(三)立体几何与空间向量
高中数学立体几何与空间向量知识点归纳总结

高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
2023年高考之立体几何和空间向量考点解读

3
=
2
1
1
|AB|·|BC|=
×2×
2
2
1
所 以 VP-ABC = S△ABC ·|PM|=
2 2=2 2,
3
1
26
。
×2 2× 3=
3
3
考查,
一是空间线面关系 的 命 题 真 假 的 判 断,
以选填题的形式考查,
属 于 基 础 题;
二是空间
线线、
线面、
面面平行和垂 直 关 系 交 汇 的 综 合
命题,
(
2)若 ∠POF =1
2
0
°,求 三 棱 锥 PABC
|A1A| -|AM| =
2
6
。
2
2
1
2=
2
解 析:(
1)连 接 DE ,
OF ,设 |AF|=
→
→
→
则 B→
t|AC|,
F =BA + AF = (
1-t)
BA +
→
→
所求体积 V =
76
。
=
6
1
6
×(
4+1+ 4×1)
×
3
2
考点解读:空 间 几 何 体 的 结 构 特 征 是 立
则该圆锥的
1
2
0
°,
4
体积为(
胡银伟
33
2
=
2
-
3
2
2
|PC| -|OC|
2
2
=
= 6。所以圆锥的体积 V
1
1
2
2
π×|OA| ×|PO|= π× (3)× 6=
2023年高考数学三轮复习立体几何与空间向量(解析版)

查补易混易错点05立体几何与空间向量1.混淆“点A在直线a上”与“直线a在平面α内”的数学符号关系,应表示为A∈a,a⊂α. 2.易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面.积之和,易漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数133.作几何体的三视图的过程中,可见的边界轮廓线用实线表示,不可见的边界轮廓线用虚线表示.这一点不能忽视,否则易出错.4.不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l,m⊥l,易误得出m⊥β的结论,就是因为忽视面面垂直的性质定理中m⊂α的限制条件.5.注意图形的翻折与展开前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置关系与数量关系.6.几种角的范围两条异面直线所成的角:0°<θ≤90°;直线与平面所成的角:0°≤θ≤90°;平面与平面夹角:0°≤θ≤90°.7.用空间向量求角时易忽视向量的夹角与所求角之间的关系,如求直线与平面所成的角时,易把直线的方向向量与平面的法向量所成角的余弦值当成线面角的余弦值,导致出错.1.(2023·黑龙江哈尔滨·哈尔滨三中校考一模)苏轼是北宋著名的文学家、书法家、画家,在诗词文书画等方面都有很深的造诣.《蝶恋花春景》是苏轼一首描写春景的清新婉丽之作,表达了对春光流逝的叹息词的下阙写到:A.秋千绳与墙面始终平行A.6π【答案】D【解析】由三视图可知几何体为圆锥与半球的组合体,半球表面积圆锥母线长23l=所以该几何体表面积为5.(2023·河南·校联考模拟预测)已知空间四条直线a ,b ,m ,n 和两个平面α,β满足,a b α⊂,,m n β⊂,a b P = ,m n Q = ,则下列结论正确的是()A .若a m ,则a β∥B .若a β∥且m α ,则αβ∥C .若a β∥且b β∥,则m αD .若a m ⊥且b n ⊥,则αβ⊥【答案】C【解析】对于A :a 可能在平面β内,所以A 错误;对于B :a 与m 可能平行,从而α与β可能相交,所以B 错误;对于C :a β ∥且b β∥,,a b α⊂,a b P = ,βα∴∥,m β⊂ ,m α∴∥,所以C 正确;对于D :如图,由正方形沿一条对角线折叠形成,其中形成的两个平面设为,αβ,折痕设为b ,在平面α的对角线设为a ,在β内的对角线设为n ,同时作m n ⊥,此时//m b ,易知b a ⊥,则m a ⊥,但此时α与β不垂直,所以D 错误.故选:C.6.(2023·甘肃定西·统考一模)攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm由题知该圆锥的底面半径为所以该屋顶的体积约为1 3故选:D.7.(2023·北京·统考模拟预测)臑.