A stochastic log-Laplace equation

合集下载

两个与高阶积分有关的laplace变换公式的证明

两个与高阶积分有关的laplace变换公式的证明

两个与高阶积分有关的laplace变换公式的证明一、Laplace变换公式证明1. Laplace变换Laplace变换是一种线性、无限可微的变换,可将时域函数$f(t)$映射为复平面上的函数$F(s)$,其表达式为:$$F(s)=\int_0^\infty e^{-st}f(t)dt$$2. 常用Laplace变换公式(1) 指数函数:$\mathcal{L}(e^{at})=\frac{1}{s-a}$(2) 正弦函数:$\mathcal{L}(\sin at)=\frac{a}{s^2+a^2}$(3) 余弦函数:$\mathcal{L}(\cos at)=\frac{s}{s^2+a^2}$二、高阶积分和Laplace变换公式的证明1. 高阶积分高阶积分是指对一个已经被求过积分的函数再次进行积分的过程,形如:$$\int\dots\int f(x)dx^{n}$$其中$n$为积分次数。

2. Laplace变换的性质(1) 线性性:$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{g(t)\}$(2) 积分性质:$\mathcal{L}\{f^{(n)}(t)\}=s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\dots-f^{(n-1)}(0)$3. 高阶积分的Laplace变换对于高阶积分$\int\dots\int f(x)dx^{n}$,我们可以通过反复应用积分性质,将其转化为一阶积分的Laplace变换形式:$$\mathcal{L}\{\int\dots\intf(x)dx^{n}\}=\frac{1}{s^{n+1}}\mathcal{L}\{f(t)\}$$这个公式可以用来简化一些高阶积分的计算。

4. 积分上限的Laplace变换当我们要计算形如$\int_{0}^{t}f(x)dx$这样的积分的Laplace变换时,可以使用下列公式:$$\mathcal{L}\{\int_{0}^{t}f(x)dx\}=\frac{F(s)}{s}$$其中$F(s)$为$f(t)$的Laplace变换。

p-laplace方程 博士文

p-laplace方程 博士文

p-laplace方程博士文英文回答:The p-Laplace equation is a generalization of the Laplace equation, which is a second-order partial differential equation commonly used in physics and engineering to describe the behavior of scalar fields. The p-Laplace equation is given by:Δ_pu = div(|∇u|^(p-2) ∇u) = 0。

where Δ_pu denotes the p-Laplacian operator, ∇u is the gradient of u, |∇u| is the magnitude of the gradient, and p is a positive constant. The p-Laplace equation arises in various areas of mathematics and physics, including elasticity, fluid mechanics, image processing, and geometric analysis.One important property of the p-Laplace equation isthat it exhibits a nonlinear behavior, unlike the Laplaceequation. This nonlinearity arises from the power p in the equation, which affects the growth and decay of the solution. For example, when p = 2, the p-Laplace equation reduces to the Laplace equation, and the solution behaves linearly. However, for p ≠ 2, the solution can exhibit different types of nonlinear behavior, such as concentration or diffusion effects.中文回答:p-Laplace方程是Laplace方程的一种推广形式,Laplace方程是一种常见的二阶偏微分方程,常用于描述物理和工程中标量场的行为。

一类分数阶p-Laplace方程解的对称性与单调性

一类分数阶p-Laplace方程解的对称性与单调性

C >0,使得 I l≥Comax{I‘I,It2 1)。 引理 3【12 (关键 边界 估计 ) 设对任 意 的 ∈ ,有 >0。 若 \ ,k ∞,且 ∈ ,使 得

(x )=min&
, Zk

(x)<0 ,且
。∈a 。
令 =dist(x ̄,氓 )三l 一 },那么。l…im,a ̄ {(一 ) ( )一(一 ) ( ))<0。
通讯作者 :瞿 萌,qumeng@mail.ahnu.edu.cn。收稿 日期 :2018—1—15 基金项 目:国家 自然科学基金(11471033)。

塑南窒堡堂堕堂塑f鱼茎 堂 !

































