带电粒子在复合场中运动-场中五动
带电粒子在复合场中的运动公式

带电粒子在复合场中的运动公式在物理学中,带电粒子在复合场中的运动是一个重要的研究课题。
复合场是指同时存在电磁场和重力场的情况,这种情况下带电粒子的运动将受到两种力的影响。
为了描述带电粒子在复合场中的运动,物理学家们提出了一系列的运动公式,其中最著名的是洛伦兹力和引力的相互作用。
洛伦兹力是指带电粒子在电磁场中受到的力,它可以用以下公式描述:\[ \mathbf{F} = q(\mathbf{E} + \mathbf{v} \times\mathbf{B}) \]其中,\( \mathbf{F} \) 是洛伦兹力,\( q \) 是带电粒子的电荷,\( \mathbf{E} \) 是电场强度,\( \mathbf{v} \) 是带电粒子的速度,\( \mathbf{B} \) 是磁感应强度。
这个公式表明了带电粒子在电磁场中受到的力是电场力和磁场力的叠加效果。
另一方面,带电粒子在重力场中受到的力可以用牛顿的引力定律描述:\[ \mathbf{F} = m\mathbf{g} \]其中,\( \mathbf{F} \) 是重力,\( m \) 是带电粒子的质量,\( \mathbf{g} \) 是重力加速度。
当带电粒子同时受到电磁场和重力场的影响时,它的运动将受到这两种力的综合作用。
这种情况下,带电粒子的运动将由洛伦兹力和引力共同决定,可以用牛顿第二定律来描述:\[ \mathbf{F} = m\mathbf{a} \]其中,\( \mathbf{F} \) 是带电粒子所受的合力,\( m \) 是带电粒子的质量,\( \mathbf{a} \) 是带电粒子的加速度。
通过这些运动公式,我们可以定量地描述带电粒子在复合场中的运动规律,为理解和预测带电粒子在复合场中的行为提供了重要的理论基础。
这对于电磁场和引力场的研究以及相关技术应用具有重要意义。
高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动

(2)电场的电场强度大小E以及磁场的磁感应强度大小B;
答案
mv2 6qL
2 3mv 3qL
1234
对粒子从Q点运动到P点的过程,根据动能
定理有 -qEL=12mv2-12mv02 解得 E=6mqvL2
设粒子从Q点运动到P点的时间为t1,有
0+v0sin 2
θ·t1=L
1234
解得
t1=2
3mv02 3qE
⑤
竖直方向的位移 y=0+2 vyt=m6qvE02
⑥
则粒子发射位置到P点的距离为
d=
x2+y2=
13mv02 6qE
⑦
(2)求磁感应强度大小的取值范围; 答案 3-3q3lmv0<B<2mqlv0
设粒子在磁场中运动的速度为 v,结合题意及几何
关系可知,v=sinv60 0°=233v0
垂直于纸面向外的匀强磁场.OM上方存在电场强度大小为E的匀强电场,
方向竖直向上.在OM上距离O点3L处有一点A,在电场中距离A为d的位置
由静止释放一个质量为m、电荷量为q的带负电的粒子,经电场加速后该
粒子以一定速度从A点射入磁场后,第一次恰好不从ON边界射出.不计粒
子的重力.求:
(1)粒子运动到A点时的速率v0;
d.N边界右侧区域Ⅱ中存在磁感应强度大小为B、方向垂直于纸面向里的匀
强磁场.M边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M
上的O点处有一离子源,水平向右发射同种正离子.已知初速度为v0的离子 第一次回到边界M时恰好到达O点,电场及两磁场区域
足够大,不考虑离子的重力和离子间的相互作用.
(1)求离子的比荷;
迹如图乙所示,设此时的轨迹圆圆心为O2,半
高考物理一轮复习讲义带电粒子在复合场中的运动

课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
带电粒子在复合场中的运动问题

【正确解答】 粒子在磁场中的运动为匀速圆周运动,在电场中的运动为匀变速 直线运动.画出粒子运动的过程草图10-19.根据这张图可知粒子在 磁场中运动半个周期后第一次通过x轴进入电场,做匀减速运动至速 度为零,再反方向做匀加速直线运动,以原来的速度大小反方向进入 磁场.这就是第二次进入磁场,接着粒子在磁场中做圆周运动,半个 周期后第三次通过x轴.