已知鳖臑ABCD的四个顶点均在表面积为A.23B.4又POD∽PBC可得两边平方得22(416r r R R-=+将①代人②化简整理得则1r=,故选B9.(2023·安徽安庆·统考二模)图),O为底面圆的中心,距离为1,B为截面图形弧上的一点,且A.74B【答案】C【解析】圆柱半径为10.(2023·山东聊城·统考模拟预测)在三棱锥二面角P AB C--的大小为3π4.若三棱锥-P ABC的体积最大时,球O的体积为(A.3π2B.6π【答案】D【解析】设点P在平面ABC内的射影为考虑到二面角P-AB-C的大小为3π因为PH⊥平面ABC,AB⊂平面ABC所以PH AB⊥,又PA AB⊥,PA所以AB⊥平面PAH,AH⊂平面PAH所以PAH∠为二面角P AB C--的平面角的补角,11.(多选题)(2023·江苏南通·统考模拟预测)含边界)上一点,下列说法正确的是(A.存在唯一一点P,使得DP//B.存在唯一一点P,使得AP//面C.存在唯一一点P,使得1A P⊥D .存在唯一一点P ,使得1D P ⊥面11AC D【答案】AD【解析】如图建系,令()1,,1,AD P x z =,则()()()()()()()11111,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1A A C D B D B ,对于A ,()()1,1,,0,1,1DP x z AB == ,若1//DP AB ,则01x z λλλ=⋅⎧⎪=⎨⎪=⎩,解得:0,1x z ==故()0,1,1P 满足要求,与1C 重合,存在唯一一点P ,使得DP //1AB ,A 对.对于B ,因为()()1111,1,11,1,0110B A C D ⋅=--⋅-=-= ,()()111,1,11,0,1110BD A D ⋅=--⋅--=-= ,因为1111AC A D A ⋂=,111,AC A D ⊂平面11ACD ,所以1BD ⊥ 平面11AC D ,又AP //平面11AC D ,则10AP BD ⋅= ,()()1,1,11,1,110x z x z --⋅-=--+=,解得:x z =,故P 点轨迹为线段1B C ,满足条件的P 有无数个,B 错,对于C ,()()11111,1,1,1,1,1,11110A P x z DB A P DB x z x z =--=⋅=-++-=+-= ,P 在线段1BC 上,满足条件的P 有无数个,C 错.对于D ,由B 选项可知:1BD ⊥ 平面11AC D ,而1D P ⊥ 面11AC D ,又1D P 与1BD共线,故,P B 重合,D 对.故选:AD.12.(多选题)(2023·山东济宁二模)已知长方体1111ABCD A B C D -中,点P ,Q ,M ,N 分别是棱AB ,BC ,1CC ,11B C 的中点,则下列结论不正确的是()B 选项:如图2,连接AC ,因为点所以//AC PQ ,AC ⊄平面1B PQ ,PQ 所以//AC 平面1B PQ ,若//AM 平面1B PQ ,则平面//AMC 平面又平面AMC 平面111BCC B CC =,平面所以11//B Q CC ,显然不正确,故B 不正确;C 选项:如图3,若1D M ⊥平面1B PQ 则11MD B Q ⊥,又易知11C D ⊥平面BCC 则111C D B Q ⊥,又1111C D MD D = ,所以1B Q ⊥平面11C MD ,1CC ⊂平面1C 显然不正确,故C 不正确;D 选项:如图4,连接AC ,CN ,因为点所以//AC PQ ,AC ⊄平面1B PQ ,PQ ⊂平面所以//AC 平面1B PQ ,因为Q ,N 分别是BC ,11B C 的中点,所以所以四边形1B NCQ 是平行四边形,则CN NC ⊄平面1B PQ ,1B Q ⊂平面1B PQ ,所以NC //平面1B PQ ,且AC NC C = ,因此平面//ACN 平面1B PQ ,AN ⊂平面所以//AN 平面1B PQ ,故D 正确.故选:ABC.13.(多选题)(2023·山东泰安·统考模拟预测)如图,若113A B =,4AB =,12AA =则下列说法正确的是(A .11//AB EC B .EC ⊥平面1ADD C .1//AA 平面1CED对于C 选项,设AD 与EC 交于点所以6AM =,即11A D AM =1CED ,1AA ⊄平面1CED ,所以1//AA 平面1CED ,故C 对于D 选项,11//,A N OO OO 1A AN ∠为侧棱与底面所成的角,在所以160A AN ∠= ,故D 正确故选:BCD14.