——Βιβλιοθήκη ————














吴 家 彦 ,杨 柳 ,瞿 萌
(安 徽 师 范 大 学 数 学 与统 计 学 院,安徽 芜 湖 ,241002)
摘要 :用移动平 面法 讨论一类单位球上非线性项 带奇性权函数的分数阶 p-Laplace 方程经典解 的对称性和单
调性 得到方程 的解是关于原 点径 向对称和单调递减 的。
关键词 :分数 阶p.Laplacian;移动平面法;径 向对称;单调递减
Abstract:By the m oving plane m ethod,it is obtained that the solution to a class of fractional P。Laplace equation with singular weight nonlinear term is radially symmetric and monotone decreasing about the origin. K ey words:fractional p—Laplacian;moving plane method;radial sym metry;monotonicity

p-Laplace方程解的存在性

p-Laplace方程解的存在性

硕士学位论文(高校教师)p-Laplace方程解的存在性 )(xEXISTENCE OF SOLUTIONS OF )p-LAPLACE EQUATION(x房维维哈尔滨工业大学2009年6月中图分类号:O175.2 学校代码:10213 UDC:517.9 密级:公开理学硕士学位论文(高校教师)(xp-Laplace方程解的存在性)硕士研究生: 房维维导 师: 付永强教授申 请 学 位: 理学硕士学 科: 基础数学所 在 单 位: 哈尔滨师范大学阿城学院答 辩 日 期: 2009年6月授予学位单位: 哈尔滨工业大学Classified Index: O175.2U.D.C: 517.9Dissertation for the Master Degree in ScienceEXISTENCE OF SOLUTIONS OFp-LAPLACE EQUATION(x)Candidate:Weiwei FangSupervisor:Prof. Yongqiang FuAcademic Degree Applied for:Master of ScienceSpecialty:Fundamental Mathematics Affiliation: Harbin Normal University AchengCollegeDate of Defence:June, 2009Degree-Conferring-Institution:Harbin Institute of Technology摘要对非标准增长条件的-Laplace 方程问题的研究是近年来发展起来的一个新的研究课题。

由于Laplace 方程和)(x p p -Laplace 方程的研究方法已经不再适用于-Laplace 方程, 所以目前对-Laplace 方程的研究只有很少的成果出现, 因此对这类问题的研究具有广泛的理论与实际意义。

