x 1- y 1+ z 1= 0,得 1解得x 1- y 1= 0,21→→,,- 1,0 , DC =(1,0,0), CF = (0,- 1,1)21y 1=2x 1,1z 1 =- x 1,1 1 令 x 1= 1,则 n 1= 1,2,-2 . 同理可得 n 2= (0,1,1) .∵ n 1·n 2= 0,∴平面MDF ⊥平面 EFCD .方法二→ → → →1 →→ + 1 →(1)OM = OF + FB +BM= DF -BF BA2 21 →→→1→1 → 1 → 1 →=(DB + BF)- BF + BA =-BD - BF +BA2 2222=- 1 → →1 → 1 →2 (BC + BA)- BF +2BA2=- 1 → 1 →2 BC - BF .2→ → →∴向量 OM 与向量 BF , BC 共面,又 OM?平面 BCF ,∴ OM ∥平面 BCF .(2)由题意知, BF , BC , BA 两两垂直,∵→ =→,→=→-→, CD BA FC BC BF→ →1 → 1 → → = 0, ∴ OM·CD =-BC -BF2 2·BA→ → 1 → 1 →→ → OM ·FC = - BC - BF ·(BC -BF )22=- 1BC →2+ 1BF → 2= 0.2 2∴ OM ⊥ CD , OM ⊥ FC ,又 CD ∩FC = C ,∴ OM ⊥平面 EFCD .又 OM? 平面 MDF ,∴平面 MDF ⊥平面 EFCD .跟踪演练 1证明 (1)如图建立空间直角坐标系 A - xyz ,令 AB = AA 1= 4,则 A(0,0,0) , E(0,4,2) ,F(2,2,0) , B(4,0,0) , B 1(4,0,4) .取 AB 中点为 N ,连接 CN ,则 N(2,0,0) , C(0,4,0) ,D (2,0,2) ,→∴ DE = (- 2,4,0),→NC = (- 2,4,0) ,→ →∴ DE =NC ,∴ DE ∥ NC ,又∵ NC? 平面 ABC , DE?平面 ABC.故 DE ∥平面 ABC.→(2)B 1F = (- 2,2,- 4),→ →.EF = (2,- 2,- 2), AF = (2,2,0)→ →B 1F ·EF = (- 2) ×2+ 2×(-2)+ (- 4) ×(- 2)= 0,→ →B 1F ·AF = (- 2) ×2+ 2×2+ (- 4) ×0=0.∴→⊥→,→⊥→,即B 1F EF B 1F AF B 1F ⊥ EF , B 1F ⊥AF ,又∵ AF ∩FE = F ,∴ B 1F ⊥平面 AEF.例 2解→ → →以 { AB ,AD ,AP } 为正交基底建立如图所示的空间直角坐标系 Axyz ,则各点的坐标为B(1,0,0) ,C(1,1,0) , D(0,2,0) , P(0,0,2).(1)因为 AD ⊥平面→ →.PAB ,所以 AD 是平面 PAB 的一个法向量, AD = (0,2,0) → ,- →= (0,2,- 2). 因为 PC =(1,1 2), PD设平面 PCD 的法向量为 m =( x , y , z),→ →则 m ·PC = 0, m ·PD = 0,x + y - 2z = 0,令 y =1,解得 z =1, x = 1.即2y - 2z = 0.所以 m =(1,1,1) 是平面 PCD 的一个法向量.→ →3AD ·m从而 cos 〈 AD , m 〉= → = 3 ,|AD ||m |所以平面 PAB 与平面 PCD 所成二面角的余弦值为33 .→ → →≤λ≤1),(2)因为 BP = (- 1,0,2),设 BQ = λBP = (- λ, 0,2λ)(0 → → → →又 CB = (0,- 1,0) ,则 CQ =CB +BQ = (- λ,- 1,2λ), →,又 DP = (0,- 2,2)→ → → →1+ 2λCQ ·DP= .从而 cos 〈 CQ , DP 〉= → → 2|CQ||DP | 10λ+ 2设 1+2λ= t , t ∈ [1,3] ,2→→2t 2=2 9则 cos 〈 CQ ,DP 〉=21 5≤ .5t - 10t + 92 20 109 t -9 + 99 2→ →3 10 当且仅当 t =,即 λ= 时, |cos 〈CQ , DP 〉 |的最大值为10.55π因为 y = cos x 在 0,2 上是减函数,此时直线CQ 与 DP 所成角取得最小值.又因为 BP = 12+ 22= 5,所以 BQ = 2BP =2 5.55跟踪演练 2 (1)证明 ∵平面 ABD ⊥平面 BCD ,平面 ABD ∩平面 BCD = BD ,AB? 平面 ABD ,AB ⊥ BD ,∴ AB ⊥平面 BCD .又 CD ? 平面 BCD ,∴ AB ⊥ CD .(2)解过点 B 在平面 BCD 内作 BE ⊥ BD ,如图.由 (1) 知 AB ⊥平面 BCD , BE? 平面 BCD , BD ? 平面 BCD , ∴ AB ⊥ BE , AB ⊥ BD.以 B 为坐标原点,分别以→ → →BE , BD , BA 的方向为 x 轴, y 轴, z 轴的正方向建立空间直角坐标系.依题意,得 B(0,0,0) , C(1,1,0) ,D (0,1,0) ,A(0,0,1) 11,M (0,, ),2 2→→1 1 →,- 1).则 BC =(1,1,0) ,BM = (0,, ), AD = (0,122设平面 MBC 的法向量 n = (x 0, y 0, z 0),n ·BC →=0,x 0+ y 0= 0,则即 1+ 1= 0,→2y 0 n ·BM = 0,2z 0取 z 0= 1,得平面 MBC 的一个法向量 n = (1,- 1,1).设直线 AD 与平面 MBC 所成角为 θ,→ →6|n ·AD |则 sin θ= |cos 〈n , AD 〉 |= → = 3 ,|n | ·|AD |即直线 AD 与平面 MBC 所成角的正弦值为63.例 3 (1) 证明 连接 A 1C ,交 AC 1 于点 O ,连接 OD . 由 ABC -A 1B 1C 1 是直三棱柱,得四边形ACC 1A 1 为矩形, O 为 A 1C的中点.又D 为BC 的中点,所以 OD 为 △ A 1BC 的中位线,所以 A 1B ∥ OD.因为 OD? 平面 ADC 1, A 1B?平面 ADC 1,所以 A 1B ∥平面 ADC 1.(2)解由 ABC - A 1B 1C 1 是直三棱柱,且∠ A BC = 90°,得 BA , BC , BB 1 两两垂直.以 BC , BA , BB 1 所在直线分别为 x , y , z 轴,建立如图所示的空间直角坐标系B - xyz.设 BA = 2,则 B(0,0,0) ,C(2,0,0) , A(0,2,0) , C 1(2,0,1) , D(1,0,0) ,→ →所以 AD = (1,- 2,0) , AC 1= (2,- 2,1). 设平面 ADC 1 的法向量为 n = (x , y , z), →n ·AD = 0,则有→n ·AC 1= 0.x - 2y = 0,取 y =1,得 n = (2,1,- 2).所以 2x - 2y + z = 0.易知平面 ADC 的一个法向量为 v =(0,0,1) .所以 cos 〈 n , v 〉= n ·v2=- .|n | |·v | 3因为二面角 C 1- AD - C 是锐二面角,所以二面角 C 1- AD - C 的余弦值为2 .3(3)解 假设存在满足条件的点 E.因为点 E 在线段 A 1B 1 上, A 1(0,2,1) , B 1(0,0,1) ,故可设 E(0, λ,1),其中 0≤λ≤2.→→. 所以 AE = (0, λ- 2,1), DC 1= (1,0,1) 因为 AE 与 DC 1 成 60°角,→→→ →1|AE ·DC 1|所以 |cos 〈AE ,DC 1〉 |= → →=2,|AE| |DC ·1 |即12+1· 2=1,解得 λ= 1 或 λ= 3(舍去 ).λ-2所以当点 E 为线段 A 1 B 1 的中点时, AE 与 DC 1 成 60°角. 跟踪演练 3解 (1) 如图,以 D 为坐标原点, DA , DC , DM 所在直线分别为 x 轴,y 轴,z 轴,建立空间直角坐标系, 则 D(0,0,0) ,A(1,0,0),M(0,0,1) , C(0,1,0) , B(1,1,0) ,1 →1 , 0,- 1), N(1,1,1), E(, 1,0),所以 NE = (-22→AM =(- 1,0,1).→ →1→ →2 10|NE ·AM |因为 |cos 〈NE ,AM 〉 |= → → =5=10 ,|NE| ×|AM| 2 × 2所以异面直线 NE 与 AM 所成角的余弦值为1010.(2)假设在线段 AN 上存在点 S ,使得 ES ⊥平面 AMN . →=(0,1,1) ,因为 AN→ → =(0 ,λ, λ)(0 ≤λ≤1), 可设 AS = λAN→1 又 EA = (2,- 1,0),→→→1所以 ES = EA + AS = ( , λ-1, λ).2由 ES ⊥平面 AMN ,→→ES ·AM = 0,得→ →ES ·AN = 0,- 1+ λ= 0,即 2λ- + λ= 0,1 → 1 1 →2 . 故 λ=,此时 AS = (0, , ), |AS|=222 2经检验,当 AS =2时, ES ⊥平面 AMN .2故线段 AN 上存在点 S ,使得 ES ⊥平面 AMN ,此时 AS = 2.2高考押题精练(1)证明连接 AC ,∵四边形 ABCD 是矩形,且 Q 为 BD 的中点,∴Q 为 AC 的中点,又在 △AEC 中, P 为 AE 的中点,∴ PQ ∥EC ,∵ EC? 面 BCE , PQ?面 BCE ,∴ PQ ∥平面 BCE.(2)解 如图,取 EF 的中点 M ,则 AF ⊥ AM ,以 A 为坐标原点,以 AM ,AF ,AD 所在直线分别为 x ,y ,z 轴建立空间直角坐标系.则 A(0,0,0) , D (0,0,1) ,M (2,0,0), F(0,2,0) .→ → →可得 AM = (2,0,0) , MF = (- 2,2,0), DF = (0,2,- 1).→n ·MF = 0,设平面 DEF 的法向量为n = (x , y , z),则→n ·DF = 0.- 2x + 2y =0,x - y = 0,故 2y -z =0, 即2y - z = 0.令 x =1,则 y =1, z = 2,故 n =(1,1,2) 是平面 DEF 的一个法向量.→∵ AM ⊥面 ADF ,∴ AM 为平面 ADF 的一个法向量.→→2×1+ 0×1+ 0×26n ·AM∴ cos 〈n , AM 〉=→ = 6×2= 6.|n | ·|AM|由图可知所求二面角为锐角,6∴二面角A-DF - E 的余弦值为 6 .二轮专题强化练答案精析第 3 讲 立体几何中的向量方法1. D [由已知得 M 、 A 、 B 、C 四点共面.所以 AM 在平面 ABC 内,选 D.]→→ → → → → →→ 1,其中一个与 →2. C [AP 可为下列 7 个向量: AB , AC , AD , AA 1, AB 1,AC 1, AD AB 重合,→→→2→→→→→ → → →→AP ·AB = |AB| = 1; AD ,AD 1, AA 1 与AB 垂直,这时 AP ·AB = 0; AC , AB 1 与 AB 的夹角为45°,→ → π → → 3×1×cos ∠ BAC 1= 3× 1= 1,故选 C.] 这时 AP ·AB = 2×1×cos = 1,最后 AC 1·AB =3 4 3. B [分别以 C 1B 1、 C 1D 1、 C 1C 所在直线为 x , y , z 轴,建立空间直角坐标系,如图所示.∵ A 1M = AN = 23 a ,∴ M a , 2 a ,N 2 23a , 3 3a ,3a , a ,→ a 2 a .∴MN = - ,0, 33→又 C 1 (0,0,0) ,D 1(0, a,0),∴ C 1D 1= (0, a,0),∴→ →=,∴→⊥→MN ·C 1D 1 0 MN C 1D 1.→MN?平面 BB 1C 1C ,∴ MN ∥平面 BB 1C 1C.]∵ C 1D 1是平面 BB 1C 1C 的法向量,且 4. A [设 AB = 1,→ → → → → → 则 CE ·BD = (AE - AC) ·(AD - AB)= 1 → 2 1 → →→ → → →2 AD - AD ·AB - AC ·AD + AC ·AB2= 1 112 - cos 60 -°cos 60 +°cos 60 =° .24→ →1→ →43CE ·BD∴ cos 〈CE ,BD 〉= → → = 3=6 .选 A.]|CE||BD | 25. A [如图所示建立空间直角坐标系,设正三棱柱的棱长为2, O(0,0,0),B(3, 0,0), A(0,- 1,0), B 1(→ 3, →3, 0,2),则 AB 1= ( 1,2),则 BO = (- 3,→ →0,0)为侧面ACC 1A 1的法向量,由 sin θ= |AB 1·BO|= 6.] → →4|AB 1||BO|2 6.5解析 以 D 点为坐标原点,分别以DA , DC ,DD 1 所在直线为 x 轴, y轴, z 轴建立如图所示的空间直角坐标系,则A(1,0,0) , M(1, 1, 1),21C(0,1,0), N(1,1, 2) .