线性代数必须熟记的结论

合集下载

线代常用的一些结论

线代常用的一些结论

A1 2 设 A
A2
o
, 则有 A A A A . 1 2 s As
o
若 Ai 0i 1,2,, s , 则 A 0, 并有
A11 1 A
A2
1
o

o
. 1 As
(1) | AT | | A | ;
( 2) | A | | A | ;
n
( 3) | AB || A | | B | ;
注意 1) | A B || A | | B |
2) AB BA , 但有 | AB || BA | .
伴随矩阵
AA A A A E .

A1 0 0 0 A2 0 (3) 0 0 A s
0 A1 B1 0 A2 B2 0 0
B1 0 0 B2 0 0
0 0 . As Bs
T
1 1
T 1
A .
1 T
*
A 5 若A可逆 ,则有 A A .(注:
A
n-1
) .
六、解矩阵方程
矩阵方程
AX B XA B
AXB C

X A1 B X BA1 X A1 C B1
七、方阵多项式
设 记
( x ) a0 a1 x am x m ,
a11 kai 1 a n1 a12 a1n a11 a12 a1n a i 2 a in a n 2 a nn
an 2 ann
a n1
kai 2 kain k a i 1

线性代数公式及主要结论

线性代数公式及主要结论

1、行列式1. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 2. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-逆序数计算3. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =只有零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换(无行字)化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤5. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,所有1n +阶(或以上阶)子式全部为0;(两句话)②、()r A n <,A 中所有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;6. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;7. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面; 4. 线性相关与无关的两套定理: 若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;5. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ == 6. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 7. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置) 8. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;9. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 10. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;。

线性代数超强的总结(不看你会后悔的)

线性代数超强的总结(不看你会后悔的)