对-Laplace 方程的研究, 有很多不同的方法。

自动控制理论词汇表

自动控制理论词汇表

Glossary for Feedback Control of Dynamic Systems自动控制理论词汇表Chapter 1thermostat n.恒温器predictive control 预测控制power generation plant 发电厂micron n.微米cell phone 移动电话jumbo jet 巨型喷气式客机block diagram 方框图actuator 执行机构process n.过程feedback n.反馈plant n.被控对象mph=mile per houropen-loop 开环closed-loop 闭环throttle n.油门gain n.增益orifice n.孔、小孔controlled variable 被控变量error n.误差incubator n.孵化器flue n.烟道chronicle n.编年史、年代记录conical a.圆锥体的mill wright 技工、造水车工匠inertia n.惯性、惯量oscillate about…在….周围振荡reference input 参考输入prescribed direction 预定的方向actual direction 实际方向flyball n.飞球governor n.控制器、调节器、总督、省长equilibrium n平衡点differencial equation 微分方程characteristicequation 特征方程third-order 三阶polynomial n.多项式state variable 状态变量distortion n.畸变complex variable 复变量methdology n.方法论proportional a. 比例的、成比例的integral a.积分的derivative a.微分的stochastic a.随机的servomechanism n.伺服机构calculus n.微积分ubiquitous a.到处存在的、普遍存在的radar-tracking 雷达跟踪SISO systems 单输入单输出系统Laplace transform 拉普拉斯变换pole n.极点zero n.零点transfer function传递函数trajectory optimization 轨迹优化root locus 根轨迹specifications n.指标、规格、规范discrete-data 离散数据sampled-data 采样数据performance n.性能Chapter 2desired reference variable 期望参考变量prototype n.原型system identification 系统辨识time response 时域响应step input 阶跃输入defer n.推迟、延期vector n.向量、矢量slug n.斯(勒格),质量单位(32.2磅)impart n.赋予、传授、告知heavy line 粗实线dashed line 虚线coordinate n.坐标numerator n.分子denominator n.分母suspension n.悬架、悬挂deflection n.偏移、偏转、偏差displacement n.位移shock absorber 减震器、缓冲器dashpot n.缓冲器bump n. vt.颠簸bounce n. vt.反弹、跳跃moment of inertia 转动惯量、惯性矩attitude n.姿态、姿势antenna n.天线perpendicular n.垂直线 a.垂直的asymmetry a.不对称的torque n.转矩resonant n.谐振、共振damper n.阻尼器prudent a.谨慎的,有远见的,精打细算的anti-alias 抗混频operational amplifer 运算放大器passive circuit 无源电路Kirchhoff’s current law 基尔霍夫电流定律algebraic sum 代数和summer n.加法器integrator n.积分器tesla n.特斯拉(磁通量单位)louderspeaker n.扬声器bobbin线轴,线筒stator n.定子rotor n.转子back emf 反电势maze n.曲径,迷宫specific heat 比热spatially ad.空间地hydraulic a.液压的、水力学的gimbal n.平衡环,万向接头nozzle n.喷嘴grooming n.修饰,美容piston n.活塞porous a.可渗透的,多孔的laminar a.多层的、层流的n.层流turbulent a.湍流的Chapter 3linear time-invariant systems 线性时不变(定常)系统signal flow graph 信号流图simulation n.仿真frequency-response 频率响应superposition n.叠加convolution n.卷积inpulse-response 脉冲响应unit step function 单位阶跃函数root-locus 根轨迹stability properties 稳定性特性principles linear algebra 线性代数原理state variable methods 状态变量法matrix n..矩阵nonlinear n.非线性mathematical mode 数学模型trivial a.琐碎的、不重要的linearize vt.线性化operating point 工作点state-space 状态空间partial differential equations 偏微分方程equilibrium n.平衡点complex frequency variables 复频率变量zero initial conditions 零初始条件steady-state 稳态ramp input 斜坡输入dc gain 直流增益inverse Laplace transform 逆拉氏变换partial fraction expansion 部分分式展开rantional a.有理的residue n.余式unilateral a.单边的convergence n.收敛final-value theorem 终值定理homogeneous differential equation 齐次微分方程ordinary differential equation 常微分方程overall transfer function 总的传递函数“loading” effect 负载效应cascade blocks 方框串联(级联)to reduce 化简eliminating 消去equivalent a.等效的simplification n.化简、简化integrodifferential a.积分-微分的time constant 时间常数imaginary axis 虚轴damping ratio n.阻尼比natural undamped frequency 自然无阻尼频率overdamped a.过阻尼critically damped n.临界阻尼rectangular coordinate 直角坐标oscillatory a.