函数复习题宋春新
《19.2.2 课时4 一次函数的应用》提升训练

课时6 一次函数的应用提升训练1.[2021安徽合肥四十八中课时作业]一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表所示.现有15升食物需要存放且要求每个盒子都要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元(每人只能返现金一次),则一次性购买盒子所需要的最少费用为______元.2.[2021上海中考]甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用y(元)与绿化面积x(m2)是一次函数关系,如图所示.时,每月收取费用5500元;绿化面积超过1000m2乙公司方案:绿化面积不超过1000m2时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式;(不要求写出自变量x的取值范围) .(2)如果某学校目前的绿化面积是1200m2.试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.3.[2021河南郑州外国语中学课时作业]某公司组织员工假期去旅游,租用了一辆耗油量为每千米约的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的函数关系图象如图所示,请根据图象回答下列问题:(1)汽车行驶______h后加油,中途加油______L;(2)求加油前油箱中剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能行驶多远此时,大巴车从出发到现在已经行驶了多长时间4.[2021江西高安中学课时作业]某厂家在甲、乙两商场销售同一件商品所获得的利润分别为y甲,y乙(单位:元),y甲,y乙与销售量x(单位:件)的函数关系图象如图所示,试根据图象解决下列问题:(1)分别求出y甲,y乙关于x的函数解析式;(2)现厂家分配该商品800件给甲商场、400件给乙商场,当甲、乙两商场售完这批商品后,厂家可获得总利润多少元5.[2021江苏泰州姜堰实验中学月考]赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(m)与时间x(min)的函数关系图象如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远(2)哪支龙舟队先出发哪支龙舟队先到达终点(3)分别求甲、乙两支龙舟队的y关于x的函数解析式.(4)甲龙舟队出发多长时间时,两支龙舟队相距200m参考答案【解析】设购买A 型号盒子x 个,购买盒子所需要费用为y 元,则购买B 型号盒子的个数为152x 3-×6=x+30.①当O≤x<3时,y=5x +152x 3-×6=x+30.因为k=1>0,所以y 随x 的增大而增大,所以当x=0时,y 有最小值,最小值为30.②当x ≥3时,y=5x +152x 3-×6-4=x +26.因为k=1>0,所以y 随x 的增大而增大,所以当x=3时,y 有最小值,最小值为29.综合①②,可得一次性购买盒子所需要的最少费用为29元.2.【分析】(1)题图中的直线经过点(0,400),(100,900),运用待定系数法即可求出y 与x 的函数解析式;(2)先由题意求出乙公司方案的函数解析式,将绿化面积1200m 2分别代入甲、乙公司方案的函数解析式中,通过比较函数值的大小即可得出答案.【解析】(1)设题图中的y 与x 的函数解析式为y=kx +b(k≠0),由该函数图象经过点(0,400),(100,900),得b=400100k+b=900⎧⎨⎩,解得k=5b=400⎧⎨⎩, 所以题图中y 与x 的函数解析式为y=5x +400.(2)设乙公司方案中的绿化面积为m m 2,每月的养护费用为w 元.则当m≤1000时,w=5500; 由题意,得当m >1000时,w=5500+4(m -1000)=4m +1500.当绿化面积是1200m 2时,y=5×1200+400=6400,w=4×1200+1500=6300.因为6400>6300,所以选择乙公司的服务,每月的绿化养护费用较少.3.【解析】(1)2 190由题中图象可以直接看出大巴车行驶2小时后加油.由题意,得大巴车2小时的耗油量为×80×2=40(L),由此可知加油量为250-(100-40)=190(L).(2)设加油前y 与x 的函数解析式为y=kx +m(k≠0),由题意得(O ,100),(2,60)在此函数图象上,所以m=1002k+m=60⎧⎨⎩,解得k=20m=100⎧-⎨⎩.所以y=-20x +100(0≤x≤2).(3)由于速度相同,因此每小时的耗油量也相同,所以设加油后y 与x 的函数解析式为y=-20x +b ,把(2,250)代入,得6=290,所以y=-20x +290,当y=10时,x=14,14×80=1120(km),因此该车最远能行驶1120km ,此时,大巴车从出发到现在已经行驶了14h.(1)设y 甲=k 1x(k 1≠O).∵图象经过点(600,480),∴600k 1=480,∴k 1=,∴y 甲=.当0<x ≤200时,设y 乙=k 2x(k 2≠0).图象经过点(200,400),∴200k 2=400,∴k 2=2,∴y 乙=2x.当x >200时,设y 乙=k 3x +b(k 3≠0).∵图象经过点(200,400),(600,480),∴33400200k +b 480600k +b==⎧⎪⎨⎪⎩,解得3k =0.2b=360⎧⎨⎩,∴y 乙=+360.故y 乙=()0.2x+360(x 2x 0<>200x 200)≤⎧⎨⎩. (2)设厂家可获得总利润W 元,则W=800×+400×+360=1080.∴厂家可获得总利润1080元.5.【解析】(1)起点A 与终点B 之间相距3000m.(2)甲龙舟队先出发,乙龙舟队先到达终点.(3)设甲龙舟队的y 关于x 的函数解析式为y=kx(k≠0),把(25,3000)代入,得3000=25k ,解得k=120,∴甲龙舟队的y 关于X 的函数解析式为y=120x(0≤x≤25).设乙龙舟队的y 关于x 的函数解析式为y=ax +b(a≠0),把(5,0),(20,3000)代入,得0=5a+b 3000=20a+b ⎧⎨⎩,解得a=200b=1000⎧⎨-⎩.∴乙龙舟队的y 关于x 的函数解析式为y=20x -1000(5≤x≤20).(4)令120x=200x -1000,可得x=,即当x=时,两龙舟队相遇.当x≤5时,令120x=200,则x=53(符合题意);当5<x≤时,令120x-(200x-1000)=200,则x=1O(符合题意);当<x≤20时,令200x-1000-120x=200,则x=15(符合题意);当20<x≤25时,令3000-120x=200,则x=703(符合题意).综上,甲龙舟队出发53min或10min或15min或703min时,两支龙舟队相距200m.。
第一章 函数复习与提高--综合(人教A版 必修1)含答案