→ 1 →1所以 AM = (0,, 1),CN= (1,0, ).22 → →111故 AM ·CN = 0×1+ ×0+1× = ,2 2 2→2 1 2 + 1 25|AM |=0 + 2 = ,2→2 21 2 =5|CN|= 1+0+ 2 ,2→ →1→→2 2AM ·CN=所以 cos 〈 AM , CN 〉=→ → 5 5= .5|AM ||CN|2 ×27.2 17解析如图为折叠后的图形,其中作 AC ⊥ CD , BD ⊥ CD ,则 AC = 6, BD = 8, CD = 4,两异面直线 AC 、 BD 所成的角为 60°,故由→=→+→+→,AB AC CD DB→ 2 →→→2,得 |AB| = |AC +CD + DB | = 68→∴|AB|= 2 17.8.①②→→→2→ 2→ 2 → 解析 设正方体的棱长为 1,①中 (A 1A + A 1D 1+A 1B 1) =A 1C = 3A 1B 1 =3,故①正确; ②中 A 1B 1→ →→- A 1A = AB 1,由于 AB 1⊥ A 1C ,故②正确; ③中 A 1B 与 AD 1 两异面直线所成的角为 60°,但 AD 1→→ → →与 A 1B 的夹角为 120°,故③不正确;④中 |AB ·AA 1·AD |= 0.故④也不正确.9.证明(1) 以 A 为原点, AB 所在直线为 x 轴, AD 所在直线为 y 轴, AP 所在直线为 z 轴,建立如图所示的空间直角坐标系,则 A(0,0,0) , B(1,0,0) ,C(1,2,0) , D(0,2,0) , P(0,0,1) ,∵ E, F 分别是 PC, PD 的中点,∴ E 1, 1,1,F 0,1,1,222→1,0, 0→.EF=-,AB= (1,0,0)2→ 1 →→ →∵EF=-AB ,∴ EF ∥ AB,2即 EF∥AB,又 AB? 平面 PAB, EF?平面 PAB,∴ EF ∥平面 PAB.→,- 1)→→→→,(2)由 (1)可知 PB= (1,0,PD = (0,2,- 1),AP= (0,0,1), AD= (0,2,0), DC = (1,0,0)→→∵ AP·DC = (0,0,1) (1,0,0)·= 0,→→AD ·DC = (0,2,0) (1,0,0)·= 0,→→→→∴ AP⊥ DC,AD ⊥DC ,即 AP⊥ DC ,AD⊥ DC .又 AP∩AD= A,∴ DC ⊥平面 PAD .∵DC ? 平面 PDC,∴平面 PAD ⊥平面 PDC .10. (1)证明由PC⊥平面ABC,DE ?平面ABC,故PC⊥ DE.由 CE= 2, CD= DE= 2得△CDE 为等腰直角三角形,故 CD ⊥ DE .由 PC∩CD= C, DE 垂直于平面 PCD 内两条相交直线,故 DE ⊥平面 PCD .π(2)解由(1)知,△ CDE为等腰直角三角形,∠DCE =,如图,过 D 作4DF 垂直 CE 于 F,易知 DF = FC= FE= 1,又已知EB= 1,故 FB= 2.πDF=FB233.由∠ ACB=得 DF ∥AC ,AC BC =,故 AC=DF =2322以 C 为坐标原点,分别以→ →→轴, y 轴, z 轴的正方向建立空间直角坐标CA,CB,CP的方向为 x系,则 C(0,0,0) ,P(0,0,3) ,A 3,0, 0→→,2,E(0,2,0) ,D (1,1,0),ED=(1,- 1,0),DP= (- 1,- 1,3)→1,- 1,0 . DA =2→→- x1-y1+3z1=0,设平面 PAD 的法向量为n1=(x1,y1,z1),由 n1·DP=0,n1·DA=0,得1x1- y1=0,2故可取 n1=(2,1,1).→由 (1) 可知 DE ⊥平面 PCD ,故平面PCD 的法向量n2可取为ED,即 n2=(1,-1,0).从而法向量n1,n2的夹角的余弦值为cos 〈n1,n2〉=n1·n2=3,|n1| |·n2 |6故所求二面角 APDC 的余弦值为3 6 .11. B [ 根据题意可知平面A1BD ⊥平面 A1ACC 1且两平面的交线是A1O,所以过点P 作交线 A1O 的垂线 PE,则 PE⊥平面 A1BD,所以∠ A1OP 或其补角就是直线OP 与平面 A1BD 所成的角α.设正方体的边长为2,则根据图形可知直线OP 与平面 A1BD 可以垂直.当点 P 与点 C1重合时可得 A1O=OP=6,A1C1=2 2,所以1× 6× 6×sin α=1×22×2,22所以 sin α=2 2;3当点 P 与点 C 重合时,可得sin α=2=6 6 3.根据选项可知 B 正确. ]12.①③解析①中,∵ BC1∥平面 AD1C,∴ BC1上任意一点到平面 AD 1C 的距离相等,所以体积不变,正确;②中,P 在直线 BC1上运动时,直线 AB 与平面 ACD 1所成角和直线 AC1与平面ACD 1 所成角不相等,所以不正确;③中,P 在直线 BC 1 上运动时,点 P 在平面 AD 1 C 1B 中,既二面角 P —AD 1-C 的大小不受影响,所以正确.3 513. 10解析以 A 为坐标原点, AB 、 AD 、AA 1 所在直线分别为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示,11则 A 1 (0,0,1) ,E(1,0,2), F(2, 1,0), D 1 (0,1,1) .→1 →.∴ A 1E = (1,0,-),A 1D 1= (0,1,0)2设平面 A 1D 1E 的一个法向量为 n = (x , y , z),→=0,1n ·A 1E即x - z = 0,则2→ y = 0.n ·A 1D 1= 0,令 z = 2,则 x = 1.∴ n = (1,0,2) .→1又 A 1F = (2, 1,- 1),∴点 F 到平面 A 1D 1 E 的距离为→1- 2|||A 1F ·n |=2= 3 5d = |n |510.14.解 (1)∵ AC = BC , PA = PB , PC = PC ,∴△ PCA ≌△ PCB ,∴∠ PCA =∠ PCB ,∵ PC ⊥ AC ,∴ PC ⊥ CB ,又 AC ∩CB = C ,∴ PC ⊥平面 ACB ,且 PC , CA , CB 两两垂直,故以 C 为坐标原点,分别以CB , CA , CP 所在直线为 x ,y , z 轴建立空间直角坐标系,则C(0,0,0), A(0,2,0) , D(1,0,0) , P(0,0,2),→ →∴ AD = (1,- 2,0), PD = (1,0,- 2),设平面 PAD 的一个法向量为n = (x , y , z) ,→n ·AD =0∴,∴取 n = (2,1,1) ,→n ·PD =0→平面 PDB 的一个法向量为CA = (0,2,0) ,→6∴ cos 〈n , CA 〉= 6 ,设二面角 A —PD — B 的平面角为 θ,且 θ为钝角,6 6 ∴ cos θ=- 6 ,∴二面角 A — PD — B 的余弦值为-6.(2)方法一存在, M 是 AB 的中点或 A 是 MB 的中点.设 M(x,2- x,0) (x ∈ R ),→∴ PM = (x,2- x ,- 2),∴ →|cos 〈 PM , n 〉 ||x|1 = x 2+- x2+4· 6 = 6,解得 x = 1 或 x =- 2,∴ M(1,1,0) 或 M(- 2,4,0),∴在直线 AB 上存在点 M ,且当 M 是 AB 的中点或 A 是 MB 的中点时,使得 PM 与平面 PAD所成角的正弦值为 16.方法二 存在, M 是 AB 的中点或 A 是 MB 的中点. → →设 AM = λAB ,→=(2 λ,- 2λ, 0) (λ∈ R ),则 AM = λ(2,- 2,0) → → →∴ PM = PA + AM = (2λ,2- 2λ,- 2),→|2λ|∴ |cos 〈 PM , n 〉 |=2+- 2λ 2+ 4· 6 λ 1解得 λ= 或 λ=- 1.∴M 是 AB 的中点或 A 是 MB 的中点.∴在直线 AB 上存在点 M ,且当 M 是 AB 的中点或1=6.A 是 MB 的中点时,使得 PM 与平面 PAD1所成角的正弦值为 .。
2021年高考数学二轮复习 空间向量与立体几何专题训练(含解析)

2021年高考数学二轮复习 空间向量与立体几何专题训练(含解析)一、选择题1.在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( )A.19B.495 C.29 5 D.23解析设正方体的棱长为2,以D 为原点建立如图所示空间坐标系,则CM →=(2,-2,1),D 1N →=(2,2,-1),∴cos 〈CM →,D 1N →〉=-19,∴sin 〈CM →,D 1N →〉=459.答案 B2.如图,三棱锥A -BCD 的棱长全相等,E 为AD 的中点,则直线CE 与BD 所成角的余弦值为( )A.36B.32C.336D.12解析 设AB =1,则CE →·BD →=(AE →-A C →)·(AD →-AB →)=12AD →2-12AD →·AB →-AC →·AD →+AC →·AB →=12-12cos60°-cos60°+cos60°=14.∴cos 〈CE →,BD →〉=CE →·BD →|CE →||BD →|=1432=36.故选A.答案 A 3.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为( ) A .0 B .1 C .0或1 D .任意实数解析 AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD 1→,AA 1→与AB →垂直,这时AP →·AB →=0;AC →,AB 1→与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC 1→·AB →=3×1×cos∠BAC 1=3×13=1,故选C.答案 C4.(xx·山东卷)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6解析如图所示,设△ABC 的中心为O ,S ABC =12×3×3×sin60°=334.∴VABC -A 1B 1C 1=S ABC ×OP =334×OP =94,∴OP = 3. 又OA =32×3×23=1,∴tan ∠OAP =OPOA=3, 又0<∠OAP <π2, ∴∠OAP =π3.答案 B5.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析 以A 为坐标原点建立空间直角坐标系,如图.设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), 所以A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,所以⎩⎪⎨⎪⎧y =2,z =2,所以n 1=(1,2,2).因为平面ABCD 的一个法向量为n 2=(0,0,1),所以|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B.答案 B6.P 是二面角α-AB -β棱上的一点,分别在α,β平面上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为( )A .60° B.70° C .80° D.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于点E ,NF ⊥AB 于点F ,如图. 因为∠EPM =∠FPN =45°, 所以PE =22a ,PF =22b , 所以EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos60°-a ×22b cos45°-22ab cos45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0.所以EM →⊥FN →,所以二面角α-AB -β的大小为90°. 答案 D 二、填空题7.已知a =(2,-1,1),b =(-1,4,-2),c =(11,5,λ).若向量a ,b ,c 共面,则λ=________. 解析 由向量a ,b ,c 共面可得c =x a +y b (x ,y ∈R ),故有⎩⎪⎨⎪⎧11=2x-y,5=-x+4y,λ=x-2y,解得⎩⎪⎨⎪⎧x=7,y=3,λ=1.答案 18.已知空间不共面四点O,A,B,C,OA→·OB→=OA→·OC→=OB→·O C→=0,且|OA→|=|OB→|=|OC→|,AM→=MB→,则OM与平面ABC所成角的正切值是________.解析由题意可知,OA,OB,OC两两垂直,如图,建立空间直角坐标系O-xyz,设OA=OB=OC=1,则A(1,0,0),B(0,1,0),C(0,0,1),M⎝⎛⎭⎪⎫12,12,0,故AB→=(-1,1,0),AC→=(-1,0,1),OM→=⎝⎛⎭⎪⎫12,12,0.