线性代数超强总结⎧A 不可逆⎧A 可逆⎪⎪r (A )<n r (A )=n⎪⎪⎪⎪Ax =0只有零解A =ο⇔⎨Ax =ο有非零解⎪⎪0是A 的特征值⎪A 的特征值全不为零⎪⎪⎪⎩A 的列(行)向量线性相关A ≠ο⇔⎨A 的列(行)向量线性无关⎪A T A 是正定矩阵⎪⎪A 与同阶单位阵等价⎪⎪A =p 1p 2⋅⋅⋅p s ,p i 是初等阵n ⎪⎩∀β∈,Ax =β总有唯一解向量组等价⎫⎪具有相似矩阵⎬−−−→反身性、对称性、传递性矩阵合同⎪⎭√关于e 1,e 2,⋅⋅⋅,e n:①称为n的标准基,n中的自然基,单位坐标向量;②e 1,e 2,⋅⋅⋅,e n线性无关;③e 1,e 2,⋅⋅⋅,e n=1;④tr(E )=n ;⑤任意一个n 维向量都可以用e 1,e 2,⋅⋅⋅,e n线性表示.1√行列式的计算:A *=A ο=A ο=A B①若A 与B 都是方阵(不必同阶),则οB*BοB*AB ο=(-1)mn A B ②上三角、下三角行列式等于主对角线上元素的乘积.*a 1nοa1n③关于副对角线:a2n -1=a2n -1=(-1)n (n -1)2a 1n a2nan 1an 1οan 1ο√逆矩阵的求法:①A -1=A *A②(A E )−−−−初等行变换→(E A -1)⎡a b ⎤-11⎡d -⎡A B ⎤T ③⎢⎡A T C T ⎤⎣c d ⎥⎦=b ⎤ad -bc ⎢⎣-c a ⎥⎦⎢⎣C D ⎥⎦=⎢⎣BT D T ⎥⎦⎡⎤-1⎡1⎤⎢a 1⎥⎢a 1a -11⎤⎡1⎥⎡⎥⎢④⎢a2a 2⎥⎢⎢⎥⎥⎢a2⎥=⎢⎢⎥=⎢⎢⎥⎢⎣a ⎥⎢⎥⎢n⎦⎢⎣1⎥⎢a n ⎥⎢⎦⎣a n⎦⎢⎣1a 121a n⎤⎥⎥1a ⎥2⎥⎥⎦-1⎢1-1⎥1-11-1n⑤⎢A2A-1⎥A⎥⎥2⎢⎥⎢⎥⎢2⎥⎢⎢⎥=⎢⎢⎥⎢⎥=⎢-1⎥⎣A ⎥⎢⎥⎢A2⎥n ⎦⎢⎣A-1⎥⎢⎢n⎦⎥⎣A⎥n⎦⎢⎢⎣A-11⎥⎦√方阵的幂的性质:A m A n=A m+n(A m)n=(A)mn√设f(x)=am x m+am-1x m-1++a1x+a,对n阶矩阵A规定:f(A)=a m m-1mA+am-1A++a1A+aE为A的一个多项式.√设Am⨯n ,Bn⨯s,A的列向量为α1,α2,⋅⋅⋅,αn,B的列向量为β1,β2,⋅⋅⋅,βs,AB则:ri =Aβi,i=1,2,,s,即A(β1,β2,⋅⋅⋅,βs)=(Aβ1,Aβ2,,Aβs)⎫用A,B中简r,r 若β=(b Tα⎪1,b2,,bn),则Aβ=b1α1+b22+bnαn⎪单的一个提1,r2,s,即:AB的第i个列向量r⎬i是A的列向量的线性组合,组合系数就是βi的各分量;高运算速度⎪AB的第i个行向量ri是B的行向量的线性组合,组合系数就是αi的各分量.⎪⎭√用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量;用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量.√两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⎡⎢A11ο⎤ο⎤与分块对角阵相乘类似,即:A=⎢A⎥⎡B1122B⎥22⎢⎥⎢⎥,B=⎢⎥⎢⎥⎣οA ⎥⎢⎢kk ⎦⎣οB⎥kk⎦3列量为的向1111⎢AB =⎢⎢⎢⎣οA 22B22⎥⎥⎥⎥A kk B kk⎦√矩阵方程的解法:设法化成(I)AX =B或 (II)XA =B当A ≠0时,(当B 为一列时,初等行变换(I)的解法:构造(A B )−−−−→(E X )即为克莱姆法则)(II)的解法:将等式两边转置化为A T X T =B T ,T 用(I)的方法求出X ,再转置得X√Ax =ο和Bx =ο同解(A ,B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系.√判断η1,η2,,ηs是Ax =0的基础解系的条件:,ηs线性无关;,ηs是Ax =0的解;①η1,η2,②η1,η2,③s =n -r (A )=每个解向量中自由变量的个数.4①零向量是任何向量的线性组合,零向量与任何同维实向量正交.②单个零向量线性相关;单个非零向量线性无关.③部分相关,整体必相关;整体无关,部分必无关.④原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关.⑥向量组α1,α2,⋅⋅⋅,αn中任一向量αi(1≤i≤n)都是此向量组的线性组合.⑦向量组α1,α2,⋅⋅⋅,αn线性相关⇔向量组中至少有一个向量可由其余n-1个向量线性表示.向量组α1,α2,⋅⋅⋅,αn线性无关⇔向量组中每一个向量αi都不能由其余n-1个向量线性表示.⑧m维列向量组α1,α2,⋅⋅⋅,αn线性相关⇔r(A)<n;m维列向量组α1,α2,⋅⋅⋅,αn线性无关⇔r(A)=n.⑨r(A)=0⇔A=ο.⑩若α1,α2,⋅⋅⋅,αn线性无关,而α1,α2,⋅⋅⋅,αn,β线性相关,则β可由α1,α2,⋅⋅⋅,αn线性表示,且表示法惟一.⑪矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.