函数复习与提高(3)----综合一、选择题1.若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅答案 C2.若f (x )=ax 2-2(a >0),且f (2)=2,则a 等于( )A .1+22B .1-22C .0D .2答案A3.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -4答案B4.已知函数y =1-x 2x 2-3x -2的定义域为( ) A .(-∞,1]B .(-∞,2]C .(-∞,-12)∩(-12,1] D .(-∞,-12)∪(-12,1] 答案 D5.已知偶函数f (x )的定义域为R ,且在(-∞,0)上是增函数,则f (-34)与f (a 2-a +1)的大小关系为( )A .f (-34)<f (a 2-a +1)B .f (-34)>f (a 2-a +1) C .f (-34)≤f (a 2-a +1) D .f (-34)≥f (a 2-a +1) 答案 D6.已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( ) A.12 B .-12C .1D .-1答案A7.f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( )A .增函数B .减函数C .有增有减D .增减性不确定答案B8.若函数f (x )=x 2+bx +c 对任意实数x 都有f (2+x )=f (2-x ),那么( )A .f (2)<f (1)<f (4)B .f (1)<f (2)<f (4)C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)答案A9.若f (x )和g (x )都是奇函数,且F (x )=f (x )+g (x )+2,在(0,+∞)上有最大值8,则在(-∞,0)上F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值-4答案D二、填空题(本大题共7小题,每小题5分,共35分)10.已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是________. 答案[-3,0)11.设集合A =[0,12),B =[12,1],函数f (x )=⎩⎪⎨⎪⎧ x +12, x ∈A 2(1-x ), x ∈B,若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是________.答案(14,12)12.设f (x )=⎩⎪⎨⎪⎧ x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是________. 答案2413.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是________. 答案m ≤214.函数f (x )=-x 2+2x +3在区间[-2,3]上的最大值与最小值的和为________. 答案-115.若函数f (x )=x 2+(a +1)x +a x为奇函数,则实数a =________.答案-116.如图,已知函数f (x )的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式f (x )-f (-x )>-1的解集是______________.答案(-1,-12)∪[0,1)17.函数f (x )=cx 2x +3(x ≠-32),满足f [f (x )]=x ,则常数c =________. 答案 -318.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=________. 答案 -319.设函数f (x )=⎩⎪⎨⎪⎧ x 2-4x +6, x ≥0,x +6, x <0则不等式f (x )>f (1)的解集是________________. 答案 (-3,1)∪(3,+∞)20.设函数f (x )=⎩⎪⎨⎪⎧x 2+2 (x ≥2)2x (x <2),已知f (x 0)=8,则x 0=________.答案 621.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________. 答案 -222.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b a ,a <b ,则函数f (x )=x ⊙(2-x )的值域为________. 答案 (-∞,1]三、解答题23.函数f (x )是R 上的偶函数,且当x >0时,函数的解析式为f (x )=2x-1. (1)用定义证明f (x )在(0,+∞)上是减函数;(2)求当x <0时,函数的解析式.解析 (1)证明 设0<x 1<x 2,则f (x 1)-f (x 2)=(2x 1-1)-(2x 2-1) =2(x 2-x 1)x 1x 2, ∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数.(2)解 设x <0,则-x >0,∴f (-x )=-2x-1, 又f (x )为偶函数,∴f (-x )=f (x )=-2x-1, 即f (x )=-2x-1(x <0).24.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值.解析 ∵f (x )=4(x -a 2)2-2a +2, ①当a 2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数. ∴f (x )min =f (0)=a 2-2a +2.由a 2-2a +2=3,得a =1±2.∵a ≤0,∴a =1- 2.②当0<a 2<2,即0<a <4时, f (x )min =f (a 2)=-2a +2. 由-2a +2=3,得a =-12∉(0,4),舍去. ③当a 2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数, f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10.∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.25.已知函数f (x )对一切实数x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (3)=-2.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)求f (x )在[-12,12]上的最大值和最小值.解析 (1)令x =y =0,得f (0+0)=f (0)=f (0)+f (0)=2f (0),∴f (0)=0.令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ),∴f (x )为奇函数.(2)任取x 1<x 2,则x 2-x 1>0,∴f (x 2-x 1)<0,∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)<0,即f (x 2)<f (x 1)∴f (x )在R 上是减函数.(3)∵f (x )在[-12,12]上是减函数,∴f (12)最小,f (-12)最大.又f (12)=f (6+6)=f (6)+f (6)=2f (6)=2[f (3)+f (3)]=4f (3)=-8,∴f (-12)=-f (12)=8.∴f (x )在[-12,12]上的最大值是8,最小值是-8.26.若f (x )是定义在(0,+∞)上的增函数,且f (x y)=f (x )-f (y ). (1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)-f (1x)<2. 解析 (1)令x =y ≠0,则f (1)=0.(2)令x =36,y =6,则f (366)=f (36)-f (6),f (36)=2f (6)=2, 故原不等式为f (x +3)-f (1x)<f (36), 即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故原不等式等价于⎩⎪⎨⎪⎧ x +3>01x >00<x (x +3)<36⇒0<x <153-32.27.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是p =⎩⎪⎨⎪⎧t +20, 0<t <25,t ∈N ,-t +100, 25≤t ≤30,t ∈N .该商品的日销售量Q (件)与时间t (天)的函数关系是Q =-t +40(0<t ≤30,t ∈N ).(1)求这种商品的日销售金额的解析式;(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?解析 (1)设日销售金额为y (元),则y =p ·Q .∴y =⎩⎪⎨⎪⎧(t +20)(-t +40)(-t +100)(-t +40) =⎩⎪⎨⎪⎧ -t 2+20t +800, 0<t <25,t ∈N ,t 2-140t +4 000, 25≤t ≤30,t ∈N . (2)由(1)知y =⎩⎪⎨⎪⎧-t 2+20t +800t 2-140t +4 000 =⎩⎪⎨⎪⎧-(t -10)2+900, 0<t <25,t ∈N ,(t -70)2-900, 25≤t ≤30,t ∈N . 