设平面ABC的法向量为n=(x,y,z),则由⎩⎪⎨⎪⎧n⊥AB→,n⊥AC→,得⎩⎪⎨⎪⎧-x+y=0,-x+z=0,令x=1,得平面ABC的一个法向量为n=(1,1,1).故cos〈n,OM→〉=13×22=63,sin〈n,OM→〉=1-⎝⎛⎭⎪⎫632=33,tan〈n,OM→〉=sin〈n,OM→〉cos〈n,OM→〉=22.答案229.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.解析如图,建立空间直角坐标系.设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23, AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ), 平面AEF 与平面ABC 所成的二面角为θ, 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,得z =-3,x =-1,则n =(-1,1,-3), 平面ABC 的法向量为m =(0,0,-1), cos θ=cos 〈n ,m 〉=311,tan θ=23.答案23三、解答题 10.如图所示,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC ⊥BE ; (2)若二面角C -AE -D 的大小为60°,求λ的值. 解(1)证明:如图所示,建立空间直角坐标系D -xyz ,则A (a,0,0),B (a ,a,0),C (0,a,0),D (0,0,0),E (0,0,λa ),∴AC →=(-a ,a,0),BE →=(-a ,-a ,λa ), ∴AC →·BE →=0对任意λ∈(0,1]都成立, 即对任意的λ∈(0,1],都有AC ⊥BE .(2)显然n =(0,1,0)是平面ADE 的一个法向量, 设平面ACE 的法向量为m =(x ,y ,z ), ∵AC →=(-a ,a,0),AE →=(-a,0,λa ), ∴⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,即⎩⎪⎨⎪⎧-ax +ay =0,-ax +λaz =0,∴⎩⎪⎨⎪⎧x -y =0,x -λz =0.令z =1,则x =y =λ,∴m =(λ,λ,1). ∵二面角C -AE -D 的大小为60°,∴cos〈n,m〉=n·m|n||m|=λ1+2λ2=12,∵λ∈(0,1],∴λ=22.11.(xx·北京卷)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE 中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.解(1)证明:在正方形AMDE中,因为B是AM的中点,所以AB∥DE.又因为AB⊄平面PDE,所以AB∥平面PDE.因为AB⊂平面ABF,且平面ABF∩平面PDE=FG,所以AB∥FG.(2)因为PA⊥底面ABCDE,所以PA⊥AB,PA⊥AE.如图建立空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),BC→=(1,1,0).设平面ABF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AF →=0,即⎩⎪⎨⎪⎧x =0,y +z =0.令z =1,则y =-1.所以n =(0,-1,1). 设直线BC 与平面ABF 所成角为α,则sin α=|cos 〈n ,BC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·BC →|n ||BC →|=12. 因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH →=λPC →(0<λ<1), 即(u ,v ,w -2)=λ(2,1,-2), 所以u =2λ,v =λ,w =2-2λ. 因为n 是平面ABF 的法向量,所以n ·AH →=0,即(0,-1,1)·(2λ,λ,2-2λ)=0, 解得λ=23.所以点H 的坐标为⎝ ⎛⎭⎪⎫43,23,23. 所以PH =⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫-432=2. B 级——能力提高组1.(xx·江西卷)如图,四棱锥P -ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . (1)求证:AB ⊥PD ;(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P -ABCD 的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值. 解 (1)证明:ABCD 为矩形,故AB ⊥AD . 又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,所以AB ⊥平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG ,在Rt △BPC 中,PG =233,GC =263,BG =63, 设AB =m ,则OP = PG 2-OG 2=43-m 2, 故四棱锥P -ABCD 的体积为 V =13·6·m ·43-m 2=m 3 8-6m 2. 因为m 8-6m 2= 8m 2-6m 4=-6⎝ ⎛⎭⎪⎫m 2-232+83, 故当m =63,即AB =63时,四棱锥P -ABCD 的体积最大.此时,建立如图所示的坐标系,各点的坐标为O (0,0,0),B ⎝⎛⎭⎪⎫63,-63,0,C ⎝ ⎛⎭⎪⎫63,263,0,D ⎝ ⎛⎭⎪⎫0,263,0,P ⎝ ⎛⎭⎪⎫0,0,63.故PC →=⎝ ⎛⎭⎪⎫63,263,-63,BC →=(0,6,0), CD →=⎝ ⎛⎭⎪⎫-63,0,0. 设平面BPC 的法向量n 1=(x ,y,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧ 63x +263y -63=0,6y =0,解得x =1,y =0,n 1=(1,0,1).同理可求出平面DPC 的法向量n 2=⎝ ⎛⎭⎪⎫0,12,1, 从而平面BPC 与平面DPC 夹角θ的余弦值为cos θ=|n 1·n 2||n 1||n 2|=12· 14+1=105. 2.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.解 (1)证明:以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0)(0≤z 0≤1), 使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).由n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0, 解得z 0=12.又DP ⊄平面B 1AE , ∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. (3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a 2-a 2 1+a 24+a 2. ∵二面角A -B 1E -A 1的大小为30°, ∴|cos θ|=cos30°,即3a22 1+5a24=32, 解得a =2,即AB 的长为2.40106 9CAA 鲪39660 9AEC 髬a35726 8B8E 讎37789 939D 鎝38405 9605 阅Q] 21800 5528 唨25456 6370 捰$27604 6BD4 比g30814 785E 硞。
高考数学大二轮 专题限时训练 第3讲 用空间向量的方法

第3讲用空间向量的方法解立体几何问题【选题明细表】知识点、方法题号空间向量及其运算2、3 利用空间向量解决平行、垂直1、5、8利用向量求空间角2、4、7利用空间向量求距离 6综合应用9、10一、选择题1.已知a=(2,4,-5),b=(3,x,y),若a∥b,则x+y等于( D )(A)-9 (B)-(C)-3 (D)-解析:由a∥b,得==,解得x=6,y=-,故x+y=6-=-.故选D.2.已知向量a=(1,-,3),b=(-2,2,-6),|c|=2,若(a+b)·c=6,则a与c的夹角为( C )(A)30° (B)60° (C)120°(D)150°解析:由已知得a+b=(-1,,-3)=-a,所以(a+b)·c=-a·c=6,则a·c=-6,而|a|==2,所以cos<a,c>==-,所以<a,c>=120°.故选C.3.已知平面α内的三个点A(2,0,0)、B(0,2,0)、C(0,0,2),则平面α的一个法向量是( A )(A)(1,1,1) (B)(-1,1,1)(C)(-1,-1,1) (D)(1,1,-1)解析:∵=(-2,2,0),=(0,-2,2),设n=(x,y,z)为平面α的一个法向量,则⇒取x=1,则y=1,z=1.∴n=(1,1,1).故选A.4.正方体ABCD A1B1C1D1中,E是棱BB1中点,G是DD1中点,F是BC上一点且FB=BC,则GB与EF 所成的角为( D )(A)30° (B)120°(C)60°(D)90°解析:设正方体棱长为1,以D为原点,直线DA、DC、DD1分别为x轴、y轴、z轴建立空间直角坐标系,则有G(0,0,),B(1,1,0),E(1,1,),F(,1,0),=(1,1,-), =(-,0,-),∴·=1×(-)+1×0+(-)×(-)=0,则⊥.故GB与EF所成角为90°.故选D.5.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为( B )(A),-,4 (B),-,4(C),-2,4 (D)4,,-15解析:由于⊥,所以·=0,即1×3+5×1-2z=0,∴z=4.∴=(3,1,4),又BP⊥平面ABC,所以BP⊥AB,BP⊥BC,即有所以解得x=,y=-,故选B.6.在棱长为a的正方体ABCD A1B1C1D1中,M为AB的中点,则点C到平面A1MD的距离为( A )(A) a (B) a(C) a (D)a解析:建立如图所示的空间直角坐标系,则A1(a,0,0),D(0,0,a),M(a,,a),C(0,a,a),所以=(0,,a),=(-a,0,a),=(0,a,0).设平面A1MD的法向量为n=(x,y,z),则由得即令x=1,则y=-2,z=1,所以n=(1,-2,1)为平面A1MD的一个法向量.所以点C到平面A1MD的距离等于=== a.故选A.二、填空题7.在长方体ABCD A1B1C1D1中,AB=3,BC=2,AA1=1,则异面直线BA1与CB1所成角的余弦值为.解析:如图所示,建立空间直角坐标系,则各点的坐标分别为A(2,0,0),B(2,3,0),C(0,3,0),A1(2,0,1),B1(2,3,1),则=(0,-3,1),=(2,0,1),∴cos<,>==,即得异面直线BA1与CB1所成角的余弦值为.答案:8.如图所示,在正方体ABCD A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是.解析:如图所示,分别以C1B1、C1D1,C1C所在直线为x轴、y轴、z轴,建立空间直角坐标系.∵A1M=AN=a,∴M(a,a,),N(a,a,a),∴=(-,0,a).又C1(0,0,0),D1(0,a,0),∴=(0,a,0),∴·=0,∴⊥.∵是平面BB1C1C的法向量,且MN⊄平面BB1C1C,∴MN∥平面BB1C1C.答案:平行三、解答题9.(2012年高考新课标全国卷)如图,直三棱柱ABC A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD.(1)证明:DC1⊥BC;(2)求二面角A1BD C1的大小.(1)证明:不妨设AC=BC=AA1=1.又∵D为AA1中点,∴A1D=AD=1,∴DC1=,BC1=,∴BD2=3=AD2+AB2,∴AB2=2=AC2+BC2,∴∠ACB=90°,即BC⊥AC,又∵BC⊥CC1,∴BC⊥平面ACC1A1,又∵DC1⊂平面ACC1A1,∴DC1⊥BC.(2)解:由(1)知CA、CB、CC1两两垂直.分别以CA、CB、CC1为x、y、z轴建立空间直角坐标系, 则B(0,1,0),D(1,0,1),A1(1,0,2),C1(0,0,2),∴=(1,-1,1),=(0,-1,2),设平面BDC1的一个法向量n=(x,y,z).则即令z=1,则y=2,x=1,即n=(1,2,1).可取平面A1BD的一个法向量m=(1,1,0),∴cos<m,n>===,又∵二面角A1BD C1为锐二面角,∴该二面角的大小为.10. 在四棱锥P ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以AC的中点O为球心、AC为直径的球面交PD于点M,交PC于点N.(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成的角的大小;(3)求点N到平面ACM的距离.(1)证明:如图所示,建立空间直角坐标系,则A(0,0,0),P(0,0,4),B(2,0,0),C(2,4,0),D(0,4,0),M(0,2,2),∴=(2,0,0),=(0,2,2),设平面ABM的法向量n1=(x1,y1,z1),∴∴可取n1=(0,1,-1).=(0,4,-4),=(-2,0,0),设平面PCD的法向量n2=(x2,y2,z2),∴∴可取n2=(0,1,1).∵n1·n2=1-1=0,∴n1⊥n2.∴平面ABM⊥平面PCD.解:(2)由(1)得=(2,4,0),=(0,2,2), =(-2,0,0),设平面ACM的一个法向量n=(x,y,z),由n⊥,n⊥,可得令z=1,则n=(2,-1,1).设所求角为α,则sin α==,所求角的大小为arcsin .(3)连结AN,由题意可得AN⊥NC.在Rt△PAC中,PA2=PN·PC,所以PN=,则NC=PC-PN=,=,所求距离等于点P到平面ACM距离的.设点P到平面ACM距离为h,又由(1)知=(0,0,4), 则h==,所以所求距离为h=.。