⑫矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系.矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.5向量组等价α1,α2,⋅⋅⋅,αn和β1,β2,⋅⋅⋅,βn可以相互线性表示.记作:1,α2,⋅⋅⋅,αn=1,β2,⋅⋅⋅,βn矩阵等价A经过有限次初等变换化为B.记作:A=B⑬矩阵A与B等价⇔r(A)=r(B)≠>A,B作为向量组等价,即:秩相等的向量组不一定等价.矩阵A与B作为向量组等价⇔r(α1,α2,⋅⋅⋅,αn)=r(β1,β2,⋅⋅⋅,βn)=r(α1,α2,⋅⋅⋅αn,β1,β2,⋅⋅⋅,βn)⇒矩阵A与B等价.⑭向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示⇔r(α1,α2,⋅⋅⋅αn,β1,β2,⋅⋅⋅,βs)=r(α1,α2,⋅⋅⋅,αn)⇒r(β1,β2,⋅⋅⋅,βs)≤r(α1,α2,⋅⋅⋅,αn).⑮向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示,且s>n,则β1,β2,⋅⋅⋅,βs线性相关.向量组β1,β2,⋅⋅⋅,βs线性无关,且可由α1,α2,⋅⋅⋅,αn线性表示,则s≤n.⑯向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示,且r(β1,β2,⋅⋅⋅,βs)=r(α1,α2,⋅⋅⋅,αn),则两向量组等价;⑰任一向量组和它的极大无关组等价.⑱向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.⑲若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳若A是m⨯n矩阵,则r(A)≤min{m,n},若r(A)=m,A的行向量线性无关;若r(A)=n,A的列向量线性无关,即:α1,α2,⋅⋅⋅,αn线性无关.6线性方程组的矩阵式Ax =β向量式x 1α1+x 2α2++x nαn=β⎡a11a 12⎢a a 22A =⎢21⎢⎢⎣a m 1a m 2a 1n ⎤⎡α1j ⎤⎡x 1⎤⎡b 1⎤⎢α⎥⎢x ⎥⎢b ⎥a 2n ⎥⎥,x =⎢2⎥,β=⎢2⎥α=⎢2j ⎥,j =1,2,j ⎢⎥⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥a mn ⎦x b ⎢⎣n ⎦⎣m⎦⎣αmj ⎥⎦,n7⎧⇒当A为方阵时⇔Ax=β有无穷多解Ax=ο有非零解−−−−−→A=0⎪<≠⎪<n⎪⇒α1,α2,,αn线性相关⎪⎪⇒当A为方阵时⎪⇔Ax=β有唯一组解Ax=ο只有零解−−−−−→A≠0⎪β可由α1,α2,,αn线性表示⇔Ax=β有解⇔r(A)=r(Aβ)⎨<≠⎪⎪=n⎪⇒α1,α2,,αn线性无关⎪⎪当A为方阵时⎪−−−−−→克莱姆法则⎪⎩⎧⇔r(A)≠r(Aβ)⎪β不可由α1,α2,,αn线性表示⇔Ax=β无解⎨⇔r(A)<r(Aβ)⎪⇔r(A)+1=r(Aβ)⎩矩阵转置的性质:(A T)T=A矩阵可逆的性质:(A-1)-1=A伴随矩阵的性质:(A*)*=A⎧n若r(A)=n⎪r(A*)=⎨1若r(A)=n-1⎪0若r(A)<n-1⎩n-2(AB)T=B T A T(kA)T=kA T A T=AA-1=AA*=A n-1-1(A+B)T=A T+B T(A-1)T=(A T)-1(A-1)k=(A k)-1=A-kAA(AB)-1=B-1A-1(kA)-1=k-1A-1A(AB)*=B*A*(kA)*=k n-1A*(A-1)*=(A*)-1=(A T)*=(A*)T(A*)k=(A k)*AA*=A*A=A EAB=A B kA=k n A A k=A k8⎧(1)η1,η2是Ax =0的解,η1+η2也是它的解⎫⎪⎪(2)η是Ax =0的解,对任意k ,k η也是它的解⎪⎪齐次方程组⎪(3)η,η,,η是Ax =0的解,对任意k 个常数⎬12k⎪⎪⎪⎪λ1,λ2,,λk,λη11+λ2η2+λk ηk也是它的解⎭⎪⎪⎪线性方程组解的性质:⎨(4)γ是Ax =β的解,η是其导出组Ax =0的解,γ+η是Ax =β的解⎪(5)η,η是Ax =β的两个解,η-η是其导出组Ax =0的解1212⎪⎪(6)η2是Ax =β的解,则η1也是它的解⇔η1-η2是其导出组Ax =0的解⎪⎪(7)η1,η2,,ηk是Ax =β的解,则⎪λη+λη+λη也是Ax =β的解⇔λ+λ+λ=11122k k 12k ⎪⎪11+λ2η2+λk ηk是Ax =0的解⇔λ1+λ2+λk=0⎩λη√设A 为m ⨯n 矩阵,若r (A )=m ,则r (A )=r (A β),从而Ax =β一定有解.当m <n 时,一定不是唯一解.⇒m 是r (A )和r (A β)的上限.√矩阵的秩的性质:①r (A )=r (A T )=r (A T A )②r (A ±B )≤r (A )+r (B )③r (AB )≤min {r (A ),r (B )}方程个数未知数的个数<,则该向量组线性相关.