2,带电粒子在复合场中的运动情况: ,带电粒子在复合场中的运动情况: 1)直线运动: )直线运动: 常见的情况有: 常见的情况有: 洛伦兹力为零( 平行), ①洛伦兹力为零(即V与B平行),重力与电场力平 与 平行),重力与电场力平 衡时,做匀速直线运动; 衡时,做匀速直线运动;合外力恒定时做匀变速直 线运动. 线运动. ②洛伦兹力与V垂直,且与重力和电场力的合力 洛伦兹力与 垂直, 垂直 或其中的一个力)平衡,做匀速直线运动. (或其中的一个力)平衡,做匀速直线运动. 2)圆周运动: )圆周运动: 当带电粒子所受到合外力充当向心力时, 当带电粒子所受到合外力充当向心力时,带电粒子 做匀速圆周运动. 做匀速圆周运动.此时一般情况下是重力恰好与电 场力平衡,洛伦兹力充当向心力. 场力平衡,洛伦兹力充当向心力. 3)一般的曲线运动: )一般的曲线运动: 当带电粒子所受的合力在大小,方向均不断变化时, 当带电粒子所受的合力在大小,方向均不断变化时, 则粒子将做非匀变速曲线运动. 则粒子将做非匀变速曲线运动.
解:不妨假设设小球带正电(带负电时电场力和洛伦兹力 都将反向,结论相同).刚释放时小球受重力,电场力, 弹力,摩擦力作用,向下加速;开始运动后又受到洛伦兹 力作用,弹力,摩擦力开始减小;当洛伦兹力等于电场力 时加速度最大为g.随着v的增大,洛伦兹力大于电场力, 弹力方向变为向右,且不断增大,摩擦力随着增大,加速 度减小,当摩擦力和重力大小相等时,小球速度达到最大.
专题复习-带电粒子在复合场中的运动

四﹑解题规律 带电微粒在组合场、 复合场中的运动问题是电磁 带电微粒在组合场 、 学与力学知识的综合应用, 学与力学知识的综合应用 , 分析方法与力学问题 分析方法基本相同, 分析方法基本相同 , 只是增加了电场力和洛伦兹 力,解决可从三个方面入手: 解决可从三个方面入手: 1. 力学观点:包括牛顿定律和运动学规律 力学观点: 2. 能量观点:包括动能定理和能量守恒定律 能量观点: 3. 动量观点:包括动量定理和动量守恒定律 动量观点:
解: (1)小球受力如图所示 小球受力平衡时速度最大 小球受力如图所示, 小球受力如图所示 小球受力平衡时速度最大, f FB N 1 = FE + FB = Eq + Bqv m N
1
mg = f = µN 1 = µ ( Eq + Bqv m )
FE mg
mg E 0.1 × 10−2 10 vm = − = − = 5(m/s ) −4 0.5 µBq B 0.2 × 0.5 × 4 × 10 f (2)电场反向后 小球受力如图所示 电场反向后, 电场反向后 小球受力如图所示: FE 开始时, 小球向下加速运动, 开始时,FB =0, 小球向下加速运动,
专题复习:带电粒子在复合场中的运动 例 专题复习:带电粒子在复合场中的运动-例4 如图所示, 例4. 如图所示,纸平面内一带电粒子以某一速度做 直线运动, 直线运动 , 一段时间后进入一垂直于纸面向里的圆 形匀强磁场区域(图中未画出磁场区域) 形匀强磁场区域 ( 图中未画出磁场区域 ) , 粒子飞 出磁场后从上板边缘平行于板面进入两面平行的金 属板间,两金属板带等量异种电荷, 属板间 , 两金属板带等量异种电荷 , 粒子在两板间 经偏转后恰从下板右边缘飞出。已知带电粒子的质 经偏转后恰从下板右边缘飞出。 量为m,电量为 电量为q,其重力不计, 量为 电量为 ,其重力不计,粒子进入磁场前的速 度方向与带电板成θ=600角。匀强磁场的磁感应强度 度方向与带电板成 带电板长为l, 板距为d, 为B, 带电板长为 板距为 板间电压为U。试解答: 板间电压为 。试解答: (1)上金属板带什么电 )上金属板带什么电? θ (2)粒子刚进入金属板时速度为多大 ) (3)圆形磁场区域的最小面积为多大 )圆形磁场区域的最小面积为多大?