振荡的transient response 瞬态响应overshoot n.超调量delay time 延迟时间peak time 峰值时间rise time 上升时间settling time 调节时间steady state 稳态characteristic equation 特征方程RHP(Right Half-Plane) 右半平面elevator n.飞机升降舵,飞机升降仪,电梯nonminimum-phase 非最小相位diverge v.发散、分歧asymptotically stable 渐进稳定stability n.稳定性absolute stability 绝对稳定性relative stability 相对稳定性stability criterion 稳定性判据equilibrium state 平衡状态product n.乘积coefficient n..系数nagtive feedback 负反馈positive feedback 正反馈unity feedback system 单位负反馈系统reduction n.化简simultaneous a.联立的common factor 公因子expedient a.权宜的,有用的attenuate v.变弱,衰减,变细,变薄,稀释cofactor n.公因子Routh stability criterion 劳斯稳定性判据determinant n. 行列式tune v.调节retune v.再调节pseudorandom-noise 伪随机噪声signal-to-noise ratio 信-噪比Mason Gain Formula 梅森(增益)公式term n.术语signal flow graph 信号流图nodepathenvelope n.包络线dominant root 主导极点Chapter 4steady-state 稳态with respect to 关于….deviation n.偏离steady-state error 稳态误差load torque 负载转矩viscous friction 粘性摩擦repeater n.中继器drift v.漂移fidelity n.准确性,忠实,忠诚parabolic antenna 抛物线天线position error constant. 位置误差常数velocity error constant 速度误差常数robust property 鲁棒性shaft n.轴tachometer n.转速计inductance n.电感sampled v.采样quantized v.量化extrapolate v.预测,推测trapezoid n.梯形,不等边四边形vertices n.顶点order n.阶次,数量级proportional control 比例控制derivative control 微分控制sinusoidal a.正弦parameter n.参数Chapter 5root-locus method 根轨迹法monic a.首一的feedforward a.前向的denominator n.分母numerator n.分子quadratic n.二次项branch n.分支factored a.分解的asymptote vt.渐进n.渐进线division n.除法vantage point 有利地位,观点imaginary part 虚部breakaway point 分离点common denominator 公分母conjugate pairs 共扼对multiplicity n.多重,多数trial and error 凑试(法)spirule n.螺旋尺intersection n.交汇symmetrical a.对称的magnitude condition 幅值条件angle condition 相角条件phase condition 相角条件origin n.起始点terminus n.终点angle of departure 分离角、出发角angle of arrival汇合角、到达角cubic a.三阶的、立方的quartic a.四次的remainder n.留数、余数remainder theorem 留数定理taking the limit 取…极限synthetic division 综合除法dominant root 主导根compensator n.补偿器azimuth n.地位角、地平经度inertial guidance 惯性导航constant term 常数项symmetrical with respect to 关于…对称trial point 试验点terminate vt.终止于first differentiate 一阶微分real parts实部imaginary part 虚部lag compensator 滞后补偿器lead compensator 超前补偿器spill over 溢出,无法容纳autopilot n.自动导航trim v.n.使整齐,微调trim tab 平衡调整片margin n.裕量iteration n.重复、循环、迭代intact a.完好无缺的,原封不动的Chapter 6frequency response 频率响应rendered v.使成为,提供,报答,着色; 执行ratio of the magnitudes 幅值比bandwidth n.带宽resonant peak 谐振峰值low-pass filter低通滤波器sanity n.神智健全,头脑清楚,健全tangent n.正切、切线reciprocal a.互补的,相互的,互惠的phase difference 相角差transport lag 传输延迟irrational factor 非有理因子phase shift 相位移动moduli n.模(复数)poke vt.戳、刺、捅drudgery n.苦工、单调乏味的工作logarithmic coordinate 对数坐标semilog n.半对数decibel n.分贝decade n.十倍量程octave n.八倍频程、八度、八阶asymptotic behavior 渐进行为dotted n.虚线break frequency 转折频率corner frequency 转折频率slope n.斜率20dB/decade 20分贝/十倍频程superimpose vt.迭加polar plot 极坐标图pass function 旁路函数servomotor-amplifier 伺服电机-放大器angular velocity 角速度minimum phase 最小相位tilt angle 倾斜角lateral force 侧面力、横向力perceived velocity 可察觉的速度croseover frequency 穿越频率appendage n.附件、备件Nyquist criterion 奈奎斯特判据Semi-graphical 半图形Nyquist plot 奈奎斯特图Bode diagram 伯德图positive real part 正实部necessary and sufficient condition 充分必要条件left half of the s-plane s平面左半平面formidable a. 