向量维数向量个数⎧r (A )若k ≠0④r (kA )=⎨⎩0若k =0⎡A ο⎤标准正交基n个n维线性无关的向量,两两正交,每个向量长度为1.AB=0⇒B=οAB=AC⇒B=C α与β正交(α,β)=0.α是单位向量α=(α,α)=1.√内积的性质:① 正定性:(α,α)≥0,且(α,α)=0⇔α=ο② 对称性:(α,β)=(β,α)③ 双线性:(α,β1+β2)=(α,β1)+(α,β2)(α1+α2,β)=(α1,β)+(α2,β)(cα,β)=(cα,β)=(α,cβ)施密特α1,α2,α3线性无关,⎧β1=α1⎪⎪⎪(α,β)正交化⎨β2=α2-21β1(ββ)11⎪⎪(α3,β1)(α3,β2)β=α-β-β2⎪331(β1β1)(β2β2)⎩单位化:η1=正交矩阵AA T=E.ββ1βη2=2η3=3β1β2β3A 的特征多项式λE -A =f (λ).A 的特征方程λE -A =0.Ax =λx →Ax 与x 线性相关√上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√若A =0,则λ=0为A 的特征值,且Ax =0的基础解系即为属于λ=0的线性无关的特征向量.√A =λ1λ2λn ∑λi=tr A1n ⎡a 1⎤⎢a ⎥√若r (A )=1,则A 一定可分解为A =⎢2⎥[b 1,b 2,⎢⎥⎢⎥⎣a n ⎦的特征值为:λ1=tr A =a 1b 1+a 2b 2+√若A 的全部特征值λ1,λ2,,b n ]、A 2=(a 1b 1+a 2b 2++a n b n )A ,从而A +a n b n ,λ2=λ3==λn=0.,λn,f (x )是多项式,则:,f (λn);①f (A )的全部特征值为f (λ1),f (λ2),11②当A 可逆时,A -1的全部特征值为λ,λ2,1,λ1n ,,λn.A A *的全部特征值为λ1,λ2,k λ⎧kA ⎪a λ+b ⎪aA +bE 1-1⎪λ⎪A 分别有特征值.√λ是A 的特征值,则:⎨22λ⎪A ⎪A m λm ⎪*A A ⎪⎩AA的矩阵,P -1AP 为对角阵,主对角线上的元素为A 的特征值.√A 可对角化的充要条件:n -r (λi E -A )=k i k i 为λi的重数.√若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.A 与B 正交相似B =P -1AP (P 为正交矩阵)√相似矩阵的性质:①A -1②A T③A k B -1若A ,B 均可逆B T B k (k 为整数)④λE -A =λE -B ,从而A ,B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于λ0的特征向量,P -1x 是B 关于λ0的特征向量.⑤A =B从而A ,B 同时可逆或不可逆⑥r (A )=r (B )⑦tr (A )=tr (B )√数量矩阵只与自己相似.√对称矩阵的性质:①特征值全是实数,特征向量是实向量;②与对角矩阵合同;③不同特征值的特征向量必定正交;A (α1,α2,,αn )=(A α1,A α2,,A αn )=(λ1α1,λ2α2,,λn αn )=[α1,α2,P ⎡λ1⎢λ2⎢,αn ]⎢⎢⎣Λ⎤⎥⎥.⎥⎥λn⎦√若AB ,C ⎡A ο⎤D ,则:⎢⎥⎣οC ⎦⎡B ο⎤⎢οD ⎥.⎣⎦√若AB ,则f (A )二次型f (x 1,x 2,f (B ),f (A )=f (B ).,x n )T ,x n )=X T AX A 为对称矩阵X =(x 1,x 2,A 与B 合同B =C T AC .记作:A B (A ,B 为对称阵,C 为可逆阵)√两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√两个矩阵合同的充分条件是:A B√两个矩阵合同的必要条件是:r (A )=r (B )正交变换n √f (x 1,x 2,,x n )=X AX 经过合同变换T X =CY 化为f (x 1,x 2,,x n )=∑d i y i2标准型.1可逆线性变换√二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由惟一确定的.√当标准型中的系数d i 为1,-1或0时,则为规范形 .r (A )正惯性指数+负惯性指数√用正交变换法化二次型为标准形:①求出A的特征值、特征向量;②对n个特征向量单位化、正交化;③构造C(正交矩阵),C-1AC=Λ;④作变换X=CY,新的二次型为f(x1,x2,,xn)=∑diyi2,Λ的主对角上的元素di即为A的n1特征值.正定二次型x1,x2,,xn不全为零,f(x1,x2,,xn)>0.正定矩阵正定二次型对应的矩阵.√合同变换不改变二次型的正定性.√成为正定矩阵的充要条件(之一成立):①正惯性指数为n;②A的特征值全大于0;③A的所有顺序主子式全大于0;④A合同于E,即存在可逆矩阵Q使Q T AQ=E;⑤存在可逆矩阵P,使A=P T P(从而A>0);⎡⎢λ1⎤⎥λ。