带电粒子在复合场中的运动整理

专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.1对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.2在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.3对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系重力忽略不计2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.不考虑重力作用,离子荷质比q/mq、m分别是离子的电量与质量在什么范围内,离子才能打在金属板上4.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:1当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;2两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;3电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m,电量+q的粒子在环中作半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为U,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,动能不断增大,而绕行半径不变.l设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n圈回到A板时获得的总动能E n.2为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时的磁感应强度B n.3求粒子绕行n圈所需的总时间t n设极板间距远小于R.4在2图中画出A板电势U与时间t的关系从t=0起画到粒子第四次离开B板时即可. 5在粒子绕行的整个过程中,A板电势是否可始终保持为+U为什么RAB6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=×10-27㎏、电荷量为q =+×10-19C的α粒子不计α粒子重力,由静止开始经加速电压为U=1205V的电场图中未画出加速后,从坐标点M-4,2处平行于x轴向右运动,并先后通过两个匀强磁场区域.1请你求出α粒子在磁场中的运动半径;2你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;3求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内q=+、质量还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=一带电量0.2Cm=的小球由长0.4m0.4kgl=的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.g=10m/s2,求:1小球运动到O点时的速度大小;2悬线断裂前瞬间拉力的大小;3ON间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB,并垂直AC 边射出不计粒子的重力.求: 1两极板间电压;2三角形区域内磁感应强度;3若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:1微粒再次经过直线OO´时与O 点的距离; 2微粒在运动过程中离开直线OO ´的最大高度;3水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.M O O ´ v B EO t /s B /T5π 15π 25π 35π 10π 20π 30π10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:1粒子在磁场中做圆周运动的半径; 2粒子在磁场中运动的时间; 3圆形磁场区域的最小半径;4若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=.一带负电的粒子比荷q/m=160C/kg,在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求: 1带电粒子开始运动后第一次到达y 轴时的坐标. 2带电粒子进入磁场后经多长时间会返回电场. 3带电粒子的y 方向分运动的周期. 30OP Av12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.1求匀强电场的电场强度E.2若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.3求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:1粒子从P运动到Q所用的时间t.2电场强度E的大小.3粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子重力忽略不计,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:1筒内磁场的磁感应强度大小.2带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案1 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O点4R 处飞越x 轴如图所示图中电场与磁场均未画出故有L =2R,L =2×2R,L =3×2R 即 R =L /2n,n=1、2、3………………… ①设粒子静止于y 轴正半轴上,和原点距离为h,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE n =l 、2、3……2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+R 1一d/22,R 1=5d/4……④ R 22=2d 2+R 2一d/22,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U.24、解析:1根据动能定理,得20012eU mv =解得002eU v m =2欲使电子不能穿过磁场区域而打在荧光屏上,应有mv r d eB=<而212eU mv =由此即可解得222d eB U m <HPBv45°打在荧光屏上的位置坐标为x,则由轨迹图可得2222x r r d =-- 注意到mv r eB=和212eU mv =所以,电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系为222222(22)()2d eB x emU emU d e B U eB m =--≥35、解析:1E n =nqv2∵nqU=½mv 2n∴v n =m nqU2 Rmv n 2=qv n B n B n =mv n /qR以v n 结果代入,B n =qR m m nqU 2=R 1qnmv2 3绕行第n 圈需时n v R π2=2πR qv m 2n 1 ∴t n =2πR qv m 21+21+31+……+n14如图所示,对图的要求:越来越近的等幅脉冲5不可以,因为这样粒子在A 、B 之间飞行时电场对其做功+qv,使之加速,在A 、B 之外飞行时电场又对其做功-qv 使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大; 6、解析:1粒子在电场中被加速,由动能定理得 221mv qU =α粒子在磁场中偏转,则牛顿第二定律得rv m qvB 2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--q mU B r m 2由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为3带电粒子在磁场中的运动周期qBmv r T ππ22==O M 2 -22-4 4 x /my /m -2 vB B4,2-α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间 631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qB m T t πs 47、解:1小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② 2小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ 3绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧8、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB = 在磁场中运动半径d l r AB 23431== ∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401=方向垂直纸面向里 ⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ……… 2分 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 049、解:1由题意可知,微粒所受的重力 G =mg =8×10-3N电场力大小F =Eq =8×10-3N因此重力与电场力平衡微粒先在洛伦兹力作用下做匀速圆周运动,则2v qvB m R=解得 R =mvBq=0.6m 由 2RT vπ=解得T =10πs则微粒在5πs 内转过半个圆周,再次经直线OO´时与O 点的距离 l = 2R =1.2m2微粒运动半周后向上匀速运动,运动的时间为t =5πs,轨迹如图所示,位移大小 s =vt =πm=1.88m因此,微粒离开直线OO´的最大高度 h =s +R =2.48m3若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´下方时,由图象可知,挡板MN 与O 点间的距离应满足L =+m n =0,1,2…若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´上方时,由图象可知,挡板MN 与O 点间的距离应满足 L =+ m n =0,1,2…若两式合写成 L =+ m n =0,1,2…同样给分 510、解:1由r v m qvB 2=,vrT π2=得:m qBmvr 3.0==2画出粒子的运动轨迹如图,可知T t 65=,得:s s qB m t 551023.5103535--⨯=⨯==ππ 3由数学知识可得:︒︒+=30cos 30cos 2r r L 得:m qB mv L 99.010334)134(=+=+=11.1y=0.069m2t=3T== 12.12313.12314.12。
带电粒子在复合场中的运动解题技巧

带电粒子在复合场中的运动解题技巧带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。
带电粒子在复合场中的运动是高考的重点考点,那么掌握答题技巧是关键。
接下来店铺为你整理了带电粒子在复合场中的运动解题技巧,一起来看看吧。
带电粒子在复合场中的运动解题技巧:分离的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。
对于带电粒子在电场中的偏转,要利用类平抛运动的规律,根据运动的合成与分解,结合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再结合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。
带电粒子垂直进入匀强磁场,其运动情况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动情况,关键是确定粒子飞入点和飞出点的位置以及速度方向,再利用几何关系确定圆心和半径。
值得注意的是,若带电粒子从磁场中某个位置飞出后,再经电场的作用在同一个位置以相同的速度大小再次飞入磁场中时,由于飞出和飞入速度方向相反,洛伦兹力的方向相反,粒子两次在磁场中的运动轨迹并不重合!需要强调的是,带电粒子从一个场进入另外一个场,两场之间的连接点是这类问题的中枢,其速度是粒子在前一个场的某速度,是后一个场的初速度,再解决问题时要充分利用这个位置信息。
带电粒子在复合场中的运动解题技巧:多场并存的无约束运动多场并存的无约束运动在解决复合场问题时应首先弄清楚是哪些场共存,注意电场和磁场的方向以及强弱,以便确定带电粒子在场中的受力情况。
带电粒子在复合场中运动时如果没有受到绳子,杆,环等的约束,则带电粒子在空间中可以自由移动,只受场力的作用。
根据空间存在的场的不同,一般带电粒子的运动规律不同,通常可以分为以下几类:1、静止或匀速直线运动如果是重力场与电场共存,说明电场力等于重力。
如果是重力场与磁场共存,说明重力与洛伦兹力平衡。
专题拓展课二 带电粒子在复合场中的运动

专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。
2.能够运用运动组合的理念分析带电粒子在组合场中的运动。
3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。
拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。