高考数学二轮复习空间向量与立体几何专题训练(含解析)

高考数学二轮复习空间向量与立体几何专题训练(含解析)A 级——基础稳固组一、选择题→ →1.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则 sin 〈CM,D1N〉的值为()14A. 9B.9 522C. 5D.93分析→→设正方体的棱长为2,以D为原点成立如下图空间坐标系,则CM=(2,-2,1)1,,D N=(2,2-1) ,→ →1∴ cos 〈CM,D1N〉=-9,→ → 4 5∴ sin 〈CM,D1N〉=9 .答案B2.如图, 三棱锥 A - BCD 的棱长全相等, E 为 AD 的中点, 则直线 CE 与 BD 所成角的余弦值为 ()33A.B.62331C.D.62→→→→→→ 1→ 2 1→→→→→→1 1 分析设 AB = 1,则 CE · BD = ( AE - A C ) ·(AD - AB ) = 2AD - 2AD · AB -AC · AD + AC · AB = 2-21cos60°- cos60°+ cos60°= 4.→ →1→ → 4 3CE · BD∴ cos 〈CE , BD 〉= → → =3 = 6.应选 A.||| |CE BD2答案A3.如图,点 P 是单位正方体 ABCD - A B CD→ →中异于 A 的一个极点,则 AP · AB 的值为 ()1 1 1 1A . 0B . 1C .0或 1D .随意实数分析 →7 个向量: →→→→→→→ → → →AP 可为以下 AB , AC , AD ,AA 1, AB 1,AC 1, AD 1,此中一个与 AB 重合, AP · AB =| → | 2= 1;→,→1,→ 1与→垂直,这时 → · → = 0; → ,→1与→的夹角为45°,这时→·→= 2AB AD AD AA AB AP ABAC AB ABAP AB×1×cos π = 1,最后 →1· →= 3×1×cos ∠1= 3× 1 = 1,应选 C.4 ACABBAC3答案 C4.(201 3·山东卷 ) 已知三棱柱- 1 11的侧棱与底面垂直,体积为 9,底面是边长为3的正ABC ABC4三角形.若 P 为底面 A 1B 1C 1 的中心,则 PA 与平面 ABC 所成角的大小为 ()5ππ A. 12B. 3πD.πC.64分析如下图,设△ABC1 3 3ABC 的中心为 O , S= 2× 3× 3×sin60 °= 4 .3 39∴ VABC - A 1B 1C 1 =S ABC ×OP =4 × OP = 4,∴ OP = 3.32又 OA = 2 × 3× 3=1,OP ∴ tan ∠ OAP == 3,OAπ又 0<∠ OAP < 2 ,π∴∠ OAP = 3 .5.在正方体 ABCD - A 1B 1C 1D 1 中,点 E 为 BB 1 的中点,则平面 A 1ED 与平面 ABCD 所成的锐二面角的余弦值为 ()1 2 A. 2B. 332C. 3D. 2分析以 A 为坐标原点成立空间直角坐标系,如图.设棱长为 1,则 1(0,0,1) ,E 1, 0, 1, (0,1,0) ,A2 D→→1, 0,-1,112所以 AD =(0,1 ,- 1),AE =设平面 1 的一个法向量为 1=(1 , y , ) ,A EDn zy - z =0,y =2,则1所以 n = (1,2,2) .所以1- 2z = 0, z =2,1由于平面 ABCD 的一个法向量为 n = (0,0,1) ,2所以 |cos 〈n 1, n 2〉 | =223×1 = .3即平面 A ED 与平面 ABCD 所成的锐二面角的余弦值为23. 应选 B.1答案 B6. P 是二面角 α-AB - β 棱上的一点,分别在 α, β 平面上引射线PM ,PN ,假如∠ BPM =∠=45°,∠=60°,那么二面角 - -的大小为 ()A.60° B .70°C.80° D .90°分析不如设 PM= a, PN= b,作 ME⊥ AB于点 E, NF⊥AB于点 F,如图.由于∠ EPM=∠ FPN=45°,所以 PE=22a, PF=22b,→ →→ →→→所以 EM· FN=( PM-PE)·(PN- PF)→ → →→ →→→ →= PM· PN-PM· PF- PE· PN+ PE·PF2222=ab cos60°- a×2 b cos45°-2 ab cos45°+2 a×2 b abab ab ab=2-2-2+2=0.→→所以 EM⊥ FN,所以二面角α-AB-β 的大小为90°.答案D二、填空题7.已知a= (2 ,-1,1),b=(-1,4,-2),c=(11,5,λ).若向量 a,b,c 共面,则λ=________.分析由向量,,c 共面可得c=xa+(x,∈R) ,a b yb y11= 2x-y,x=7,故有 5=-x+ 4y,解得 y=3,λ =x-2y,λ=1.答案18.已知空间不共面四点,,,,→·→=→·→=→·→=0,且 |→| =|→|=|→|,→O A B COAOBOAOCOBOC OA OB OC AM →= MB,则 OM与平面 ABC所成角的正切值是________.分析由题意可知, OA , OB , OC 两两垂直,如图,成立空间直角坐标系O - xyz ,设 OA = OB = OC = 1,1 1则 A (1,0,0) , B (0,1,0) , C (0,0,1) , M 2 ,2, 0 ,→→ → 1 1故 AB = ( - 1,1,0) ,AC = ( - 1,0,1) , OM = 2,2,0 .设平面 ABC 的法向量为 n = ( x ,y , z ) ,→- x +y = 0,n ⊥AB ,则由得→ - x +z = 0,n ⊥AC ,令 x = 1,得平面 ABC 的一个法向量为 n = (1,1,1) .→1= 6故 cos 〈n , OM 〉=,2 33× 2→6 2 3sin 〈 n ,OM 〉=1-3 = 3 ,→→2sin 〈n , OM 〉tan 〈 n ,OM 〉= cos 〈 , →〉=2.nOM答案229.已知点 E , F 分别在正方体 ABCD - A 1B 1C 1D 1 的棱 BB 1, CC 1 上,且 B 1E = 2EB , CF = 2FC 1,则平面与平面所成的二面角的正切值为________.AEFABC分析如图,成立空间直角坐标系.设= 1,由已知条件得(1,0,0),E1, 1,1,F0, 1,2,DA A33→1AE=0, 1,3,→2AF=-1,1,3,设平面 AEF的法向量为n=( x,y, z),平面 AEF与平面→n· AE=0,由→n· AF=0,ABC所成的二面角为θ,1y+3z=0,得2-x+ y+3z=0.令 y=1,得 z=-3, x=-1,则 n=(-1,1,-3),平面 ABC的法向量为 m=(0,0,-1),cos θ= cos〈n,m〉=3,tanθ=2. 113答案2 3三、解答题10.如下图,四棱锥S- ABCD的底面是正方形,SD⊥平面 ABCD, SD= AD= a,点 E 是 SD上的点,且 DE=λa(0<λ≤1).(1)求证:对随意的λ∈(0,1],都有AC⊥BE;(2)若二面角 C- AE- D的大小为60°,求λ的值.解(1) 证明:如下图,成立空间直角坐标系D -xyz ,则 A ( a, 0,0) ,B ( a ,a, 0) ,C (0 ,a, 0) ,D (0,0,0) ,E (0,0 , λa ) ,∴→=(- ,0) ,→=( - ,- ,) ,ACaa, BEaa λa→ →对随意 λ∈ (0,1]都成立,∴ AC · BE =0即对随意的 λ∈ (0,1] ,都有 AC ⊥ BE .(2) 明显n = (0,1,0) 是平面的一个法向量,ADE设平面 ACE 的法向量为 m = ( x ,y , z ) ,→→- a, 0, λa ), ∵ AC = ( - a , a, 0) , AE =(→- ax + ay =0, x - y = 0, m · AC = 0, ∴ →即+= 0,∴-= 0.· = 0, -ax λazxλzm AE令 z = 1,则 x = y =λ,∴ m =( λ, λ, 1) .∵二面角 C - AE - D 的大小为 60°,∴ cos 〈n ,m 〉=n ·mλ1== ,| n || m |1+ 2λ222 ∵ λ∈ (0,1] ,∴ λ=.211.(2014 ·北京卷 ) 如图,正方形AMDE的边长为 2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中, F为棱 PE的中点,平面 ABF与棱 PD,PC分别交于点 G, H.(1)求证: AB∥ FG;(2) 若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.解 (1) 证明:在正方形AMDE中,由于B是AM的中点,所以 AB∥ DE.又由于 AB?平面 PDE,所以 AB∥平面 PDE.由于 AB?平面 ABF,且平面 ABF∩平面 PDE= FG,所以 AB∥ FG.(2)由于 PA⊥底面 ABCDE,所以 PA⊥AB,PA⊥ AE.如图成立空间直角坐标系A- xyz,则 A(0,0,0),B(1,0,0), C(2,1,0), P(0,0,2), F(0,1,1)→., BC=(1,1,0)设平面 ABF的法向量为 n=( x,y, z),→x=0,n· AB=0,则即n ·→=0,y+ z=0. AF令 z=1,则 y=-1.所以 n=(0,-1,1).设直线 BC 与平面 ABF 所成角为 α,→1则 sin=|cos 〈,→〉 | = n ·BCα= .n BC→2| n || BC |π所以直线 BC 与平面 ABF 所成角的大小为 6 .设点 H 的坐标为 ( u ,v , w ) .→→由于点 H 在棱 PC 上,所以可设 PH = λPC (0< λ<1) ,即 ( u , v , w - 2) = λ(2,1 ,- 2) ,所以 u = 2λ , v = λ, w = 2- 2λ.由于 n 是平面 ABF 的法向量,→所以 n ·AH = 0,即 (0 ,- 1,1) ·(2 λ,λ, 2- 2λ) = 0,2解得 λ=3.所以点 H 的坐标为4 2 2, ,3 3 3 .所以 = 4 2 2 2 42+ + - =2.PH 3 3 3B 级——能力提升组1.(2014 ·江西卷 ) 如图,四棱锥 P - ABCD 中, ABCD 为矩形,平面 PAD ⊥平面 ABCD .(1) 求证: AB ⊥ PD ;(2) 若∠ BPC =90°, PB = 2,PC = 2,问 AB 为什么值时,四棱锥 P - ABCD 的体积最大?并求此时平面 PBC 与平面 DPC 夹角的余弦值.解 (1) 证明: ABCD 为矩形,故 AB ⊥ AD .又平面 PAD ⊥平面 ABCD ,平面 PAD ∩平面 ABCD = AD ,所以 AB ⊥平面 PAD ,故 AB ⊥ PD .故 PO⊥平面 ABCD, BC⊥平面 POG, BC⊥ PG,23266在 Rt △BPC中,PG=3,GC=3,BG=3,2242设 AB= m,则 OP=PG- OG=3- m,故四棱锥 P- ABCD的体积为142m2V=3·6· m·3- m=38-6m.由于-2=24-2228m-=6m-+,86m8m 6m3366P-ABCD的体积最大.此时,成立如下图的坐标系,各故当 m=,即 AB=时,四棱锥3366626266点的坐标为 O(0,0,0), B3,-3, 0, C3,3, 0,D 0,3, 0,P 0,0,3.→6266→故 PC=3,3,-3, BC=(0,6,0),→6.CD=-3,0,0设平面 BPC的法向量 n =( x, y, 1),16266→→3 x+3 y-3=0,则由 n ⊥ PC, n ⊥ BC,得116y=0,解得 x=1, y=0,n1=(1,0,1).21同理可求出平面=0,,1,DPC的法向量n2进而平面与平面夹角的余弦值为11| n·n |110cos θ12=5 .