当0<t <25,t ∈N ,t =10时,y max =900(元);当25≤t ≤30,t ∈N ,t =25时,y max =1 125(元).由1 125>900,知y max =1 125(元),且第25天,日销售额最大.28.已知13≤a ≤1,若函数f (x )=ax 2-2x +1在区间[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ).(1)求g (a )的函数表达式;(2)判断函数g (a )在区间[13,1]上的单调性,并求出g (a )的最小值.解析 (1)∵13≤a ≤1,∴f (x )的图象为开口向上的抛物线,且对称轴为x =1a∈[1,3]. ∴f (x )有最小值N (a )=1-1a. 当2≤1a ≤3时,a ∈[13,12],f (x )有最大值M (a )=f (1) =a -1;当1≤1a <2时,a ∈(12,1],f (x )有最大值M (a )=f (3) =9a -5;∴g (a )=⎩⎨⎧ a -2+1a (13≤a ≤12),9a -6+1a (12<a ≤1). (2)设13≤a 1<a 2≤12,则g (a 1)-g (a 2) =(a 1-a 2)(1-1a 1a 2)>0, ∴g (a 1)>g (a 2),∴g (a )在[13,12]上是减函数. 设12<a 1<a 2≤1,则g (a 1)-g (a 2)=(a 1-a 2)(9-1a 1a 2)<0,∴g (a 1)<g (a 2), ∴g (a )在(12,1]上是增函数. ∴当a =12时,g (a )有最小值12.。
2022年高考数学理一轮复习精品资料 专题2.10 函数的综合问题与实

2022年高考数学理一轮复习精品资料专题2.10 函数的综合问题与实2022年高考数学理一轮复习精品资料【新课标版】预测卷第二章函数与根本初等函数I 第10节函数的综合问题与实际应用一、选择题〔本大题共12小题,在每题给出的四个选择中,只有一个是符合题目要求的。
〕1.在一次数学测验中,采集到如下一组数据那么以下函数与x、y的函数关系最接近的是〔其中a、b是待定系数〕〔〕A.y?ax?bB.y?a?bxC. y?ax2?bD. y?a?x ?2 0.24 ?1 0.51 0 1 1 2.02 2 3.983 8.02 y b x2.某厂日生产手套总本钱y〔元〕与手套日产量x〔副〕的关系式为y?5x?4000,而手套出厂价格每副10元,那么该厂为了不亏本,日产手套至少为〔〕A. 800副B. 600副C. 400副D. 200副3.生产一定数量的商品的全部费用称为生产本钱,某企业一个月生产某种商品x万件时的生产本钱为C(x)=x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( ) A.36万件【答案】B【解析】利润L(x)=20x-C(x)=-(x-18)2+142, 当x=18时,L(x)有最大值.4.将进货单价为80元的商品400个,按90元一个售出时能全部卖出. 这种商品每个涨价1元,其销售数就减少20个. 为了获得最大利润,售价应定为每个〔〕元.A.5 B. 90 C. 95 D. 96 【答案】CB.18万件C.22万件D.9万件1【解析】设售价为90?x 元.所以利润为(10?x)(400?20x)??20(x?10)(x?20)??20(x?5)2?4500,所以当x?5 时,即售价为95 元时,利润最大. 选C.5.某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得〔〕元.A.400 B.500 C.600 D.8256.某债券市场发行三种债券, A种面值为 100 元,一年到期本息和为 103 元;B种面值为 50 元,半年到期本息和为 51.4 元;C种面值为 100 元,但买入价为 97 元,一年到期本息和为 100 元. 作为购置者,分析这三种债券的收益,从小到大排列为( )A. B,A,C B. A,C ,B C. A,B,C D. C,A,B,【答案】B 【解析】∵7.【2022年湖北三校联考】某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),假设年销售量为(30?10351.4100?1?0.03,(?1)?2?0.056,?1?0.031,∴A?C?B,选B. 10050975R)万件,要使附加税不少于128万元,那么R的取值范围是( ) 2A.[4,8] B.] [6,10] C.[4%,8%] D.[6%,100%] 【答案】A【解析】根据题意得,要使附加税不少于128万元,需(30?2整理得R?12R?32?0,解得4?R?8,即R?[4,8].5R)?160?R%?128, 28.春天来了,某池塘中的荷花枝繁叶茂,每天新长出的荷叶覆盖水面面积是前一天的2倍,假设荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了〔〕天.2A. 10B. 15C. 19D. 20 【答案】C【解析】依题意,荷叶覆盖上水面面积y与生长时间x的函数关系为y?2,当x?20天时,荷叶长满水面,所以生长了19天时,荷叶已布满水面一半,选C. x0.76万公顷,那么沙漠增加数y公顷关于年数x的函数关系较接近的函数是〔〕2x12(x?2x) B. y?A. y? C. y?0.2?log16x D. y?0.2x 1010【答案】B【解析】当x?1时,y?12(1?2?1)?0.3,否认A;当x?2时,y?0.2?log162?0.2?0.25?0.45,10否认C;当x?3时,y?0.2?3?0.6,否认D,应选B.10.A,B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B 地,在B地停留1小时后再以50千米/小时的速度返回A地,汽车离开A地的距离x(千米)与时间t(小时)之间的函数表达式是( ) A. x?60t B.x???60t,0?t?2.5 150?5t,t?3.5??60t,(0?t?2.5)?C. x?60t?50 D.x??150,(2.5?t?3.5)?150?50(t03.5),(3.5?t?6.5)?.二、填空题〔本大题共3小题。
青岛青大附中必修第一册第三单元《函数概念与性质》检测(答案解析)

一、选择题1.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式()2(1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<< B .1x <-或3x > C .3x <-或1x > D .1x ≠-2.已知()2xf x x =+,[](),M a b a b =<,(){}4,N yy f x x M ==∈∣,则使得MN 的实数对(),a b 有( )A .0个B .1个C .2个D .3个3.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-134.已知函数()()2265m m m f x x-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断5.下列函数中,是奇函数且在()0,∞+上单调递增的是( )A .y =B .2log y x =C .1y x x=+D .5y x =6.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52- B .32- C .32D .527.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式(21)(3)f x f x ->的x 的解集是( )A .31,5⎛⎫- ⎪⎝⎭B .3(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .11,5⎛⎫- ⎪⎝⎭8.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (ab ),有()()0f a f b a b -<-,则不等式()0f x x<的解集是( )A .