2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。
(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。
(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。
(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。
3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。
(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。
(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。
4.要正确进行受力分析,确定带电粒子的运动状态。
(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。
(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。
5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。
特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。
【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。
图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2009浙江卷)如图所示,x轴正方向水平向右,y轴正方向竖直向上。 在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy 平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴 正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带 电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。已知重力加 速度大小为g。 (1)从A点射出的带电微粒平 行于x轴从C点进入有磁场区域, 并从坐标原点O沿y轴负方向离 开,求点场强度和磁感应强度 的大小和方向。 (2)请指出这束带电微粒与x 轴相交的区域,并说明理由。 (3)若这束带电微粒初速度 变为2v,那么它们与x轴相交 的区域又在哪里?并说明理由。
(1)求偏转电场场强E0的大小以及HM与MN的夹角φ; (2)求质量为m的离子在磁场中做圆周运动的半径; (3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的 离子打在S2处。求S1和S2之间的距离以及能打在NQ上的正离子 的质量范围。
(2009年江苏)1932年,劳伦斯和利文斯设计出了回旋加速器。 回旋加速器的工作原理如图所示,置于高真空中的D形金属盒 半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略 不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产 生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加 速电压为U。加速过程中不考虑相对论效应和重力作用。 (1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比; (2)求粒子从静止开始加速到出口处所需的时间t ; (3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。 若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、 fm,试讨论粒子能获得的最大动能E㎞。
(2009年全国II卷)如图,在宽度分别为l1和l2的两个毗邻的条形 区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里, 电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速 率v从磁场区域上边界的P点斜射入磁场,然后以垂直于电、磁 场分界线的方向进入电场,最后从电场边界上的Q点射出。已 知PQ垂直于电场方向,粒子轨迹与电、磁场分界线的交点到 PQ的距离为d。不计重力,求电场强度与磁感应强度大小之比及 粒子在磁场与电场中运动时间之比。
WG EP
名称
产生
大小
方向
效果
做功
电场力
电场对场 中带电粒 子的一种 基本属性
F=Eq
与电场 强度E 及带电 粒子所 带电荷 性质有 关
动力、阻 力、向心 力、回复 力等
W=Uq, 电场力做 功跟路径 无关,其 数值除与 带电粒子 的电荷量 有关外, 还与始末 位置的电 势差有关
名称
大小
(2007山东理综)飞行时间质谱仪可以对气体分子进行分析。如图所 示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生不同价位 的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中 线方向进入M、N板间的偏转控制区,到达探测器。已知元电荷电量为e, a、b板间距为d,极板M、N的长度和间距均为L。不计离子重力及进入a 板时的初速度。⑴当a、b间的电压为U1时,在M、N间加上适当的电压U2, 使离子到达探测器。请导出离子的全部飞行时间与比荷K(K=ne/m)的 关系式。⑵去掉偏转电压U2,在M、N间区域加上垂直于纸面的匀强磁 场,磁感应强度B,若进入a、b间所有离子质量均为m,要使所有的离 子均能通过控制区从右侧飞出,a、b间的加速电压U1至少为多少?
如图所示,粗糙的足够长的竖直木杆上套有一个带电的小 球,整个装置处在由水平匀强电场和垂直纸面向外的匀强 磁场组成的足够大的复合场中,小球由静止开始下滑,在 整个运动过程中小球的v- t图象如图所示,其中正确的是 ( C )
如图所示,实线表示在竖直平面内的电场线,电场线与水平方向成α 角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚 线 I 做直线运动,I与水平方向成β角, 且α>β,则下列说法中错误 的是( ) D
Do you know the meaning of family?
我对family的理解: Force and movement is lasting yabber
(力与运动是永恒的话题)
大家是否发现翻译中出现的问题?