可怕的、令人生畏的determinant 行列式pole-zero cancellation 零极点相消rational functions 有理函数quotient n. 商、份额multi-loop control system 多环控制系统encircled vt. 环绕enclosed vt. 包围closed path 闭合路径counterclockwise a.逆时针的clockwise a.顺时针的encirclement n. 环绕enclosure n. 包围contour n.围线,轮廓线argument principle 幅角原理complex variable 复变量single-valued rational function 单值有理函数analytic a.解析的Nyquist path 奈奎斯特路径singularity n.奇异(点、值)semicircle n.半圆artifice n.技巧、技能gain margin 增益裕量phase margin 相角裕量vicinity n.邻近compromise n.折中,妥协trapezoidal a.梯形的iterate v.重复、循环、迭代bracket v.放在括号内,归入一类,包含octave n.八个一组的事物,八度enumerate v.数,点detrimental a.有害的,不利的threshold n.阈值Chapter 8sampling n.采样sample period 采样周期aliasing n.混频,别名inherent a.内在的z transform Z变换radar tracking system 雷达跟踪系统discrete period 离散周期discrete equivalent 离散等效digitization n.数字化recursive a.递归的,循环的difference equation 差分方程sample rate 采样速率sampler 采样器zero-order holder 零阶保持器inverse Z transform 反Z变换、逆Z变换long division 长除法unit circle 单位圆overlap n.重叠rephrase v.重新措辞,改述extrapolate v.预测,推测alleviate v.减轻,使 ... 缓和judicious a.明智的,贤明的,审慎的fictitious a.假想的,虚伪的impulse transfer function 脉冲传递函数piecewise-continuous 分段连续的pseudo-continuous-time 准连续时间Pade approximation Pade 近似Fourier analysis 傅立叶分析modulation n.调制Fourier transform 傅立叶变换spurious a.寄生的、伪的、假的ideal sampler 理想采样器impulse train 脉冲列、脉冲串transcendental a.超自然的、超常的rational function 有理函数closed form 封闭形式degree n.阶denominator n 分母numerator n 分子initial value 初始值identical a.相等的starred a.打星号的impulse response transfer function 脉冲响应传递函数uniformly spaced 均匀分布map into 影射、映射circles of radius 圆弧multiple-sheeted surfaceRiemann surface 黎曼曲面radial ray 射线by virtue of 借助、凭借、依靠….(的力量)logarithmic spiral 对数螺旋intersection n.相交power series 幂级数sampling instant 采样时刻natural logarithm 自然对数rationalizing 有理化cascading property 串联(级联)特性attenuation factor 衰减因子warp vt.使弯曲、使变形tune vt.调节、调整cross-hatched vt.用交叉线画出(图画上)阴影performance specification 性能指标trial-and-error approach 试凑法bilinear n.双线性Chapter 9equilibrium point 平衡点neighborhood n.邻域saturate n.饱和robotic n.机器人学heuristic a.启发式的,搜索式的sinusoidal a.正弦的sinusoid n.正弦harmonic a.谐波的describing-function 描述函数static nonlinearity 静态非线性dynamic nonlinearity. 动态非线性periodic response 周期响应phase-plane 相平面catastrophe n.灾难、浩劫shaky a.不稳定的,不可靠的scalar function 标量函数Liapunov function 李亚普诺夫函数linearization n.线性化inverse nonlinearity 可逆非线性perturbation n.摄动operating point 工作点eigenvalue n.特征值bearing n.轴承levitate v.浮动,使漂浮,使悬浮turbo n.汽轮机deviation n.偏差rigid link 刚性连接regime n.情形,体制dead-zone 死区viscous friction 粘性摩擦coulomb friction 库仑摩擦relay n.继电(特性)limit cycle 极限环deflect v.使偏,使歪windup n.终结,结束akin a.同类的,相似的odd function 奇函数backlash n.齿轮间隙magnetic hysteresis 磁滞coincident a.重合的,一致的on/off system 通断(控制)系统superposition n. 迭加sub-harmonic a.谐波的magnetic flux 磁通iron-cored coil 铁芯线圈stiction n. 静摩擦力autonomous a.自治的hypersphere n. 超球stability in the sense of Liapunov 李亚普诺夫意义下的稳定性asymptotically stable 渐进稳定monotonically stable 单调稳定origin n. 原点globally stable 全局稳定locally stable 局部稳定electronic oscillator 电子谐振器Van der Pol’s differential equation 范德波尔微分方程nonsinusoidal waveform 非正弦波形rated voltage 额定电压phase variable 相变量phase portrait 相图perpendicular a. 垂直的、正交的、成直角的Taylor series 泰勒级数increment n.增量Euler method 欧拉法singular point 奇异点。