=| n1|| n2|=12·4+ 12.如图,在长方体ABCD- A1B1C1D1中, AA1= AD=1,E 为 CD的中点.(1)求证: B1E⊥ AD1;(2)在棱 AA1上能否存在一点 P,使得 DP∥平面 B1AE?若存在,求 AP的长;若不存在,说明原因;(3)若二面角 A- B1E-A1的大小为30°,求 AB的长.解 (1) 证明:以A 为原点,→,→,→x轴、y轴、z轴的正方向成立空间直角1的方向分别为AB AD AA1a1,1,0坐标系 ( 如图 ) ,设AB=a,则A(0,0,0), D(0,1,0), D(0,1,1), E2, B ( a, 0,1),→→a→→a,1,011-,1,- 11, AE=2.故 AD=(0,1,1),BE=2,AB=( a, 0,1)→→a∵ AD1· B1E=-2×0+1×1+(-1)×1=0,∴B1E⊥ AD1.(2)假定在棱 AA1上存在一点 P(0,0, z0)(0≤ z0≤1),使得 DP∥平面 B1AE.高考数学二轮复习空间向量与立体几何专题训练(含分析)→此时 DP = (0 ,- 1, z 0) .又设平面 B 1AE 的法向量 n = ( x , y , z ) .→→ax + z =0, ax由 n ⊥ AB ,n ⊥ AE ,得12+ y = 0. 取 x = 1,得平面 B 1AE 的一个法向量an = 1,- 2,- a .→a要使 DP ∥平面 B 1AE ,只需 n ⊥DP ,有 2- az 0= 0,1解得 z 0= 2. 又 DP ?平面 B 1AE ,1∴存在点P ,知足 DP ∥平面 B 1AE ,此时 AP = 2.(3) 连结 A 1D , B 1C ,由长方体 ABCD - A 1B 1C 1D 1 及 AA 1= AD = 1,得 AD 1⊥ A 1D .∵ B 1C ∥ A 1D ,∴ AD 1⊥ B 1C .又由 (1) 知 B 1E ⊥ AD 1,且 B 1C ∩ B 1E = B 1,∴ AD 1⊥平面 DCB 1A 1.→→.∴ AD 1是平面 A 1B 1E 的一个法向量,此时 AD 1= (0,1,1) → 设 AD 1与 n 所成的角为 θ ,a· →1- 2-aAD.则 cos θ= → =2| n || AD 1|21+ a+ a 24∵二面角- 1- 1 的大小为 30°,A B E A3a∴ |cos θ| =cos30°,即235a 2=2 ,21+ 4解得 a = 2,即 AB 的长为 2.。
安徽省高考数学第二轮复习 专题五立体几何第3讲 用空间向量的方法解立体几何问题 理

真题试做1.(2012·陕西高考,理5)如图,在空间直角坐标系中有直三棱柱ABC A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ).A.55B.53C.255D.352.(2012·四川高考,理14)如图,在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是__________.3.(2012·山东高考,理18)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F BD C 的余弦值.4.(2012·福建高考,理18)如图,在长方体ABCD A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A B 1E A 1的大小为30°,求AB 的长. 5.(2012·天津高考,理17)如图,在四棱锥P ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,PA =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角APCD的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.考向分析从近几年的高考试题来看,高考对本专题的考查主要有以下几个方面:一是证明空间平行关系,如(2012福建高考,理18)的第(2)问;二是利用空间向量证明垂直关系,如(2012山东高考,理18)的第(1)问和(2012福建高考,理18)的第(1)问;三是利用空间向量求角,如(2012山东高考,理18)的第(2)问;(2012天津高考,理17)的第(2)问和(2012四川高考,理14),此类问题多以多面体为载体,常以解答题的形式出现,重在考查学生的空间想象能力.本专题是高考的必考内容之一,通常为一道综合题,常出现在几个解答题的中间位置,难度不是很大.在多数情况下传统法、向量法都可以解决,但首先应考虑向量法,这样可以降低难度.预测在今后高考中,本部分内容仍旧主要以解答题的形式出现,难度为中档.考查内容仍旧是利用空间向量的数量积及坐标运算来解决立体几何问题,其中利用空间向量求空间角仍然是重点.热点例析热点一利用空间向量证明平行问题【例1】如图所示,在平行六面体ABCDA1B1C1D1中,O是B1D1的中点.求证:B1C∥平面ODC1.规律方法利用空间向量证明平行问题的方法归纳.下面用数学语言描述为:(1)线线平行:直线与直线平行,只需证明它们的方向向量平行.(2)线面平行:利用线面平行的判定定理,证明直线的方向向量与平面内一条直线的方向向量平行;利用共面向量定理,证明平面外直线的方向向量与平面内两相交直线的方向向量共面;证明直线的方向向量与平面的法向量垂直.(3)面面平行:平面与平面的平行,除了利用面面平行的判定定理转化为线面平行外,只要证明两平面的法向量平行即可.下面用符号语言表述为:设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),平面α,β的法向量分别为u=(a3,b3,c3),v=(a4,b4,c4).(1)线线平行:l∥m a∥b a=k b a 1=ka2,b1=kb2,c1=kc2.(2)线面平行:l∥αa⊥u a·u=0a 1a3+b1b3+c1c3=0.(3)面面平行:α∥βu∥v u=k v a 3=ka4,b3=kb4,c3=kc4.变式训练1(2012·安徽江南十校联考,理19)如图,在多面体ABCDEFG中,四边形ABCD 是边长为2的正方形,平面ABG、平面ADF、平面CDE都与平面ABCD垂直,且△ABG,△ADF,△CDE都是正三角形.(1)求证:AC∥EF;(2)求多面体ABCDEFG的体积.热点二利用空间向量证明垂直问题【例2】如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F,求证:(1)PA∥平面EDB;(2)PB⊥平面EFD.规律方法利用空间向量证明垂直问题的方法归纳.下面用数学语言描述为:(1)线线垂直:直线与直线的垂直,只要证明两直线的方向向量垂直.(2)线面垂直:利用线面垂直的定义,证明直线的方向向量与平面内的任意一条直线的方向向量垂直;利用线面垂直的判定定理,证明直线的方向向量与平面内的两条相交直线的方向向量垂直;证明直线的方向向量与平面的法向量平行.(3)面面垂直:平面与平面的垂直,除了用面面垂直的判定定理转化为线面垂直外,只要证明两平面的法向量垂直即可.下面用符号语言表述为:设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α,β的法向量分别为u=(a3,b3,c3),v=(a4,b4,c4).(1)线线垂直:l⊥m a⊥b a·b=0a 1a2+b1b2+c1c2=0.(2)线面垂直:l⊥αa∥u a=k u a 1=ka3,b1=kb3,c1=kc3.(3)面面垂直:α⊥βu⊥v u·v=0a 3a4+b3b4+c3c4=0.变式训练2如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.热点三利用空间向量求角和距离【例3】如图所示,在三棱柱ABCA1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且C1H= 5.(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A A 1C 1B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长. 规律方法(1)夹角计算公式 ①两异面直线的夹角若两条异面直线a 和b 的方向向量分别为n 1,n 2,两条异面直线a 和b 所成的角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|.②直线与平面所成的角若直线a 的方向向量为a ,平面α的法向量为n ,直线a 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=⎪⎪⎪⎪⎪⎪a ·n |a ||n |.③二面角设n 1,n 2分别为二面角的两个半平面的法向量,其二面角为θ,则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,其中cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|.(2)距离公式①点点距:点与点的距离,是以这两点为起点和终点的向量的模;②点线距:点M 到直线a 的距离,设直线的方向向量为a ,直线上任一点为N ,则点M 到直线a 的距离d =|MN |sin 〈MN ,a 〉;③线线距:两平行线间的距离,转化为点线距离;两异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;④点面距:点M 到平面α的距离,如平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN ||cos 〈MN ,n 〉|=MN n n⋅;⑤线面距:直线和与它平行的平面间的距离,转化为点面距离; ⑥面面距:两平行平面间的距离,转化为点面距离.变式训练3已知ABCD A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1为A 1C 1与B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成角的大小为α,二面角A B 1D 1A 1的大小为β.求证:tan βtan α;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD A 1B 1C 1D 1的高. 热点四 用向量法解决探索性问题【例4】如图,四棱锥S ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P AC D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,请说明理由.规律方法(1)用空间向量解决立体几何问题的步骤及注意事项: ①建系,要写理由,坐标轴两两垂直要证明;②准确求出相关点的坐标(特别是底面各点的坐标,若底面不够规则,则应将底面单独抽出来分析),坐标求错将前功尽弃;③求平面法向量;④根据向量运算法则,求出三角函数值或距离; ⑤给出问题的结论.(2)利用空间向量巧解探索性问题:空间向量最适合于解决这类立体几何中的探索性问题,它无需进行繁杂的作图、论证、推理,只需通过坐标运算进行判断.在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题.变式训练4如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值;(3)在线段CD 上是否存在一点Q ,使得A 到平面EFQ 的距离为45?若存在,求出CQ 的值;若不存在,请说明理由.思想渗透转化与化归思想——利用向量解决空间位置关系及求角问题主要问题类型:(1)空间线面关系的证明; (2)空间角的求法;(3)存在性问题的处理方法. 求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围;(2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角.(2012·北京高考,理16)如图1,在Rt△ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.图1 图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 解:(1)因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD . 所以DE ⊥平面A 1DC .所以DE ⊥A 1C . 又因为A 1C ⊥CD ,所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系Cxyz,则A 1(0,0,23),D(0,2,0),M(0,1,3),B(3,0,0),E(2,2,0). 设平面A 1BE 的法向量为n=(x ,y ,z),则n ·1A B =0,n ·BE =0. 