()()2021,02021,-+∞B .()()2021,00,2021-C .()(),20212021,-∞-+∞D .()(),20210,2021-∞-9.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( ) A .-6 B .6 C .-8D .810.函数()ln x xxf x e e-=-的大致图象是( ) A . B .C .D .11.函数f (x )=2112x x --的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43] 12.已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值,则实数t 的取值范围为( ). A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ B .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭ C .11,22⎛⎫-⎪⎝⎭ D .13,22⎛⎫⎪⎝⎭13.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则b a -的取值范围为( )A .30,2⎛⎤ ⎥⎝⎦B .70,4⎛⎤ ⎥⎝⎦C .90,8⎛⎤ ⎥⎝⎦D .150,8⎛⎤⎥⎝⎦14.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( ) A .2x y =B .2yx C .2log y x = D .21y x =+15.函数2222(1)ln 2(1)x y x x +=-⋅+的部分图象是( )A .B .C .D .二、填空题16.若函数()21f x x a x =--是区间[0,)+∞上的严格增函数,则实数a 的取值范围是____.17.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________. 18.已知函数()y f x =是定义域为R 的奇函数,满足()()11f x f x -=+,若()11f =,则()()()()12350f f f f +++⋯+=__________.19.设函数()()333f x x x x R =-+∈.已知0a >,且()()()()2f x f a x b x a -=--,b R ∈,则ab =______.20.已知函数2()2f x x x =-,()2(0)g x ax a =+>,若对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,则实数a 的取值范围是_____.21.函数()112f x x x=+-的定义域为__________. 22.函数()22(1)221x xx f x x -++-=+,在区间[]2019,2019-上的最大值为M ,最小值为m .则M m +=_____.23.已知函数()()22,0log 11,0ax x f x a x x -≤⎧⎪=⎨⎡⎤++>⎪⎣⎦⎩的值域为[)2,-+∞,则实数a 的取值范围是________.24.幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,则a m +=____.25.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 26.已知定义在R 上的偶函数满足:(4)()(2)f x f x f +=+,且当[0,2]x ∈时,()y f x =单调递减,给出以下四个命题:①(2)0f =;②4x =-为函数()y f x =图象的一条对称轴; ③()y f x =在[8,10]单调递增;④若方程()f x m =在[6,2]--上的两根为1x 、2x ,则128.x x +=- 以上命题中所有正确命题的序号为___________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由(4)()0f x f x -+=得到()f x 关于(2,0)对称,再由()f x 在[)2,+∞单调递减得到()f x 在R 上单调递减,利用单调性可得答案. 【详解】(4)()0f x f x -+=,则()f x 关于(2,0)对称,因为()f x 在[)2,+∞单调递减,所以()f x 在R 上单调递减, 所以(1)(3)f x f x +=--,由()2(1)0f x x f x +++<得()2(3)0f x x f x +--<, 所以()2(3)f x x f x +<-,所以23x x x +>-,解得1x >或3x <-. 故选:C . 【点睛】思路点睛:利用函数的单调性和奇偶性比较函数值大小的思路: (1)先根据奇偶性将自变量转变至同一单调区间; (2)根据单调性比较同一单调区间内的函数值的大小关系;(3)再结合奇偶性即可判断非同一单调区间的函数值大小,由此得到结果.2.D解析:D【分析】 先判断函数()2xf x x =+是奇函数,且在R 上单调递增;根据题中条件,得到()()44f a a f b b a b ⎧=⎪=⎨⎪<⎩,求解,即可得出结果. 【详解】 因为()2xf x x =+的定义域为R ,显然定义域关于原点对称, 又()()22x xf x f x x x --==-=--++, 所以()f x 是奇函数, 当0x ≥时,()21222x x f x x x x ===-+++显然单调递增;所以当0x <时,()2xf x x =-+也单调递增; 又()00f =,所以函数()2xf x x =+是连续函数; 因此()2xf x x =+在R上单调递增; 当[],x M a b ∈=时,()()()44,4y f x f a f b =∈⎡⎤⎣⎦,因为(){}4,N yy f x x M ==∈∣, 所以为使M N ,必有()()44f a af b b a b ⎧=⎪=⎨⎪<⎩,即4242aa ab b b a b⎧=⎪+⎪⎪=⎨+⎪⎪<⎪⎩,解得22a b =-⎧⎨=⎩或20a b =-⎧⎨=⎩或2a b =⎧⎨=⎩, 即使得M N 的实数对(),a b 有()2,2-,()2,0-,()0,2,共3对.故选:D. 【点睛】 关键点点睛:求解本题的关键在于先根据函数解析式,判断函数()f x 是奇函数,且在R 上单调递增,得出[],x M a b ∈=时,()4y f x =的值域,列出方程,即可求解.3.D解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.4.A解析:A 【分析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解. 【详解】∵函数()()2265m m m f x x-=--是幂函数,∴25=1m m --,解得:m = -2或m =3. ∵对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,∴函数()f x 为增函数, ∴260m ->, ∴m =3(m = -2舍去) ∴()3=f x x 为增函数.对任意a ,b R ∈,且0a b +>, 则- a b >,∴()()()f a f b f b >-=- ∴()()0f a f b +>. 故选:A 【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1; (2)函数的单调性和奇偶性是函数常用性质,通常一起应用.5.D解析:D 【分析】对四个选项一一一判断:A 、B 不是奇函数,C 是奇函数,但在()0,∞+上不单调. 【详解】对于A : y =()0,∞+上单调递增,但是非奇非偶,故A 错误;对于B :2log y x =为偶函数,故B 错误; 对于C :1y x x=+在(0,1)单减,在(1,+∞)单增,故C 错误; 对于D :5y x =既是奇函数也在()0,∞+上单调递增,符合题意.故选:D 【点睛】四个选项互不相关的选择题,需要对各个选项一一验证.6.C解析:C 【分析】根据函数为奇函数可知1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,然后根据0x >时()f x 的解析式可求解出12f ⎛⎫⎪⎝⎭的值,则12f ⎛⎫- ⎪⎝⎭的值可求. 