拉普拉斯变换相关书籍英文

拉普拉斯变换相关书籍英文

Laplace Transform: A Comprehensive StudyIntroductionLaplace Transform is a powerful mathematical tool used in various fields such as engineering, physics, and mathematics. It provides a way to transform differential equations into algebraic equations, making them easier to solve. In this article, we will explore the concept of Laplace Transform in detail and discuss its applications.Basic Definition and Properties1.The Laplace Transform is defined for a function f(t) defined for t≥ 0 by the equation: > F(s) = L{f(t)} = ∫[0, ∞] e^(-st) f(t) dtHere, s is a complex variable and F(s) is the Laplace Transform of f(t).2.Linearity Property: For any constants a and b, and functions f(t)and g(t), we have: > L{af(t) + bg(t)} = aF(s) + bG(s)This property allows us to apply Laplace Transform to linearcombinations of functions.3.Shifting Property: If F(s) is the Laplace Transform of f(t),then: > L{e^(-at)f(t)} = F(s + a)This property enables us to manipulate the time domain bymultiplying the function with an exponential term.4.Differentiation Property: If F(s) is the Laplace Transform of f(t),then: > L{df(t)/dt} = sF(s) - f(0)This property allows us to transform derivatives in the timedomain into algebraic expressions in the Laplace domain.Inverse Laplace Transform1.The Inverse Laplace Transform of F(s) is denoted by L^{-1}{F(s)}and is defined as: > f(t) = L^{-1}{F(s)} = (1/2πi) ∫[-i∞, i∞]e^(st) F(s) dsThis transformation allows us to retrieve the original functionf(t) from its Laplace Transform F(s).mon Pairs: There are several common Laplace Transform pairsthat are frequently used for solving differential equations. Some examples include:–L{1} = 1/s, L^{-1}{1/s} = 1–L{t^n} = n!/(s^(n+1)), L{-1}{n!/(s(n+1))} = t^nThese pairs provide a shortcut for transforming common functionsin the time domain.Applications of Laplace Transform1.Solving Ordinary Differential Equations (ODEs): Laplace Transformis extensively used to solve linear ordinary differentialequations with constant coefficients. By applying LaplaceTransform to both sides of the equation, we can convert theequation into an algebraic equation that is easier to solve. Once solved, the inverse Laplace Transform is applied to obtain thesolution in the time domain.2.Circuit Analysis: Laplace Transform is widely used in electricalcircuit analysis. By transforming the circuit equations into theLaplace domain, we can analyze the behavior of the circuits interms of complex impedance and transfer functions. This simplifies the analysis of complex circuits and facilitates the design ofcircuits for specific applications.3.Control Systems: The Laplace Transform plays a crucial role in theanalysis and design of control systems. By transforming theequations governing the dynamics of the system, we can analyzestability, transient response, and steady-state behavior. Laplace Transform also allows us to design controllers and compensators to achieve desired system performance.4.Signal Processing: Laplace Transform is utilized in signalprocessing to analyze and manipulate signals. By transformingsignals into the frequency domain, we can analyze their spectralcharacteristics and apply various filters or modifications.Laplace Transform is particularly useful for analyzing continuous-time signals and systems.ConclusionIn conclusion, Laplace Transform is a fundamental mathematical tool that has numerous applications in various fields. Its ability to transform differential equations into algebraic equations simplifies problem-solving and analysis. By understanding the basic properties and applications of Laplace Transform, we can effectively solve complex problems in engineering, physics, and mathematics.。