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。

在学习线性代数的过程中,掌握一些重要的公式是非常重要的。

下面是线性代数中一些常见且重要的公式,希望能够帮助到你。

1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。

2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。

3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。

4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。

线性代数总结

线性代数总结

线性代数总结 行列式:定理一:一个排列中的任意两个元素对换,排列改变奇偶性。

推论:奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数。

定理二:n 阶行列式也可以定义为(), (12)121n p p p tn a a aD ∑-=其中t 为行标排列n p p p ...21的逆序数行列式性质:性质1:行列式与它的转置行列式相等 行列式的行与列具有同等重要的性质。

性质2:互换行列式的两行(列),行列式变号推论:如果行列式有两行(列)完全相同,则此行列式等于零性质3:行列式的某一行(列)中所有的元素乘以同一数k ,等于用数k 乘此行列式 推论:行列式中某一行(列)所有元素的公因子可以提到行列式记号的外面 性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零性质5:若行列式的某一列(行)的元素都是两数之和,例如第i 列的元素都是两数之和:nnnini n n ni i n i i a b a a a a b a a a a b a a a D ..............................2122222211111211+++=则D 等于下列两个行列式之和:nnni n n ni n i nn ni n n n i n i a b a a a b a a a b a a a a a a a a a a a a a a D ................................................ (21222221)11121121222221111211+= 性质6:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变若n 阶行列式每个元素都表示成两个数之和,则它可分解成n2个行列式。

注意j i r r +与i j r r +的区别 余子式:在n 阶行列式中,把()j i ,元ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做()j i ,元ij a 的余子式,记为ij M ;记()ij ji ij M A +-=1叫作()j i ,元ij a 的代数余子式引理:一个n 阶行列式,如果其中第i 行所有元素除()j i ,元ij a 外都为零,那么这行列式等于ij a 与它的代数余子式的乘积,即ij ij A a D =定理三:行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即),...,2,1(...2211n i A a A a A a D in in i i i i =+++=或),...,2,1(...2211n j A a A a A a D nj nj j j j j =+++=推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k ,等于用数k乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k 加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace 展开式:(A 是m 阶矩阵,B 是n 阶矩阵),则7、n 阶(n ≥2)范德蒙德行列式大学资料菌数学归纳法证明★8、对角线的元素为a ,其余元素为b 的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n |A| (2)|AB|=|A|·|B|(3)|A T |=|A|(4)|A -1|=|A|-1(5)|A*|=|A|n-1(6)若A 的特征值λ1、λ2、……λn ,则(7)若A 与B 相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解大学资料菌(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A -1,A*,f(A)时,可以用交换律)(3)AB=O 不能推出A=O 或B=O 。

线性代数公式完整版必记

线性代数公式完整版必记

1、行列式公式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数必考的知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i jij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D-=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -; ⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m nC A O A A BBO BC ==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A,恒有:1(1)nnkn kk k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax=,证明其有非零解;④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax=有非零解;⇔nb R ∀∈,Axb=总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()TT TT A A A A A A ----===***111()()()TTTAB B A AB B A AB BA---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12s A A A A = ;Ⅱ、111121s A A AA ----⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;②、111AO A O O B O B ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O BB O A O ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A C BO B OB-----⎛⎫-⎛⎫= ⎪⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O CB BC AB -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m nE OF OO ⨯⎛⎫=⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1XA-=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Axb=,如果(,)(,)rA b E x ,则A 可逆,且1xA b-=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫⎪ ⎪=≠⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:0111111()nnnn m n mmn n n nm m n mnnnnnnm a b C a C ab C abCa bC b Ca b-----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- mnn n n n n n m n C C C mm n mⅢ、组合的性质:11112---+-===+==∑nm n m m m m r nr r nnn nnnn n r CCCCCCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAA X X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Axb=为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b+++= ⎧⎪+++=⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n nm m m n m m a a a x b a a a x bA x b a a a x b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T mB βββ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示A XB ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()Tr A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则rs≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示A XB ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ == 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA BP A B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx=同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B P A Q B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Axb=的一个解,12,,,n r ξξξ- 为0Ax=的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;5、相似矩阵和二次型1. 正交矩阵TA A E⇔=或1TA A-=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1TA A-=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]rr r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=P A Q B,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C A C B ,其中可逆;⇔T x A x 与Tx B x 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P A P B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C A C B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x A x 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC A C E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

相关文档
最新文档