又1A B =(3,0,-23),BE =(-1,2,0), 所以3230,20.x z x y ⎧-=⎪⎨-+=⎪⎩令y=1,则x=2,z=3.所以n=(2,1,3). 设CM 与平面A 1BE 所成的角为θ. 因为CM =(0,1,3),所以sin θ=|cos 〈n ,CM 〉|=n CM n CM⋅=48×4=22, 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直. 理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p [0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ), 则m ·1A D =0,m ·DP =0.又1A D =(0,2,-23),DP =(p ,-2,0),所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =⎝ ⎛⎭⎪⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0,即4+p +p =0.解得p =-2,与p [0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.1.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 的值分别为( ).A.337,-157, 4B.407,-157,4C.407,-2,4 D .4,407,-15 2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.(2012·湖北武昌调研,7)已知E ,F 分别是正方体ABCD A 1B 1C 1D 1棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( ).A.26 B.36 C.13 D.664.在四面体PABC 中,PA ,PB ,PC 两两垂直,设PA =PB =PC =a ,则点P 到平面ABC 的距离为__________.5.如图,在直三棱柱ABC A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是__________.6.已知在长方体ABCD A 1B 1C 1D 1中,AB =2,BC =4,AA 1=4,点M 是棱D 1C 1的中点.求直线AB 1与平面DA 1M 所成角的正弦值.7.(2012·安徽合肥第一次质检,理18)如图,在多面体ABC A 1B 1C 1中,AA 1⊥平面ABC ,AA 1綉BB 1,AB =AC =AA 1=22BC ,B 1C 1綉12BC .(1)求证:A 1B 1⊥平面AA 1C ;(2)求证:AB 1∥平面A 1C 1C ;(3)求二面角C 1A 1C A 的余弦值.参考答案命题调研·明晰考向真题试做1.A 解析:不妨设CB =1,则CA =CC 1=2.由题图知,A 点的坐标为(2,0,0),B 点的坐标为(0,0,1),B 1点的坐标为(0,2,1),C 1点的坐标为(0,2,0).所以1BC =(0,2,-1),1AB =(-2,2,1).所以cos 〈1BC ,1AB 〉=0×(-2)+2×2+(-1)×135=55.2.90° 解析:如图,以点D 为原点,以DA ,DC ,DD 1为x 轴、y 轴、z 轴建立坐标系D xyz .设正方体的棱长为2,则1MA =(2,-1,2),DN =(0,2,1),1AB ·DN =0,故异面直线A 1M 与ND 所成角为90°.3.(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°, 所以∠ADC =∠BCD =120°. 又CB =CD ,所以∠CDB =30°. 因此∠ADB =90°,AD ⊥BD .又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED ,所以BD ⊥平面AED . (2)解法一:由(1)知AD ⊥BD , 所以AC ⊥BC .又FC ⊥平面ABCD ,因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,不妨设CB =1,则C (0,0,0),B (0,1,0),D ⎝ ⎛⎭⎪⎫32,-12,0,F (0,0,1),因此BD =⎝⎛⎭⎪⎫32,-32,0,BF =(0,-1,1).设平面BDF 的一个法向量为m =(x ,y ,z ),则m ·BD =0,m ·BF =0,所以x =3y =3z ,取z =1,则m =(3,1,1). 由于CF =(0,0,1)是平面BDC 的一个法向量,则cos 〈m ,CF 〉=m CF m CF⋅=15=55, 所以二面角F BD C 的余弦值为55.解法二:取BD 的中点G ,连接CG ,FG , 由于CB=CD , 因此CG ⊥BD.又FC ⊥平面ABCD ,BD ⊂平面ABCD , 所以FC ⊥BD .由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG .故BD ⊥FG .所以∠FGC 为二面角F BD C 的平面角.在等腰三角形BCD 中,由于∠BCD =120°,因此CG =12CB .又CB =CF ,所以GF =CG 2+CF 2=5CG ,故cos∠FGC =55,因此二面角F BD C 的余弦值为55. 4.解:(1)以A 为原点,1,,AB CF AA 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a2,1,0,B 1(a,0,1), 故1AD =(0,1,1),1B E =⎝ ⎛⎭⎪⎫-a 2,1,-1,1AB =(a,0,1),AE =⎝ ⎛⎭⎪⎫a2,1,0.∵1AD ·1B E =-a2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE . 此时DP =(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ). ∵n ⊥平面B 1AE ,∴n ⊥1AB ,n ⊥AE ,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a2,-a .要使DP ∥平面B 1AE ,只要n ⊥DP ,有a 2-az 0=0,解得z 0=12.又DP 平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD 是平面A 1B 1E 的一个法向量,此时1AD =(0,1,1). 设1AD 与n 所成的角为θ,则cos θ=11n AD n AD ⋅=-a2-a 21+a 24+a2.∵二面角A B 1E A 1的大小为30°,∴|cos θ|=cos 30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2.5.解法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝ ⎛⎭⎪⎫-12,12,0,P (0,0,2). (1)证明:易得PC =(0,1,-2),AD =(2,0,0),于是PC ·AD =0, 所以PC ⊥AD .(2) PC =(0,1,-2),CD =(2,-1,0). 设平面PCD 的法向量n =(x ,y ,z ),则0,0,n PC n CD ⎧⋅=⎪⎨⋅=⎪⎩即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m ·n |m ||n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A PC D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2],由此得BE =⎝ ⎛⎭⎪⎫12,-12,h .由CD =(2,-1,0),故 cos 〈BE ,CD 〉=BE CD BE CD⋅=3212+h 2×5=310+20h 2, 所以,310+20h2=cos 30°=32, 解得h =1010,即AE =1010. 解法二:(1)证明:由PA ⊥平面ABCD ,可得PA ⊥AD ,又由AD ⊥AC ,PA ∩AC =A,故AD ⊥平面PAC .又PC ⊂平面PAC ,所以PC ⊥AD .(2)如图,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH .因此DH ⊥PC ,从而∠AHD 为二面角A PC D 的平面角.在Rt△PAC 中,PA =2,AC =1,由此得AH =25.由(1)知AD ⊥AH ,故在Rt△DAH 中,DH =AD 2+AH 2=2305.因此sin∠AHD =AD DH=306.所以二面角A PC D 的正弦值为306. (3)如图,因为∠ADC<45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF.故∠EBF或其补角为异面直线BE 与CD 所成的角.由于BF ∥CD ,故∠AFB=∠ADC. 在Rt △DAC 中,,sin ∠ADC=15,故sin∠AFB =15.在△AFB 中,由BF sin∠FAB =AB sin∠AFB ,AB =12,sin∠FAB =sin 135°=22,可得BF =52.由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos∠FAB ,可得AF =12.设AE =h .在Rt△EAF 中,EF =AE 2+AF 2=h 2+14.在Rt△BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos 30°=BE 2+BF 2-EF 22BE ·BF .可解得h =1010.所以AE =1010.精要例析·聚焦热点 热点例析【例1】 证明:设11C B =a ,11C D =b ,1C C =c , 因为B 1BCC 1为平行四边形, 所以1B C =c -a .又O 是B 1D 1的中点,所以 1C O =12(a +b ),1OD =11C D -1C O =b -12(a +b )=12(b -a ). 因为D 1D 綉C 1C ,所以1D D =c , 所以OD =1OD +1D D =12(b -a )+c .若存在实数x ,y ,使1B C =x OD +y 1OC (x ,y ∈R )成立,则c -a =x ⎣⎢⎡⎦⎥⎤12(b -a )+c +y ⎣⎢⎡⎦⎥⎤-12(a +b )=-12(x +y )a +12(x -y )b +x c .因为a ,b ,c 不共线,所以⎩⎪⎨⎪⎧12(x +y )=1,12(x -y )=0,x =1,所以⎩⎪⎨⎪⎧x =1,y =1,所以11B C OD OC =+,所以1B C ,OD ,1OC 是共面向量.因为1B C 不在OD ,1OC 所确定的平面ODC 1内,所以1B C ∥平面ODC 1,即B 1C ∥平面ODC 1. 【变式训练1】 解:(1)证明:方法一:如图,分别取AD ,CD 的中点P,Q ,连接FP ,EQ .∵△ADF 和△CDE 是边长为2的正三角形,∴FP ⊥AD ,EQ ⊥CD ,且FP =EQ = 3.又∵平面ADF 、平面CDE 都与平面ABCD 垂直, ∴FP ⊥平面ABCD ,EQ ⊥平面ABCD , ∴FP ∥QE 且FP =EQ ,∴四边形EQPF 是平行四边形, ∴EF ∥PQ .∵PQ 是△ACD 的中位线, ∴PQ ∥AC ,∴EF ∥AC .方法二:以A 点作为坐标原点,以AB 所在直线为x 轴,以AD 所在直线为y 轴,过点A 垂直于xOy 平面的直线为z 轴,建立空间直角坐标系,如图所示.根据题意可得,A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),E (1,2,3),F (0,1,3),G (1,0,3).∴AC =(2,2,0),FE =(1,1,0), 则2AC FE =,∴AC ∥FE ,即有AC ∥FE .(2)V 多面体ABCDEFG =V 三棱柱ABG CDE +V 四棱锥F ADEG =23+233=833.【例2】 证明:如图所示建立空间直角坐标系,D 为坐标原点,设DC =a .(1)连接AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫0,a 2,a 2.∵底面ABCD 是正方形,∴G 是此正方形的中心,故点G 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,0,PA =(a,0,-a ),EG =⎝ ⎛⎭⎪⎫a 2,0,-a2,∴PA =2EG ,则PA ∥EG .而EG ⊂平面EDB 且PA 平面EDB , ∴PA ∥平面EDB .(2)依题意得B (a ,a,0),PB =(a ,a ,-a ). 又DE =⎝ ⎛⎭⎪⎫0,a 2,a 2,故PB ·DE =0+a 22-a 22=0,∴PB ⊥DE .