【详解】因为()f x 为奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 又因为1132222f ⎛⎫=-=- ⎪⎝⎭,所以113222f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 故选:C. 【点睛】关键点点睛:解答本题的关键是利用奇偶性的定义将计算12f ⎛⎫- ⎪⎝⎭的值转化为计算12f ⎛⎫⎪⎝⎭的值,从而根据已知条件完成求解.7.A解析:A 【分析】根据题意,分析可得()f x 的图象关于直线1x =对称,结合函数的单调性可得(21)(3)f x f x ->等价于|22||31|x x ->-,两边平方解得x 的取值范围,即可得答案.【详解】因为函数(1)f x +为偶函数,所以(1)y f x =+的图象关于直线0x =对称, 因为(1)y f x =+的图象向右平移1个单位得到()y f x =的图象, 则()y f x =的图象关于直线1x =对称, 又因为()f x 在区间[1,)+∞上单调递增, 所以()f x 在区间(],1-∞上单调递减,所以()f x 的函数值越大,自变量与1的距离越大, ()f x 的函数值越小,自变量与1的距离越小,所以不等式(21)(3)f x f x ->等价于|22||31|x x ->-, 两边平方()()()()2222315310x x x x ->-⇒-+<, 解得315x -<<, 即不等式的解集为31,5⎛⎫- ⎪⎝⎭. 故选:A . 【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.8.C解析:C 【分析】首先判断函数在()0,∞+的单调性,然后根据函数是奇函数,可知函数在(),0-∞的单调性和零点,最后结合函数的零点和单调性,求解不等式. 【详解】对任意的正数a ,b (ab ),有()()0f a f b a b-<-,()f x ∴在()0,∞+上单调递减,定义在R 上的奇函数()f x 满足()20210f =,()f x ∴在(),0-∞单调递减,且()()202120210f f -=-=, ()0f x x <等价于()00x f x >⎧⎨<⎩ 或()00x f x <⎧⎨>⎩,解得:2021x >或2021x <-, 所以不等式解集是()(),20212021,-∞-+∞.故选:C 【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点: 若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,+∞的单调性,去掉“f ”,转化为一般不等式求解.9.C解析:C 【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可 【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-, 故选:C 【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =;(2)()()2f x f a x =-,则函数的对称轴为x a =.10.C解析:C 【分析】结合选项中函数图象的特征,利用函数的性质,采用排除法求解即可.【详解】由题可知,函数()f x 的定义域为()(),00,-∞⋃+∞,()()ln ln x x x xx xf x f x e e e e----==-=---, 所以函数()f x 为奇函数,所以排除选项BD ;又()10f =,所以排除选项A. 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.C解析:C 【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合.12.A解析:A 【分析】根据函数的奇偶性和单调性,求出最小值取得的条件,结合开区间位置求解参数的取值范围. 【详解】由题210x x -+>恒成立,所以()()2lg 1f x x x =-+定义域为R ,()()()()2lg 1f x x x f x -=---+=,所以()()2lg 1f x x x =-+为定义在R 上的偶函数,当220,11x y x x x x ≥=-+=-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增,所以()()2lg 1f x x x =-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增, 在1,2⎛⎤-∞- ⎥⎝⎦单调递减,在1,02⎡⎤-⎢⎥⎣⎦单调递增,1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,所以函数()()2lg 1f x x x =-+在12x =和12x =-处均取得最小值,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值, 则112t t <-<+或112t t <<+, 解得:3111,,2222t ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭故选:A13.B解析:B 【分析】根据分段函数的单调性以及()()()f a f b a b =<,可得11,128a b ≤<≤≤且122log 2b a +=,令122log 2b a k +==,则24k <≤,然后用k 表示,a b ,再作差,构造函数,并利用单调性可求得结果. 【详解】因为函数()f x 在1[,1)8上递减,在[1,2]上递增,又()()()f a f b a b =<,所以11,128a b ≤<≤≤,且122log 2b a +=,令122log 2b a k +==,则24k <≤, 所以212k a -⎛⎫= ⎪⎝⎭,2log b k =,所以221log 2k b a k -⎛⎫-=- ⎪⎝⎭,设函数221()log 2x g x x -⎛⎫=- ⎪⎝⎭,(2,4]x ∈,∵()g x 在(]2,4上单调递增,∴(2)()(4)g g x g <≤,即70()4g x <≤, ∴70,4b a ⎛⎤-∈ ⎥⎝⎦,故选:B . 【点睛】关键点点睛:根据分段函数的单调性以及()()()f a f b a b =<得到11,128a b ≤<≤≤,且122log 2b a +=是解题关键.属于中档题.14.D解析:D 【解析】根据基本初等函数的性质知,符合条件的是21y x =+,因为满足2()1()f x x f x -=+=,且在(0,)+∞上是增函数,故选D.15.C解析:C 【详解】函数()()22221ln 21x y x x +=-⋅+是偶函数,排除AD;且222222(1)2,02(1)x x x x ++≥+∴≤+ 当01,0,10.x y x y <<>==时当时, 排除B,选C.点睛:这个题目考查的是由函数的解析式画函数的图象;一般这种题目是排除法来做的;先找函数的定义域,值域,看是否和解析式相符;再看函数的对称性,奇偶性,看两者是否相符;还有可以判断函数的极限值.二、填空题16.【分析】首先将函数写成分段函数的形式再分解函数的单调性列不等式求解【详解】要使函数在单调递增则在单调递增且在单调递增以及在分界点处即得解得:故答案为:【点睛】关键点点睛:本题的第一个关键是去绝对值第 解析:[]0,2【分析】首先将函数写成分段函数的形式,再分解函数的单调性,列不等式求解. 【详解】()22,1,1x ax a x f x x ax a x ⎧-+≥=⎨+-<⎩,要使函数()f x 在[)0,+∞单调递增,则2y x ax a =-+在[)1,+∞单调递增,且2y x ax a =+-在[)0,1单调递增,以及在分界点处a a -≤,即得1202a aa a ⎧≤⎪⎪⎪-≤⎨⎪-≤⎪⎪⎩,解得:02a ≤≤. 故答案为:[]0,2 【点睛】关键点点睛:本题的第一个关键是去绝对值,第二个关键是根据分段函数的单调性列不等式,每段都是增函数,以及在分界点处的不等式.17.