(2023·辽宁·鞍山一中校联考模拟预测)上有两个动点E 、F ,且EFA .AC BE⊥C .三棱锥A BEF -的体积为定值【答案】ABC【解析】对于A 选项,连接因为四边形ABCD 为正方形,则1BB ⊥ 平面ABCD ,AC 11,,BD BB B BD BB = 所以AC ⊥平面11BB D D ,因为BE ⊂平面11BB D D ,因此对于B 选项,因为平面所以//EF 平面ABCD ,对于C 选项,因为△点A 到平面BEF 的距离为定值,故三棱锥对于D 选项,设AC 由A 选项可知,AC ⊥11B D ⊂Q 平面11BB D D ,则因为11//BB DD 且1BB DD =则11//BD B D 且1BD B D =因为M 、O 分别为1B D DD MO故选:ABC.15.(2023·广东·统考一模)在四棱锥若SD AD=,则()A.AC SD⊥B.AC与SB所成角为60︒C.BD与平面SCD所成角为D.BD与平面SAB所成角的正切值为【答案】ACD【解析】选项A,因为SD⊥因为四边形ABCD是正方形,所以面SBD,又SB⊂面SBD,所以AC SB⊥选项B,因为AC⊥平面SBD选项C,因为SD⊥底面ABCD因为四边形ABCD是正方形,所以所以BC⊥平面SCD,所以BD与平面SCD所成角为选项D,如图,取SA中点K故选:ACD16.(2023·广东江门·统考一模)则坐标原点O 到直线l 的距离【答案】3【解析】由题知,直线l 过点所以()1,2,0AO =--,所以点()0,0,0O 到l 的距离为()225AO m d AO m ⎛⎫⋅⎛ ⎪=-=- ⎪⎝⎝⎭17.(2023·广东广州·广州市第二中学校考模拟预测)设某几何体的三视图如下(尺寸的长度单位为m ),则该几何体的体积为【答案】4【解析】由三视图可得该几何体为三棱锥,如图所示,其中棱锥的高为2m ,底面三角形的底边长为则该几何体的体积为114332⨯⨯⨯⨯18.(2023·河北衡水中学预测)冰激凌是以饮用水、牛乳、奶粉、奶油(或植物油脂)等为主要原料,加入适量食品添加剂,经混合、灭菌、均质、老化、凝冻、硬化等工艺制成的体积膨胀的冷冻食品.如图所示的冰激凌的下半部分可以看作一个圆台,上半部分可以近似看作一个圆锥,若圆台的上底面半径、圆台的高与圆锥的高都为3.6cm ,则此圆锥的体积与圆台的体积的比值为【答案】100271【解析】圆锥的体积214π43V ⨯=,根据圆台的体积公式(13V S =+上h 为台体的高),得圆台的体积(224π44 3.63V =+⨯+(1)证明:平面QAD(2)若点P为四棱锥积为43,求BP与平面【解析】(1)取AD因为QA QD=,OA而2AD=,5QA=在正方形ABCD中,因为因为3QC=,故QC因为OC AD O=,且故QO⊥平面ABCD因为QO⊂平面QAD (2)在平面ABCD(1)证明:PB AC⊥;(2)再从条件①、条件到平面BPC的距离.①22AC=;②PO⊥【解析】(1)证明:连接因为AB BC =,所以OB 又因为PO OB O = ,PO 所以AC ⊥平面POB ,因为所以AC PB ⊥.(2)选择①,由题222AB BC AC +=,所以则2OP OB ==,2PO +所以OB ,OC ,OP 两两垂直,建立如图所示坐标系,则(2,0,0)B ,(0,2,0)C 设平面PBC 的一个法向量为则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22x y ⎧-⎪⎨-⎪⎩平面PAC 的一个法向量所以二面角B PC A --的余弦值为(0,2,0)A -,(0,2,PA =-- 所以A 到平面BPC 的距离为选择②由(1)得,PO AC ⊥,PO ⊥则(2,0,0)B ,(0,2,0)C 设平面PBC 的一个法向量为则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22x y ⎧-⎪⎨-⎪⎩平面PAC 的一个法向量所以二面角B PC A --的余弦值为(0,2,0)A -,(0,2,PA =--所以A 到平面BPC 的距离为。
空间向量与立体几何PPT课件

(4)对于不共线的三点 A、B 、C 和平面 ABC 外的一点 O , 空间一点 P 满足关系式 OP xOA yOB zOC ,则点 P 在平 面 ABC 内的充要条件是 x y z 1 .