由已知EF ⊥PB ,且EF ∩DE =E ,∴PB ⊥平面EFD . 【变式训练2】 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .又因为PA ⊥平面ABCD ,所以PA ⊥BD . 又PA ∩AC =A ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系O xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0),所以PB =(1,3,-2),AC =(0,23,0). 设PB 与AC 所成角为θ, 则cos θ=PB ACPB AC ⋅=622×23=64.(3)由(2)知BC =(-1,3,0). 设P (0,-3,t )(t >0),则BP =(-1,-3,t ).设平面PBC 的法向量m =(x ,y ,z ), 则BC ·m =0,BP ·m =0.所以⎩⎨⎧-x +3y =0,-x -3y +tz =0.令y =3,则x =3,z =6t.所以m =⎝ ⎛⎭⎪⎫3,3,6t .同理,平面PDC 的法向量 n =⎝ ⎛⎭⎪⎫-3,3,6t .因为平面PBC ⊥平面PDC ,所以m ·n =0,即-6+36t2=0,解得t =6,所以PA = 6.【例3】 解:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得A (22,0,0),B (0,0,0),C (2,-2,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC =(-2,-2,5),11A B =(-22,0,0), 于是cos 〈AC ,11A B 〉=1111AC A B AC A B ⋅=43×22=23. 所以异面直线AC 与A 1B 1所成角的余弦值为23. (2)易知1AA =(0,22,0),11AC =(-2,-2,5). 设平面AA 1C 1的法向量m =(x ,y ,z ),则1110,0.m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩ 即⎩⎨⎧ -2x -2y +5z =0,22y =0.不妨令x =5,可得m =(5,0,2).同样地,设平面A 1B 1C 1的法向量n =(r ,p ,q ),则11110,0.n AC n A B ⎧⋅=⎪⎨⋅=⎪⎩ 即⎩⎨⎧-2r -2p +5q =0,-22r =0.不妨令p =5,可得n =(0,5,2).于是cos 〈m ,n 〉=m ·n |m ||n |=27×7=27,从而sin 〈m ,n 〉=357.所以二面角A A 1C 1B 1的正弦值为357.(3)由N 为棱B 1C 1的中点,得N ⎝ ⎛⎭⎪⎫22,322,52.设M (a ,b,0),则MN =⎝ ⎛⎭⎪⎫22-a ,322-b ,52.由MN ⊥平面A 1B 1C 1,得11110,0.MN A B MN AC ⎧⋅=⎪⎨⋅=⎪⎩即 ⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫22-a ·(-22)=0,⎝ ⎛⎭⎪⎫22-a ·(-2)+⎝ ⎛⎭⎪⎫322-b ·(-2)+52·5=0.解得⎩⎪⎨⎪⎧a =22,b =24,故M ⎝⎛⎭⎪⎫22,24,0, 因此BM =⎝⎛⎭⎪⎫22,24,0. 所以线段BM 的长|BM |=104. 【变式训练3】 解:设正四棱柱的高为h . (1)连接AO 1,AA 1⊥底面A 1B 1C 1D 1于A 1,∴AB 1与底面A 1B 1C 1D 1所成的角为∠AB 1A 1,即∠AB 1A 1=α. ∵AB 1=AD 1,O 1为B 1D 1中点, ∴AO 1⊥B 1D 1.又A 1O 1⊥B 1D 1,四边形A 1B 1C 1D 1是正方形.∴∠AO 1A 1是二面角A B 1D 1A 1的平面角,即∠AO 1A 1=β.∴tan α=AA 1A 1B 1=h ,tan β=AA 1A 1O 1=2h . ∴tan β=2tan α.(2)建立如图空间直角坐标系,有A (0,0,h ),B 1(1,0,0),D 1(0,1,0),C (1,1,h ),1AB =(1,0,-h ),1AD =(0,1,-h ),AC =(1,1,0). 设平面AB 1D 1的一个法向量为n =(x ,y ,z ).∵11,n AB n AD ⎧⊥⎪⎨⊥⎪⎩110,0.n AB n AD ⎧⋅=⎪⎨⋅=⎪⎩ 取z =1得n =(h ,h,1), ∴点C 到平面AB 1D 1的距离为d =n AC n⋅=|h +h +0|h 2+h 2+1=43,则h =2. 【例4】 (1)证明:连接BD ,设AC 交BD 于点O ,连接SO .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OS 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz ,设底面边长为2,则高SO =6,∴S (0,0,6),D (-2,0,0),C (0,2,0). ∴OC =(0,2,0),SD =(-2,0,-6). ∴OC SD ⋅=0,故OC ⊥SD ,即AC ⊥SD .(2)解:由题意知,平面PAC 的一个法向量DS =(2,0,6),平面DAC 的一个法向量为OS =(0,0,6),设所求的二面角为θ,则cos θ=OS DS OS DS⋅=32. 故所求二面角的大小为30°.(3)解:在侧棱SC 上存在一点E ,使BE ∥平面PAC .由(2)知DS 是平面PAC 的一个法向量,且DS =(2,0,6),CS =(0,-2,6).设CE tCS =,则BE BC CE =+=(-2,2(1-t ),6t ),而BE DS ⋅=0t =13,从而当SE ∶EC =2∶1时,BE DS ⊥,又BE 不在平面PAC 内,故BE ∥平面PAC . 【变式训练4】 解:∵平面PAD ⊥平面ABCD ,而∠PAD =90°, ∴PA ⊥平面ABCD .而ABCD 是正方形,即AB ⊥AD , 故可建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). (1)证明:∵PB =(2,0,-2),FE =(0,-1,0),FG =(1,1,-1), 设平面EFG 的法向量为n 0=(x 0,y 0,z 0).则000,0,n FE n FG ⎧⋅=⎪⎨⋅=⎪⎩∴⎩⎪⎨⎪⎧-y 0=0,x 0+y 0-z 0=0.令x 0=1,则⎩⎪⎨⎪⎧x 0=1,y 0=0,z 0=1,∴n 0=(1,0,1).又∵PB ·n 0=2×1+0+(-2)×1=0, ∴PB ⊥n 0.又∵PB 平面EFG ,∴PB ∥平面EFG .(2)∵EG =(1,2,-1),BD =(-2,2,0), ∴cos 〈EG ,BD 〉=EG BD EG BD⋅=36, 故异面直线EG 与BD 所成的角的余弦值为36. (3)假设在线段CD 上存在一点Q 满足题设条件, 令CQ =m (0≤m ≤2),则DQ =2-m , ∴点Q 的坐标为(2-m,2,0),∴EQ =(2-m,2,-1).而EF =(0,1,0),设平面EFQ 的法向量为n =(x ,y ,z ),则()()()(),,0,1,00,,,2,2,10n EF x y z n EQ x y z m ⎧⋅=⋅=⎪⎨⋅=⋅--=⎪⎩∴⎩⎪⎨⎪⎧y =0,(2-m )x +2y -z =0.令x =1,则n =(1,0,2-m ), ∴点A 到平面EFQ 的距离d =AE n n⋅=|2-m |1+(2-m )2=45,即(2-m )2=169, ∴m =23或m =103>2不合题意,舍去,故存在点Q ,当CQ =23时,点A 到平面EFQ 的距离为45.创新模拟·预测演练1.B 解析:∵AB BC ⊥,∴AB BC ⋅=0,即3+5-2z =0,得z =4.又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC =(3,1,4),则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.2.A3.B 解析:建立如图所示空间直角坐标系,D 1(0,0,0),F (1,0,2),E (2,2,1),则EF =(-1,-2,1). 设平面BDD 1B 1的法向量为n , 则n =(1,-1,0). sin θ=|cos 〈EF ,n 〉|=EF n EF n⋅=123=36.故选B. 4.33a 解析:根据题意,可建立如图所示的空间直角坐标系P xyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ). 过点P 作PH ⊥平面ABC ,交平面ABC 于点H , 则PH 的长即为点P 到平面ABC 的距离. ∵PA =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝ ⎛⎭⎪⎫a 3,a 3,a3. ∴PH =⎝ ⎛⎭⎪⎫0-a 32+⎝ ⎛⎭⎪⎫0-a 32+⎝ ⎛⎭⎪⎫0-a 32 =33a .5.66解析:以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,A 1(1,0,2),B (0,1,0),A (1,0,0),C (0,0,0),则1A B =(-1,1,-2),AC =(-1,0,0). cos 〈1A B ,AC 〉=11A B AC A B AC⋅=11+1+4=66.6.解:建立如图所示的空间直角坐标系,可得有关点的坐标为D (0,0,0),A (4,0,0),B (4,2,0),C (0,2,0),A 1(4,0,4),B 1(4,2,4),C 1(0,2,4),D 1(0,0,4),∴M (0,1,4).∴DM =(0,1,4),1DA =(4,0,4),1A B =(0,2,4). 设平面DA 1M 的法向量为n =(x ,y ,z ),则10,0,n DM n DA ⎧⋅=⎪⎨⋅=⎪⎩即⎩⎪⎨⎪⎧y +4z =0,4x +4z =0.取z =-1,得x =1,y =4.所以平面DA 1M 的一个法向量为n =(1,4,-1). 设直线AB 1与平面DA 1M 所成角为θ, 则sin θ=11n A B n AB ⋅=1015, 所以直线AB 1与平面DA 1M 所成角的正弦值为1015. 7.证明:(1)∵AB =AC =22BC , ∴AB 2+AC 2=BC 2,∴AB ⊥AC . 又AA 1⊥平面ABC ,∴AA 1⊥AB .又AA 1∩AC =A ,∴AB ⊥平面AA 1C . ∵AA 1綉BB 1,∴四边形ABB 1A 1为平行四边形. ∴A 1B 1∥AB ,∴A 1B 1⊥平面AA 1C .(2)取BC 的中点D ,连接AD ,DC 1,B 1D .由条件知CD 綉B 1C 1,BD 綉B 1C 1,∴四边形B 1DCC 1和BDC 1B 1为平行四边形,∴B 1D 綉CC 1,C 1D 綉B 1B . 由(1)B 1B 綉AA 1,∴C 1D 綉A 1A , ∴四边形AA 1C 1D 为平行四边形, ∴AD ∥A 1C 1.∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D , ∴平面AB 1D ∥平面A 1C 1C . 又∵AB 1⊂平面AB 1D , ∴AB 1∥平面A 1C 1C .(3)由(1)知AA 1,AB ,AC 两两垂直, 建立如图所示的空间直角坐标系.设BC =2,则A (0,0,0),A 1(0,0,2),C (0,-2,0),C 1⎝ ⎛⎭⎪⎫-22,-22,2, ∴11AC =⎝ ⎛⎭⎪⎫-22,-22,0, 1AC =(0,-2,-2).设平面A 1C 1C 的法向量为m =(x ,y ,z ), 则由m ·11AC =0,,m ·1AC =0,得-22x -22y =0,,-2y -2z =0. 取x =1,则y =-1,z =1,故m =(1,-1,1).而平面A 1AC 的法向量为n =(1,0,0),cos 〈m ,n 〉=m ·n |m ||n |=13.易知二面角C 1A 1C A 为钝二面角,故二面角C 1A 1C A 的余弦值为-33.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(湖北专供)2013版高考数学二轮专题复习 5.3用空间向量的方法解立体几何问题辅导与训练检测卷 理一、选择题1.(2012·长沙模拟)在直三棱柱ABC-A 1B 1C 1中,∠ACB=90°,∠BAC=30°,BC=1,AA 1=6,M 是CC 1的中点,则异面直线AB 1与A 1M 所成的角为( )(A)60° (B)45° (C)30° (D)90°2.在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) (A)12 (B)23(C)33 (D)223.