【分析】先由定义域为R 的奇函数在区间上为严格减函数且画出的草图结合图像对进行等价转化解不等式即可【详解】是定义域为R 的奇函数且在区间上为严格减函数有∴在区间上为严格减函数且可作出的草图:不等式可化为 解析:[]3,1--【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可. 【详解】()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为: ()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解;对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤解得:31x -≤≤- 所以不等式(1)01f x x +≥-的解集为[]3,1--. 故答案为:[]3,1-- 【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.18.1【分析】据题意分析可得则有即函数是周期为4的周期函数结合奇函数的性质及周期可求【详解】因为所以所以即函数是周期为4的周期函数所以所以原式等于故答案为:【点睛】方法点睛:函数在定义域R 上满足可知函数解析:1 【分析】据题意,分析可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,结合奇函数的性质及周期可求. 【详解】因为()()11f x f x -=+, 所以(2)()()f x f x f x +=-=-,所以(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数.所以()()()33411f f f f =-=-=-(),(4)(0)(2)0f f f ===, (1)(2)(3)(4)0f f f f +++=,所以原式等于()()()12(123(4))(49)(50)(49)(50)(1)(2)1f f f f f f f f f f +++++=+=+=故答案为:1 【点睛】方法点睛:函数在定义域R 上满足()()f a x f a x +=-,可知函数图象关于x a =对称,如果同时函数为奇函数,且关于直线x a =对称,可推出函数为周期函数.19.【分析】先将进行因式分解再与比较利用对应系数相等可得关于的方程即可得的值即可求解【详解】因为所以因为所以对任意的恒成立所以不恒为所以展开整理可得:所以解得:或(舍)所以故答案为:【点睛】关键点点睛: 解析:2-【分析】先将()()f x f a -进行因式分解再与()()2x b x a --比较,利用对应系数相等可得关于,a b 的方程,即可得,a b 的值,即可求解.【详解】因为()()333f x x x x R =-+∈,所以()()()()333333333f x f a x x a a x a x a -=-+----=-+,()()()()222233x ax a x ax x a x a x a a ⎡⎤---==+-++-⎣+⎦,因为()()()()2f x f a x b x a -=--,所以()()()2223x ax a x b x x a a ⎡⎤-=⎣-⎦++--,对任意的x 恒成立, 所以x a -不恒为0,所以()()223x ax a x b x a ++-=--展开整理可得:()23ax a a b x ab +-=-++,所以()23a a b a ab⎧=-+⎨-=⎩ 解得:12a b =⎧⎨=-⎩或12a b =-⎧⎨=⎩(舍), 所以()122ab =⨯-=-, 故答案为:2-. 【点睛】关键点点睛:本题解题的关键是将()()f x f a -进行因式分解,由x a -不恒为0,得出()()223x ax a x b x a ++-=--利用待定系数法可求,a b 的值.20.【分析】由题可知在区间上函数的值域为值域的子集从而求出实数的取值范围【详解】函数的图象开口向上对称轴为时的最小值为最大值为的值域为为一次项系数为正的一次函数在上单调递增时的最小值为最大值为的值域为对 解析:[3,)+∞【分析】由题可知,在区间[]1,2-上函数1()f x 的值域为2()g x 值域的子集,从而求出实数a 的取值范围. 【详解】函数()22f x x x =-的图象开口向上,对称轴为1x =,∴[]11,2x ∈-时,()f x 的最小值为(1)1f =-,最大值为(1)3f -=,1()f x 的值域为[1,3]-.()2(0)g x ax a =+>为一次项系数为正的一次函数,在[]1,2-上单调递增,∴[]11,2x ∈-时,()g x 的最小值为(1)2g a -=-+,最大值为(2)22g a =+,2()g x 的值域为[2,22]a a -++.对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,∴在区间[]1,2-上,函数1()f x 的值域为2()g x 值域的子集,∴212230a a a -+≤-⎧⎪+≥⎨⎪>⎩解得3a ≥ 故答案为:[3,)+∞. 【点睛】本题考查函数的值域,考查分析解决问题的能力,解题的关键是对“任意”、“存在”的正确理解,确定两个函数值域之间的关系.21.且【分析】令即可求出定义域【详解】令解得且所以函数定义域为且故答案为:且【点睛】本题考查了函数定义域的求解属于基础题解析:{1x x ≥-且}2x ≠ 【分析】令1020x x +≥⎧⎨-≠⎩即可求出定义域.【详解】令1020x x +≥⎧⎨-≠⎩ ,解得1x ≥-且2x ≠, 所以函数定义域为{1x x ≥-且}2x ≠ 故答案为: {1x x ≥-且}2x ≠. 【点睛】本题考查了函数定义域的求解,属于基础题.22.【分析】可将原函数化为可设可判断为奇函数再根据奇函数与最值性质进行求解即可【详解】因为设所以;则是奇函数所以在区间上的最大值为即在区间上的最小值为即∵是奇函数∴则故答案为:2【点睛】本题主要考查奇函 解析:2【分析】可将原函数化为()2222+11x x x f x x -+-=+,可设()22221x xx g x x -+-=+,可判断()g x 为奇函数,再根据奇函数与最值性质进行求解即可. 【详解】因为()222(1)22222=+111x x x xx x f x x x --++-+-=++ 设()[]()22222019,20191x xx g x x x -+-=∈-+,, 所以()()()()2222222211x xx x x x g x g x x x ---+-+--==-=-+-+ ;则()g x 是奇函数,所以()f x 在区间[]2019,2019-上的最大值为M ,即()1max M g x =+,()f x 在区间[]2019,2019-上的最小值为m ,即()min 1m g x =+,∵()g x 是奇函数,∴()()max min 0g x g x +=, 则()()22max min M m g x g x +=++= . 故答案为:2. 【点睛】本题主要考查奇函数的性质,利用奇函数最值性质进行转化是解决本题的关键.属于中档题.23.【分析】根据题意分析函数的单调性结合函数的最小值为可得出关于实数的不等式组由此可求得实数的取值范围【详解】由于函数的值域为则函数在区间上单调递减或为常值函数函数在区间上单调递增或为常值函数①若函数在 解析:[)1,0-【分析】根据题意分析函数()y f x =的单调性,结合函数()y f x =的最小值为2-可得出关于实数a 的不等式组,由此可求得实数a 的取值范围. 【详解】由于函数()()22,0log 11,0ax x f x a x x -≤⎧⎪=⎨⎡⎤++>⎪⎣⎦⎩的值域为[)2,-+∞,则函数()2f x ax =-在区间(],0-∞上单调递减或为常值函数, 函数()()2log 11f x a x =++⎡⎤⎣⎦在区间()0,∞+上单调递增或为常值函数.①若函数()2f x ax =-在区间(],0-∞上单调递减,则0a <,此时()()02f x f ≥=-, 且此时函数()()2log 11f x a x =++⎡⎤⎣⎦在区间()0,∞+上单调递增或为常值函数, 则10a +≥,解得1a ≥-,当0x >时,()()22log 11log 10f x a x =++≥=⎡⎤⎣⎦, 即当10a -≤<时,函数()y f x =的值域为[)2,-+∞;②若函数()2f x ax =-在区间(],0-∞为常值函数,则0a =,当0x ≤时,()2f x =-,当0x >时,()()22log 1log 10f x x =+>=, 即当0a =时,函数()y f x =的值域为{}()20,-+∞,不合乎题意.