三种运动类型
(一)、同一空间区域先后加场的问题
先后加场主要指在同一空间区域先后加上电场和 磁场的情况。一般某一空间区域出现电场时,不计 重力和空气阻力的粒子做类平抛运动,可运用运动 的合成与分解求解;在该空间区域出现磁场时,粒 子做匀速圆周运动,利用牛顿第二定律列出洛伦兹 力提供向心力方程求解。
A.电场强度E0和磁感应强度B0的大小之比为3 v0:1 B.第一个粒子和第二个粒子运动的加速度大小之比为1:2 C.第一个粒子和第二个粒子运动的时间之比为2:π D.第一个粒子和第二个粒子通过C的动能之比为 1:4
(二)、带电粒子在组合场中运动的问题
组合场是指电场与磁场同时存在,但各位于一定的 区域内且并不重叠的情况,带点粒子在一个场中只受 一个场力的作用,解决这类问题要注意: 1.正确地画出粒子的运动轨迹图
(三)、带电粒子在复合场中运动的问题 首先要弄清是一个怎样的复合场,判断复合场是磁场、 电场、重力场中哪几个场 的复合。其次,要正确地对 带电粒子受力分析和运动过程分析,最后,选择合适的 动力学方程求解。
带电粒子在复合场中运动问题是电磁学知识和力学知 识的结合,分析方法和力学问题的分析方法基本相同, 不同之处是多了电场力、洛伦兹力,因此,带电粒子中 的运动问题除了利用动力学观点、 能量观点分析外, 还要注意电场力与洛伦兹力做功的特点。
图甲
图乙
(2009年重庆理综卷)如题25图,离 子源A产生的初速为零、带电量均为e、 质量不同的正离子被电压为U0的加速 电场加速后匀速通过准直管,垂直射入 匀强偏转电场,偏转后通过极板HM上 的小孔S离开电场,经过一段匀速直线 运动,垂直于边界MN进入磁感应强度 为B的匀强磁场。已知HO=d,HS= 2d,MNQ =90°。(忽略粒子所受 重力)
2.确定好粒子在组合场交界位置的速度的大小和方向
(2009天津卷)如图所示,直角坐标系xOy位于竖直平面内,在水平 的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小 球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰 能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的 距离为L,小球过M点时的速度方向与x轴的方向夹角为 .不计空气阻力, 重力加速度为g,求
课题:带电粒子在复合场中运动
要求:Ⅱ
本质:动力学问题
备课导航
带电粒子在复合场中运动是中学物理的重 点内容,它对同学们的空间想象能力、分析 综合能力和应用数学知识处理物理问题的能 力有较高要求,是考查同学们综合能力的极 好载体,与现代科技密切相关,在近代物理 实验中有重大意义,因此历来是高考的热点。 当定性讨论这类问题时,试题常以选择题 形式出现;若涉及定量计算,还常常成为试 卷压轴题。
方向
效果
特点
v // B时, f 0
洛伦兹力
v B时, f B f qBv f v
v既不垂直 f qvB或 f qv B
向心力
不做功
左手定则
也不平行时,
Electricity (电)and magnetism(磁), live in the earth,we are family.
无重力:E= VB
匀速直线运动
有重力:mg、qE、 qvB三力平衡 此类问题一般是带电体 在粗糙平面或穿在粗 糙杆上运动 mg=Eq qvB=mv2/R
带 电 粒 子 在 复 合 场 中 运 动
变加速直线运动
匀速圆周运动
类平抛运动
受到三个场力,三力 平衡后撤去匀强磁场
一般曲线运动
遵循能量守恒定律 可从功能关系或 运动合成分解知识考虑
(2009四川卷)如图所示,直线形挡板p1p2p3与半径为r的圆弧形挡板 p3p4p5平滑连接并安装在水平台面b1b2b3b4上,挡板与台面均固定不动。 线圈c1c2c3的匝数为n,其端点c1、c3通过导线分别与电阻R1和平行板 电容器相连,电容器两极板间的距离为d,电阻R1的阻值是线圈c1c2c3阻 值的2倍,其余电阻不计,线圈c1c2c3内有一面积为S、方向垂直于线圈 平面向上的匀强磁场,磁场的磁感应强度B随时间均匀增大。质量为m 的小滑块带正电,电荷量始终保持为q,在水平台面上以初速度v0从p1位 置出发,沿挡板运动并通过p5位置。若电容器两板间的电场为匀强电场, p1、p2在电场外,间距为l,其间小滑块与台面的动摩擦因数为μ,其余 部分的摩擦不计,重力加速度为g. 求: (1)小滑块通过p2位置时 的速度大小。 (2)电容器两极板间电场强 度的取值范围。 (3)经过时间t,磁感应强度变 化量的取值范围
(1)电场强度E的大小和方向; (2)小球从A点抛出时初速度v0的大小; (3)A点到x轴的高度h.
(2009年山东卷)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂 直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场, 方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射 质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两 板间加上如图乙所示的电压(不考虑极边缘的影响)。 已知t=0时刻进入两板间的带电粒子,恰好在t0时刻经极板边缘射入磁场。 上述m、q、l、l0、B为已知量。(不考虑粒子间相互影响及返回板间的 情况) (1)求电压U0的大小。 (2)求t0/2时进入两板间的带电粒子在磁场中做圆周运动的半径。 (3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短 时间。
励志名言
No 华山再高 matter how high the mountain is,one can always ascend 顶有过路 to its top