则 D(0,0,0),B
⑴ CD 0, 2,0
2,0,0
,PB
,C 2 2
0, 2,0 ,0, 2
2
,P ,
2 2
,0,
2 2
CD PB 0,CD PB,CD PB
⑵取平面 BDx,y,z)
PB
2021
6
4、两个向量的数量积
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
空间两个向量的数量积的性质
注:空间向量的数量积具有和平面202向1 量的数量积完全相同的性质7 .
(三)空间向量的理论
1.共线向量定理:对空间任意两个向量
a,b(b0),a//b的充要条件是存在实数 使
17
例 1.一副三角板 ABC 和 ABD 如图摆成直二面角, 若 BC=a,求 AB 和 CD 的夹角的余弦值.
分析:用几何法求两异面直 线所成的角关键在于巧妙地利 用平行线构造角,且能通过解三 角形的知识求出该角的大小.
若在异面直线上选取两个非零向量 a 和 b ,借助向量的夹角 公式计算出这两个向量的夹角的大小就可得出两异面直线所
VD PBC
1 3
1 2
PB
PD
DC
1 3
1 2
数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
立体几何与空间向量知识梳理

立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3-1空间向量基本定理北师

答案:3a+3b-5c
解析:如图所示,取BC的中点G,连接EG,FG,则
1
1
1
1
1
EF=GF − GE= CD − BA= CD + AB= (5a+6b-
2
2
1
8c)+ (a-2c)=3a+3b-5c.
2
2
2
2
易错辨析 对基理解不清致误
例3 在平行六面体 ABCDA1B1C1D1 中,M为AC与BD的交点.若
的值分别是(
)
1
1
1
1
1
1
A.x= ,y= ,z= B.z= ,y= ,z=
3
3
3
1
1
1
C.x= ,y= ,z=
3
6
3
答案:D
3
3
6
1
1
1
D.x= ,y= ,z=
6
3
3
(2)在平行六面体ABCDA′B′C′D′中,设AB=a,AD=b,AA′ =c,P是
CA′的中点,M是CD′的中点,N是C′D′的中点,点Q是CA′上的点,且
A1 B1 =a,A1 D1 =b,A1 =c,试用基{a,b,c}表示向量C1 .
解析:如图,连接A1M,A1C1 ,则C1 =A1 -
1
A1 C1 =A1 +AM-(A1 B1 +A1 D1 )=A1 + (A1 B1
1
+A1 D1 )-(A1 B1 +A1 D1 )=A1A-
2
1
1
b构成基的向量是(
)
A.a
B.b
C.a+2b
D.a+2c
高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)立体几何与空间向量1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P A⊥平面ABCD,P A=AB,M是PC上一点,且BM⊥PC.(1)求证:PC⊥平面MBD;(2)求直线PB与平面MBD所成角的正弦值.(1)证明连接AC,由P A⊥平面ABCD,BD⊂平面ABCD,得BD⊥P A,又BD⊥AC,P A∩AC=A,P A,AC⊂平面P AC,∴BD⊥平面P AC,又PC⊂平面P AC,∴PC⊥BD.又PC⊥BM,BD∩BM=B,BD,BM⊂平面MBD,∴PC⊥平面MBD.(2)解方法一由(1)知PC⊥平面MBD,即∠PBM是直线PB与平面MBD所成的角.不妨设P A=1,则BC=1,PC=3,PB= 2.∴PC2=PB2+BC2,∴PB⊥BC,又BM⊥PC,∴sin∠PBM=cos∠BPC=PBPC=23=63,故直线PB与平面MBD所成角的正弦值为6 3.方法二以A为原点,AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系A-xyz(如图所示),不妨设P A =AB =1,则P (0,0,1),B (1,0,0),C (1,1,0).由(1)知平面MBD 的一个法向量为PC →=(1,1,-1), 而PB →=(1,0,-1).∴cos 〈PB →,PC →〉=(1,0,-1)·(1,1,-1)2×3=63,故直线PB 与平面MBD 所成角的正弦值为63. 