综上所述,实数a 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用分段函数的值域求参数,要结合题意分析函数的单调性,考查分析问题和解决问题的能力,属于中等题.24.3【分析】由幂函数为偶函数且在(0+∞)上是单调递减函数可得m2-2m-3<0且m2-2m-3为偶数m ∈Z 且解出即可【详解】∵幂函数为偶函数且在上是减函数∴且为偶数且解得12且只有时满足为偶数∴故答解析:3 【分析】由幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在(0,+∞)上是单调递减函数,可得m 2-2m -3<0,且m 2-2m -3为偶数,m ∈Z ,且1=1a -.解出即可. 【详解】∵幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,∴2230m m --<,且223m m --为偶数,m N ∈,且1=1a -. 解得13m -<<,0m =,1,2, 且=2a ,只有1m =时满足223=4m m ---为偶数. ∴1m =.3a m +=故答案为:3. 【点睛】本题考查幂函数的性质,根据幂函数性质求参数值,可根据幂函数性质列不等式和等式,求解即可,属于基础题.25.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题. 【详解】解:由题意可设()xf x e x t -+=,则()xf x e x t =-+,∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()ttf t e t t e e =-+==,∴1t =,∴()1xf x e x =-+,∴()1xf x e '=-,由()()f x f x ax '+≥得11x x e x e ax -++-≥,∴21x e a x≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增, ∴()()121g x g e ≥=-, ∴21a e ≤-,故答案为:(],21e -∞-. 【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.26.①②④【分析】先求出从而得到为周期函数再根据函数为偶函数可逐项判断命题的正误【详解】令得故又函数是偶函数故;根据①可得则函数的周期是4由于偶函数的图象关于轴对称故也是函数图象的一条对称轴;根据函数的解析:①②④ 【分析】先求出()20f =,从而得到()f x 为周期函数,再根据函数为偶函数可逐项判断命题的正误. 【详解】令2x =-,得()()()222f f f =-+,故()20f =. 又函数()f x 是偶函数,故()20f =;根据①可得()()4f x f x +=,则函数()f x 的周期是4,由于偶函数的图象关于y 轴对称,故4x =-也是函数()y f x =图象的一条对称轴; 根据函数的周期性可知,函数()f x 在[]8,10上单调递减,③不正确;由于函数()f x 的图象关于直线4x =-对称,故如果方程()f x m =在区间[]6,2-- [-6,-2]上的两根为12,x x ,则1242x x +=-,即128x x +=-.故正确命题的序号为①②④. 故答案为:①②④.. 【点睛】本题考查函数的奇偶性、周期性和单调性,注意偶函数在对称两侧区间上的单调性相反,具有周期性的偶函数的图象的对称轴有无数条,本题属于基础题.。
3.2 函数的基本性质-2020-2021高中数学新教材配套提升训练(人教A版必修第一册)(解析版)

3.2 函数的基本性质1.判断函数的单调性;2.求函数的单调区间;3.用定义证明函数的单调性;4. 函数单调性的应用;5. 抽象函数单调性的判断与证明;6. 求函数的最值;7. 实际应用中的函数最值问题;8. 函数奇偶性的判断;9. 奇、偶函数图象的应用;10. 利用函数的奇偶性求解析式;11.函数的奇偶性与单调性综合问题一、单选题1.(2019·黄梅国际育才高级中学高一月考)下列函数中,在定义域内既是奇函数又是增函数的是( ) A .()1f x x =+ B .3()f x x =-C .1()f x x= D .()f x x x =【答案】D 【解析】对于A ,()1f x x =+为非奇非偶函数,不符合题意;对于B ,()3f x x =-为幂函数,其定义域为R ,是奇函数且在R 上为减函数,不符合题意;对于C ,()1f x x=为反比例函数,为奇函数且在其定义域上不具备单调性,不符合题意;对于D ,()f x x x =,其定义域为R ,有()()()f x x x x x f x -=--=-=-,为奇函数,且()220x x f x x x ⎧≥=⎨-<⎩,,,在R 上为增函数,符合题意;故选D.2.(2020·全国高一课时练习)函数6y x=的减区间是( ) A .[0,)+∞B .(,0]-∞C .(,0)-∞,(0,)+∞D .(,0)(0,)-∞+∞【答案】C 【解析】由图象知单调减区间为(,0)-∞,(0,)+∞ 点睛:单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“”连接,也不能用“或”连接.3.(2020·全国高一课时练习)函数()y f x =在区间[22]-,上的图象如图所示,则此函数的增区间是( )A .[20]-,B .[0]1,C .[21]-,D .[11]-, 【答案】C 【解析】由图可知,自左向右看图象是上升的是增函数,则函数的增区间是[21]-,故选:C4.(2020·全国高一课时练习)高为H 、满缸水量为V 的鱼缸的轴截面如图所示,现底部有一个小洞,满缸水从洞中流出,若鱼缸水深为h 时水的体积为v ,则函数()v f h =的大致图像是( )A .B .C .D .【答案】B 【解析】根据题意知,函数的自变量为水深h ,函数值为鱼缸中水的体积,所以当0h =时,体积0v =,所以函数图像过原点,故排除A 、C ;再根据鱼缸的形状,下边较细,中间较粗,上边较细,所以随着水深的增加,体积的变化速度是先慢后快再慢的,故选B.5.(2020·全国高一课时练习)函数f (x )=x (-1<x ≤1)的奇偶性是( ) A .奇函数 B .偶函数 C .非奇非偶函数D .既是奇函数又是偶函数 【答案】C 【解析】由题可知,函数的定义域不关于原点对称,所以该函数为非奇非偶函数. 故选:C6.(2020·全国高一课时练习)下列图像表示的函数中具有奇偶性的是( ).A .B .C .D .【答案】B 【解析】选项A 中的图象关于原点或y 轴均不对称,故排除;选项C 、D 中的图象表示的函数的定义域不关于原点对称,不具有奇偶性,故排除; 选项B 中的图象关于y 轴对称,其表示的函数是偶函数. 故选B.7.(2020·上海高一课时练习)已知函数53()8f x x px qx =++-(其中p ,q 为常数)满足(2)10f -=,则(2)f 的值为( ) A .10 B .10- C .26- D .18-【答案】C 【解析】令()53()8,g x f x x px qx x R =+=++∈,则()g x 为奇函数.()(2)2g g ∴-=-,即()(2)828f f -+=-+⎡⎤⎣⎦,(2)10f -=,()(2)216101626f f ∴=---=--=-.故选:C8.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.9.(2019·湖南汨罗)函数()f x 是定义在R 上的奇函数,对任意两个正数1312,()x x x x <都有()()2112x f x x f x >,记11(2),(1),(3),23a fb fc f ===--则,,a b c 之间的大小关系为( ) A .a b c >> B .b a c >>C .c b a >>D .a c b >>【答案】B 【解析】函数f (x )是定义在R 上的奇函数,且对任意两个正数x 1,x 2(x 1<x 2),都有x 2f (x 1)>x 1f (x 2), 即1212()()f x f x x x >, 设g (x )= ()f x x,g (x )在(0,+∞)上是单调减函数;又a=12f (2)= (2)2f ,b=f (1)=(1)f ,c=﹣12f (﹣3)=12f (3)=(3)3f ,∴g (1)>g (2)>g (3), 即b >a >c . 