拉普拉斯变换英语作文

拉普拉斯变换英语作文

拉普拉斯变换英语作文Laplace Transform。

The Laplace transform is a powerful tool in the field of mathematics and engineering. It is used to solve differential equations and is particularly useful in the analysis of linear time-invariant systems. The Laplace transform is named after Pierre-Simon Laplace, a French mathematician who made significant contributions to the field of mathematics.The Laplace transform of a function f(t) is defined as the integral of the function multiplied by the exponential function e^(-st), where s is a complex number. The Laplace transform of f(t) is denoted as F(s) and is defined as:F(s) = ∫[0 to ∞] f(t) e^(-st) dt。

The Laplace transform has many important properties that make it a valuable tool in the analysis of linearsystems. One of the most important properties of the Laplace transform is its linearity. This means that the Laplace transform of a linear combination of functions is equal to the linear combination of their individual Laplace transforms. Mathematically, this property can be expressed as:L{af(t) + bg(t)} = aF(s) + bG(s)。

拉普拉斯和拉格朗日函数的关系

拉普拉斯和拉格朗日函数的关系

拉普拉斯和拉格朗日函数的关系Lagrange and Laplace functions are two important mathematical concepts that have significant connections and applications in various areas of science and engineering. While they both deal with optimization problems, they have distinct characteristics that set them apart from each other. The Lagrange function, named after the Italian mathematician Joseph-Louis Lagrange, is commonly used in the field of calculus of variations to find extrema of a function subject to constraints. On the other hand, the Laplace function, named after the French mathematician Pierre-Simon Laplace, is used in probability theory and statistics to analyze random variables and stochastic processes.The relationship between the Lagrange and Laplace functions lies in the concept of optimization and constraint satisfaction. In optimization problems, the Lagrange function is used to formulate the constrained optimization problem, where the objective function is maximized or minimized subject to a set of constraints. The Lagrange multiplier, which is a key component of the Lagrange function, helps in incorporating the constraints into the optimizationproblem and finding the extremal points. The Laplace function, on the other hand, is used in probability theory to analyze the probability distribution of random variables and stochastic processes. It provides a way to model and study the behavior of random phenomena and make predictions based on statistical analysis.Despite their differences in application and methodology, the Lagrange and Laplace functions share common principles in mathematical optimization and analysis. Both functions aim to find the optimal solution to a given problem by considering various constraints and parameters that influence the outcome. They also play a crucial role in modeling real-life scenarios and making informed decisions based on mathematical principles. The Lagrange function, for example, is widely used in economics, physics, and engineering to optimize resource allocation, design efficient systems, and solve complex problems with multiple constraints. Similarly, the Laplace function is essential in statistics, finance, and insurance to analyze risks, predict outcomes, and make probabilistic assessments based on historical data.In addition to their practical applications, the Lagrange and Laplace functions have theoretical significance in mathematics and contribute to the development of mathematical theories and frameworks. The Lagrange function, for instance, is a fundamental concept in the calculus of variations, a branch of mathematics that deals with functionals and extremal problems. It provides a powerful tool for solving variational problems and studying optimization in continuous spaces. The Laplace function, on the other hand, is central to probability theory and stochastic processes, which are essential for understanding random phenomena and modeling uncertainties in real-world situations. By combining theoretical principles with practical applications, the Lagrange and Laplace functions offer a comprehensive approach to problem-solving and decision-making in various domains.Overall, the relationship between the Lagrange and Laplace functions highlights the interdisciplinary nature of mathematics and its applications in different fields. By understanding the connections and differences between these functions, mathematicians, scientists, and engineers can leverage their unique properties to solve complex problems, optimize systems, and make informed decisions. Whetherit is maximizing the efficiency of a manufacturing process using the Lagrange function or analyzing the risk factors in a financial portfolio using the Laplace function, the integration of mathematical principles and practical applications is essential for advancing knowledge and driving innovation in modern society. As we continue to explore the depths of mathematics and its applications, the synergy between the Lagrange and Laplace functions will continue to play a crucial role in shaping our understanding of optimization, probability, and uncertainty in a rapidly changing world.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1.1) dηti = b(ηti) dt + c(ηti) dW (t) + e(ηti) dBi(t), i = 1, 2, . . . ,