2.如图,已知△DEF 与△ABC 分别是边长为1与2的正三角形,AC ∥DF ,四边形BCDE 为直角梯形,且DE ∥BC ,BC ⊥CD ,点G 为△ABC 的重心,N 为AB 的中点,AG ⊥平面BCDE ,M 为线段AF 上靠近点F 的三等分点.(1)求证:GM ∥平面DFN ; (2)若二面角M -BC -D 的余弦值为74,试求异面直线MN 与CD 所成角的余弦值. (1)证明 延长AG 交BC 于点O ,连接ON ,OF .因为点G 为△ABC 的重心, 所以AG AO =23,且O 为BC 的中点.又由题意知,AM →=23AF →,所以AG AO =AM AF =23,所以GM ∥OF .因为点N 为AB 的中点,所以NO ∥AC . 又AC ∥DF , 所以NO ∥DF ,所以O ,D ,F ,N 四点共面, 又OF ⊂平面DFN ,GM ⊄平面DFN , 所以GM ∥平面DFN .(2)解 连接OE .由题意知,AG ⊥平面BCDE , 因为AG ⊂平面ABC , 所以平面ABC ⊥平面BCDE ,又BC ⊥CD ,平面ABC ∩平面BCDE =BC , CD ⊂平面BCDE , 所以CD ⊥平面ABC .又四边形BCDE 为直角梯形,BC =2,DE =1, 所以OE ∥CD , 所以OE ⊥平面ABC .因为BC ∥DE ,DE ⊄平面ABC , 所以DE ∥平面ABC , 同理DF ∥平面ABC ,又因为DE ∩DF =D ,DE ,DF ⊂平面DEF , 所以平面ABC ∥平面DEF ,又△DEF 与△ABC 分别是边长为1与2的正三角形,故以O 为坐标原点,OC ,OE ,OA 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O -xyz .设CD =m (m >0), 则C (1,0,0),D (1,m ,0), A (0,0,3),F ⎝⎛⎭⎫12,m ,32,B (-1,0,0),N ⎝⎛⎭⎫-12,0,32,因为AM →=23AF →,所以M ⎝⎛⎭⎫13,2m 3,233,BC →=(2,0,0),BM →=⎝⎛⎭⎫43,2m 3,233设平面MBC 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n ·BC →=2x =0,n ·BM →=43x +2m 3y +233z =0,得⎩⎪⎨⎪⎧x =0,y =-3m z ,令z =-m ,得n =(0,3,-m ). 又平面BCD 的法向量为v =(0,0,1). 由题意得|cos 〈v ,n 〉|=|v ·n ||v ||n |=m 3+m 2=74, 解得m =213, 又MN →=⎝⎛⎭⎫-56,-2m 3,-36,CD →=(0,m ,0),所以|cos 〈MN →,CD →〉|=|MN →·CD →||MN →||CD →|=mm 2+74=277,所以异面直线MN 与CD 所成角的余弦值为277.3.如图,在四棱锥P -ABCD 中,平面ABCD ⊥平面P AD ,AD ∥BC ,AB =BC =AP =12AD ,∠ADP =30°,∠BAD =90°,E 是PD 的中点.(1)证明:PD ⊥PB ;(2)设AD =2,点M 在线段PC 上且异面直线BM 与CE 所成角的余弦值为105,求二面角M -AB -P 的余弦值.(1)证明 ∵∠BAD =90°,∴AB ⊥AD ,∵平面ABCD ⊥平面P AD ,平面ABCD ∩平面P AD =AD ,AB ⊂平面ABCD ,∴AB ⊥平面P AD ,∴AB ⊥PD ,在△P AD 中,∵AP =12AD ,∠ADP =30°,∴由正弦定理可得,sin ∠ADP =12sin ∠APD ,∴∠APD =90°,即PD ⊥AP , 又AB ∩AP =A ,AB ,AP ⊂平面P AB , ∴PD ⊥平面P AB , ∴PD ⊥PB .