(2012·天津模拟)已知在长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是正方形,则BC 1与平面ACC 1A 1所成角的取值范围是( )(A)(0,6π) (B)(0,3π) (C)(0,4π) (D)(0,4π]4.P 是二面角α-AB-β棱上的一点,分别在α,β平面上引射线PM ,PN ,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小为( )(A)60° (B)70° (C)80° (D)90° 二、填空题5.在正四棱锥S-ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO=OD,则直线BC 与平面PAC 所成的角是________.6.在一直角坐标系中已知A(-1,6),B(3,-8),现沿x 轴将坐标平面折成60°的二面角,则折叠后A ,B 两点间的距离为________.7.如图,正方体ABCD-A 1B 1C 1D 1,则下列四个命题:①P 在直线BC 1上运动时,三棱锥A-D 1PC 的体积不变;②P 在直线BC 1上运动时,直线AP 与平面ACD 1所成角的大小不变; ③P 在直线BC 1上运动时,二面角P-AD 1-C 的大小不变;④M 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,则M 点的轨迹是过D 1点的直线. 其中真命题的编号是________(写出所有真命题的编号). 三、解答题8.如图,已知在直三棱柱ABC-A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC=90°,且AB=AA 1,D ,E ,F 分别为B1A,C1C,BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.9.(2012·济南模拟)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=1,点P在棱DF上.(1)若P是DF的中点,①求证:BF∥平面ACP;②求异面直线BE与CP所成角的余弦值;(2)若二面角D-AP-C的余弦值为63,求PF的长度.10.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.(1)求证:BC⊥平面ACFE;(2)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cos θ的取值范围.11.(2012·杭州模拟)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=1,E是PD 的中点.(1)求AB 与平面AEC 所成角的正弦值;(2)若点F 在线段PD 上,二面角E-AC-F 所成的角为θ,且tan θ=22求PF FD的值.答案解析1.【解析】选D.以C 为原点,取CA ,CB ,CC 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则由已知得C(0,0,0),3,0,0),A 1306,,),B 1(0,1,6),M(0,0,62则1AB (316)=-u u u u r,,,16A M (32=-u u u u r ,,111111AB A Mcos AB ,A M AB A M =u u u u r u u u u ru u u u r u u u u r g u u u u r u u u u r 〈〉||||=0, ∴异面直线AB 1与A 1M 所成的角为90°.2.【解析】选B.以A 为原点建立空间直角坐标系,如图, 设棱长为1,则A1(0,0,1),E(1,0,12), D(0,1,0),∴1A Du u u u r=(0,1,-1),11A E(1,0,),2=-u u u u r设平面A1ED的一个法向量为n1=(1,y,z),则y z0,11z0,2-=⎧⎪⎨-=⎪⎩∴y2,z2,=⎧⎨=⎩∴n1=(1,2,2).∵平面ABCD的一个法向量为n2=(0,0,1),∴cos〈n1,n2〉=22.313=⨯即平面A1ED与平面ABCD所成的锐二面角的余弦值为2.3故选B.3.【解析】选C.如图所示,连接AC与BD交于点O,连接C1O,则∠BC1O就是BC1与平面AA1C1C所成的角.设AB=a,AA1=b,则有BO=22所以sin ∠BC1O=2212BO2BC a b=+=2222a2,2a b2+g<故∠BC 1O ∈(0,4π). 4.【解析】选D.不妨设PM =a,PN=b,作ME ⊥AB 于点E ,NF ⊥AB 于点F ,如图. ∵∠EPM=∠FPN=45°, ∴22, ∴EM FN (PM PE)(PN PF)=--u u u r u u u r u u u r u u u r u u u r u u rg g=PM PN PM PF PE PN PE PF --+u u u r u u u r u u u r u u r u u u r u u u r u u u r u u rgg g g =2222abcos 60a bcos 45b 2222︒-⨯︒-︒+⨯ =ab ab ab ab2222--+=0. ∴EM FN,⊥u u u r u u u r∴二面角α-AB-β的大小为90°. 5.【解析】如图所示,以O 为原点建立空间直角坐标系Oxyz. 设OD=SO=OA=OB=OC=a, 则A(a,0,0),B(0,a,0), C(-a,0,0),P(0,a a,22-), 则CA u u u r=(2a,0,0),a a AP (a,,),CB 22=--u u u r u u ur =(a,a,0).设平面PAC 的一个法向量为n ,可求得n =(0,1,1),则2CB 1cos CB,,2CB 2a 2===u u u ru u u r g u u u r g 〈〉n n n ∴〈CB,u u u rn 〉=60°, ∴直线BC 与平面PAC 所成的角为90°-60°=30°.答案:30°【易错提醒】解答本题时易将角误认为60°而致误.根本原因在于没能搞清直线BC 的方向向量与平面PAC 的法向量夹角的余弦值的绝对值与直线BC 与平面PAC 所成角的正弦值相等,而非余弦值相等. 6.【解析】根据条件作出折叠后图形如图所示,易由A ,B 两点坐标确定AC ,BD ,CD 的距离及AC 和BD 所成的角,则ACCD DB u u u r u u u r u u u r ,,即可看作空间向量的一组已知基底,用其表示出向量AB.u u u r 如图为折叠后的图形,其中AC ⊥CD ,BD ⊥CD , 则AC=6,BD=8,CD=4, 两异面直线AC ,BD 所成的角为60°,故由AB AC CD DB =++u u u r u u u r u u u r u u u r,得22AB AC CD DB =++u u u u u r u u u r u u u r u u u r ||||=68⇒AB 217=u u u r || (注:AC DB u u u r u u u r ,的夹角为120°). 答案:2177.【解析】∵BC 1∥AD 1,∴BC 1∥平面ACD 1,BC 1上任一点到平面ACD 1的距离为定值,∴11A D PC P ACD V V --=为定值,①正确;P 到面ACD 1的距离不变,但AP 的长在变化,∴AP 与面ACD 1所成角的大小是变量,②错误;面PAD 1即面ABC 1D 1,∴面ABC 1D 1与面ACD 1所成二面角的大小不变,③正确;M 点的轨迹为A 1D 1,④正确. 答案:①③④8.【证明】如图建立空间直角坐标系A-xyz,令AB=AA 1=4,则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B 1(4,0,4). (1)取AB 的中点为N ,则N(2,0,0),C(0,4,0),D(2,0,2),∴DE u u u r=(-2,4,0),NC u u u r =(-2,4,0), ∴DE NC =u u u r u u u r,∴DE ∥NC.又NC 在平面ABC 内,DE 不在平面ABC 内,故DE ∥平面ABC.(2)1B F u u u r =(-2,2,-4),EF u u r =(2,-2,-2),AF u u u r=(2,2,0), 1B F EF u u u r u u r g =(-2)×2+2×(-2)+(-4)×(-2)=0, 则1B F EF ⊥u u u r u u r ,∴B 1F ⊥EF , ∵1B F AF u u u r u u u r g =(-2)×2+2×2+(-4)×0=0, ∴1B F AF ⊥u u u r u u u r ,即B 1F ⊥AF. 又∵AF ∩FE=F ,∴B 1F ⊥平面AEF.9.【解析】(1)①连接BD ,交AC 于点O ,连接OP . 因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 的中位线, 所以BF ∥OP , 因为BF⊄平面ACP ,OP ⊂平面ACP ,所以BF ∥平面ACP .②因为∠BAF=90°,所以AF ⊥AB , 因为平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD= AB , 所以AF ⊥平面ABCD. 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 所在直线分别为x ,y ,z 轴,建立如图所示空间直角坐标系.所以B(1,0,0),E(1,20,1),P(0,1,12),C(1,2,0). 所以11BE (,0,1)CP (1,1,)22=-=--u u u r u u u r ,,所以BE CP 45cos BE,CP BE CP==u u u r u u u ru u u r u u u r g u u u r u u u r g 〈〉, 即异面直线BE 与CP 所成角的余弦值为4515(2)因为AB ⊥平面ADF ,所以平面APD 的一个法向量为n 1=(1,0,0). 设P 点坐标为(0,2-2t,t),在平面APC 中,AP u u u r=(0,2-2t,t),AC uuu r =(1,2,0),所以平面APC 的一个法向量为n 2=(-2,1,2t 2t-), 所以121212||cos ,==g g 〈〉n n n n n n()226,2t 221()t=--++解得t=23或t=2(舍).此时|PF|=5.310.【解析】(1)在梯形ABCD 中, ∵AB ∥CD ,AD=DC=CB=1, ∠ABC=60°,∴AB=2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, ∴AB 2=AC 2+BC 2,∴BC ⊥AC.∵平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD=AC ,BC ⊂平面ABCD ,∴BC ⊥平面ACFE. (2)由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令FM=λ(0≤λ≤3),则C(0,0,0),A(3,0,0),B(0,1,0),M(λ,0,1),∴AB (310)BM =-u u u r u u u u r,,,=(λ,-1,1),设n 1=(x,y,z)为平面MAB 的一个法向量,由11AB 0BM 0⎧=⎪⎨=⎪⎩u u u rg u u u u r g ,n n 得3x y 0x y z 0,⎧-+=⎪⎨λ-+=⎪⎩, 取x=1,则1(13,3),=n∵n 2=(1,0,0)是平面FCB 的一个法向量,又∵θ≤90°, ∴12212cos 13(3)1θ==++-λ⨯g ||||||n n n n=2(3)4λ-+.∵0≤λ≤3,∴当λ=0时,cos θ有最小值7, 当λ=3时,cos θ有最大值1.2∴cos θ∈[71,2]. 11.【解析】(1)如图,建立空间直角坐标系O -xyz ,则A(0,0,0),B(2,0,0),C(2,1,0),E(0,12, 1),设AB 与平面AEC 所成的角为α,平面AEC 的一个 法向量为n 1=(x 1,y 1,z 1),则111111AC 2x y 01AE y z 02⎧=+=⎪⎨=+=⎪⎩u u u r g u u u r g n n ⇒11111x y 21z y 2⎧=-⎪⎪⎨⎪=-⎪⎩,, 取y 1=-2⇒n 1=(1,-2,1).sin α=16cos AB,,26==⨯u u u r |〈〉|n所以AB 与平面AEC 所成角的正弦值为6.6(2)令PF FD =λu u r u u u r (λ>0),则F(0,2,11λ+λ+λ), 令平面AFC 的一个法向量为n 2=(x 2,y 2,z 2)则222222AC 2x y 02AF y z 011⎧=+=⎪⎨λ=+=⎪+λ+λ⎩u u u rg u u u r g n n ⇒22221x y ,21z y ,2⎧=-⎪⎪⎨⎪=-λ⎪⎩取y 2=-2⇒n 2=(1,-2,λ).而tan θ⇒cos θ|cos 〈n1,n2〉|22(5)45+λ⇒=+λ⇒3λ2-10λ-5=0⇒λ而λ>0,所以λ即PF5FD3+=- 11 -。