where b, c, e are real functions on R (c, e ≥ 0), W , B1, B2, . . . are independent (standard) Brownian motions and ηti is the position of the ith particle at time t. Let MF (R) denote the set of all finite Borel measures on R. It is established by Skoulakis and Adler [18] that the high-density limit Xt of this system is the unique MF (R)-valued solution to the following martingale
existing theory of SPDE.
A STOCHASTIC LOG-LAPLACE EQUATION
3
1.2. Main results. First we study the existence and uniqueness for the solution to (1.3). We also establish its particle system representation in the spirit of Kurtz and Xiong [15].
of the LLE:
(1.3)
t
yt(x) = f (x) + (b(x)∂xyr(x) + a(x)∂x2yr(x) − yr(x)2) dr
0
t
+ c(x)∂xyr(x) dWr.
0
The stochastic partial differential equation (SPDE) is an important field
this case, the derivative of the solution is not involved in the noise term.
To the best of our knowledge, the LLE (1.3) does not fit into the setups of
This is an electronic reprint of the original article published by the Institute of Mathematical Statistics in The Annals of Probability, 2004, Vol. 32, No. 3B, 2362–2388. This reprint differs from the original in pagination and typographic detail.
arXiv:math/0410164v1 [math.PR] 6 Oct 2004
The Annals of Probability 2004, Vol. 32, No. 3B, 2362–2388 DOI: 10.1214/009117904000000540 c Institute of Mathematical Statistics, 2004
To begin with, we introduce some notation needed in this paper. Let H0 = L2(R) be the set of all square integrable functions on R, and let H0+ consist of all the nonnegative functions in H0. Let Hm = {φ ∈ H0 : φ′, . . . , φ(m) ∈ H0}. Define the Sobolev norm on Hm by
1. Introduction and main results.
1.1. Introduction. We study the behavior of a branching interacting particle system in a random environment. For simplicity of notation, we assume that the particles move in the one-dimensional space R. The branching is critical binary; that is, at independent exponential times, each particle will die or split into two with equal probabilities. Between branchings, the motion of the ith particle is governed by an individual Brownian motion Bi(t) and a common Brownian motion W (t) which applies to all particles in the system:
challenge.
In this paper, we study the LLE (1.2). The main result is Theorem 1.2 in
which we prove that the log-Laplace transform of Xt is indeed given by the solution to (1.2). For simplicity of notation, we consider the forward version
A STOCHASTIC LOG-LAPLACE EQUATION1
By Jie Xiong
University of Tennessee
We study a nonlinear stochastic partial differential equation whose solution is the conditional log-Laplace functional of a superprocess in a random environment. We establish its existence and uniqueness by smoothing out the nonlinear term and making use of the particle system representation developed by Kurtz and Xiong [Stochastic Process. Appl. 83 (1999) 103–126]. We also derive the Wong–Zakai type approximation for this equation. As an application, we give a direct proof of the moment formulas of Skoulakis and Adler [Ann. Appl. Probab. 11 (2001) 488–543].
in
[18].
A
re-
lated model is studied by Wang [19] and Dawson, Li and Wang [4].
The log-Laplace equation has been used by many authors in deriving
various properties for superprocesses (cf. [2, 5]). It is natural, as indicated in
s
+ t c(x)∂xyr,t(x) dˆWr,
s
where f is the test function for the Laplace transform [cf. (1.8)], ∂x, ∂x2 are the first and second partial derivatives with respect to x and the last integral
of current research. We refer the reader to [1, 11] and [17] for an introduction
toied linear SPDEs. Here we only mention two
0
is a continuous martingale with quadratic variation process
t
M (φ) t = ( Xs, φ2 + | Xs, cφ′ |2) ds,
0
where
a(x)
=
1 2
(e(x)2
+
c(x)2).
Moment
formulas
are
derived
Received May 2002; revised June 2003. 1Supported in part by the NSA. AMS 2000 subject classifications. Primary 60G57, 60H15; secondary 60J80. Key words and phrases. Superprocess, random environment, Wong–Zakai approximation, particle system representation, stochastic partial differential equation.
相关文档
最新文档