(2)解 以P 为坐标原点建立如图所示的空间直角坐标系P -xyz ,则B (0,1,1),C ⎝⎛⎭⎫32,12,1,E ⎝⎛⎭⎫32,0,0,设M ⎝⎛⎭⎫32a ,12a ,a ()0≤a ≤1, 则BM →=⎝⎛⎭⎫32a ,12a -1,a -1, CE →=⎝⎛⎭⎫0,-12,-1, ∴cos 〈BM →,CE →〉=BM →·CE →|BM →||CE →|=32-54a 2a 2-3a +2×52=105,得a =23,∴BM →=⎝⎛⎭⎫33,-23,-13,而AB →=(0,0,1),设平面ABM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BM →=0,n ·AB →=0,即⎩⎨⎧3x -2y -z =0,z =0,令x =2,则n =(2,3,0),取平面P AB 的法向量m =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=27=277,由图易知二面角M -AB -P 为锐二面角, 故二面角M -AB -P 的余弦值为277.4.如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P -AC -S 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于O ,由题意得,SO ⊥AC . 在正方形ABCD 中,AC ⊥BD , 又SO ∩BD =O ,SO ,BD ⊂平面SBD , 所以AC ⊥平面SBD ,所以AC ⊥SD .(2)解 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系O -xyz 如图所示.设底面边长为a ,则高SO =62a . 则S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,C ⎝⎛⎭⎫0,22a ,0 又SD ⊥平面P AC ,则平面P AC 的一个法向量DS →=⎝⎛⎭⎫22a ,0,62a ,平面SAC 的一个法向量OD →=⎝⎛⎭⎫-22a ,0,0,则cos 〈DS →,OD →〉=DS →·OD →|DS →||OD →|=-12,又二面角P -AC -S 为锐二面角,则二面角P -AC -S 为60°. (3)解 在棱SC 上存在一点E 使BE ∥平面P AC .由(2)知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a .设CE →=tCS →,t ∈[0,1], 则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 又BE ∥平面P AC ,所以BE →·DS →=0, 解得t =13.即当SC ∶SE =3∶2时,BE →⊥DS →, 而BE 不在平面P AC 内,故BE ∥平面P AC . 所以侧棱SC 上存在点E ,当SC ∶CE =3∶2时,有BE ∥平面P AC .5.已知,如图1,直角梯形ABCD ,AB ∥CD ,∠DAB =90°,AB =4,AD =CD =2,E 为AB 的中点,沿EC 将梯形ABCD 折起(如图2),使平面BED ⊥平面AECD .(1)证明:BE ⊥平面AECD ;(2)在线段CD 上是否存在点F ,使得平面F AB 与平面EBC 所成的锐二面角的余弦值为23,若存在,求出点F 的位置;若不存在,请说明理由. (1)证明 连接AC ,则AC ⊥DE ,又平面BDE ⊥平面AECD ,平面BDE ∩平面AECD =DE ,AC ⊂平面AECD , 所以AC ⊥平面BDE , 所以AC ⊥BE .又BE ⊥CE ,AC ∩CE =C ,AC ,CE ⊂平面AECD , 所以BE ⊥平面AECD .(2)解 如图,由(1)得BE ⊥平面AECD ,所以BE ⊥AE .所以EA ,EB ,EC 两两垂直,分别以EA →,EB →,EC →方向为x ,y ,z 轴正方向,建立空间直角坐标系E -xyz 如图所示,则E (0,0,0),A (2,0,0),B (0,2,0),设F (a,0,2),0≤a ≤2, 所以AF →=(a -2,0,2),BF →=(a ,-2,2), 设平面F AB 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AF →·n =(a -2)x +2z =0,BF →·n =ax -2y +2z =0,取x =2,得n =(2,2,2-a ). 取平面EBC 的法向量为m =(1,0,0).所以cos 〈m ,n 〉=m ·n |m ||n |=2a 2-4a +12=23,所以a =1.所以线段CD 上存在点F ,且F 为CD 中点时,使得平面F AB 与平面EBC 所成的锐二面角的余弦值为23.。