故选:B .10.(2019·浙江南湖 嘉兴一中高一月考)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意的[],2x a a ∈+,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是( ) A.)+∞ B .[2,)+∞C .(]0,2 D.[1][2,2]-【答案】A 【解析】()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =∴ 当0x <,有0x ->,2()()f x x -=-2()f x x ∴-=即2()f x x =-22,0(),0x x f x x x ⎧≥∴=⎨-<⎩()f x ∴在R 上是单调递增函数,且满足2())f x f =∴不等式()2())f x a f x f +≥=在[],2x a a ∈+恒成立,x a ∴+≥,[],2x a a ∈+恒成立1)x a ≤∴对[],2x a a ∈+恒成立2(1a a ∴+≤解得:a ≥∴则实数a 的取值范围是:)+∞.故选:A. 二、多选题11.(2020·浙江高一单元测试)函数()f x 是定义在R 上的奇函数,下列说法正确的是( ) A .()00f =B .若()f x 在[0,)+∞上有最小值1-,则()f x 在(,0]-∞上有最大值1C .若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为减函数D .若0x >时,()22f x x x =-,则0x <时,()22f x x x =--【答案】ABD 【解析】由(0)(0)f f =-得(0)0f =,A 正确;当0x ≥时,()1f x ≥-,则0x ≤时,()1f x -≥-,()()1f x f x =--≤,最大值为1,B 正确; 若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为增函数,C 错;若0x >时,()22f x x x =-,则0x <时,0x ->,22()()()2()2f x f x x x x x ⎡⎤=--=---⨯-=--⎣⎦,D 正确. 故选:ABD .12.(2020·山东文登 高一期末)已知()f x 是定义在R 上的奇函数,且(1)f x +为偶函数,若(1)2f =,则( ) A .(3)2f =- B .(2)() f x f x += C .(5)2f =- D .(4)() f x f x +=【答案】AD 【解析】因为()f x 是定义在R 上的奇函数,且(1)f x +为偶函数, 故可得()()()(),11f x f x f x f x =--+=-+,则()()()()()422f x f x f x f x f x +=--=-+=--=,故D 选项正确; 由上述推导可知()()()22f x f x f x =-+≠+,故B 错误; 又因为()()()3112f f f =-=-=-,故A 选项正确. 又因为()()5122f f ==≠-,故C 错误. 故选:AD.13.(2019·山东滨州�)如图所示是函数()y f x =的图象,图中x 正半轴曲线与虚线无限接近但是永不相交,则以下描述正确的是( )A .函数()f x 的定义域为[)4,4-B .函数()f x 的值域为[)0,+∞C .此函数在定义域内是增函数D .对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应 【答案】BD 【解析】对于A,由函数的图象可知,函数的定义域为[4,0][1,4)-⋃,故A 不正确; 对于B,由函数的图象可知,函数的值域为:[0,)+∞,故B 正确;对于C,函数在[4,0],[1,4)-是增函数,结合图象可知,此函数在定义域内不是增函数,故C 错误; 对于D,由函数的图象可知,对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应,故D 正确. 故选:BD.14.(2019·安徽定远英华中学高一期末)符号[]x 表示不超过x 的最大整数,如[]3.143=,[]1.62-=-,定义函数:[]()f x x x =-,则下列命题正确的是( ) A .(0.8)0.2f -=B .当12x ≤<时,()1f x xC .函数()f x 的定义域为R ,值域为[)0,1D .函数()f x 是增函数、奇函数 【答案】ABC 【解析】对于A 项,(0.8)0.8[0.8]0.8(1)0.2f -=---=---=,则A 正确; 对于B 项,当12x ≤<时,[]1x =,得出()1f x x ,则B 正确;对于C 项,函数()f x 的定义域为R ,因为[]x 表示不超过x 的最大整数,所以0[]1x x -<,则C 正确; 对于D 项,(1)1[1]1(1)0f -=---=---=,( 1.5) 1.5[ 1.5] 1.5(2)0.5f -=---=---=(1.5) 1.5[1.5] 1.510.5f =-=-=( 1.5)(1)f f ->-,( 1.5)(1.5)0.5f f -==∴函数()f x 既不是增函数也不是奇函数,则D 错误;故选:ABC 三、填空题15.(2019·浙江南湖 嘉兴一中高一月考) 设函数f (x )=(x+1)(x+a)x为奇函数,则a =________.【答案】−1 【解析】 因为函数f (x )=(x+1)(x+a)x为奇函数,∴f(1)=(1+1)(1+a)1=−f(−1)=(−1+1)(−1+a)1,∴a =−1.经检验符合题意.故答案为−1.16.(2020·全国高一课时练习)已知函数y =f (x )的图象关于原点对称,且当x >0时,f (x )=x 2-2x +3.则f (x )在R 上的表达式为________.【答案】()2223,00,023,0x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩【解析】因为()f x 是奇函数,且定义域为R , 故当0x =时,()0f x =;则当0x <时,()()()222323f x f x x x x x =--=-++=---.故答案为:()2223,00,023,0x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩. 17.(2020·全国高一课时练习)已知f (x )=ax 2+bx +3a +b 是定义在[a -1,2a ]上的偶函数,则a +b =________. 【答案】13【解析】由题可知:a -1+2a =0,所以13a =又f (x )= f (-x ),所以2233ax bx a b ax bx a b +++=-++, 所以0b =,则13a b += 故答案为:13四、双空题18.(2020·上海高一课时练习)已知()f x 是奇函数,()g x 是偶函数,且1()(),(1,1)1f xg x x x +=∈--,则()f x =_________;()g x =________. 【答案】21x x - 211x - 【解析】∵()f x 是奇函数,()g x 是偶函数,∴()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧+=⎪⎪-⎨⎪-+-=⎪--⎩,即1()()11()()1f x g x x f x g x x ⎧+=⎪⎪-⎨⎪-+=⎪--⎩. 两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-, 故答案为:21x x -;211x -. 19.(2019·北京市第十三中学高一期中)函数y = f(x)是定义域为R 的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).①当[]1,1x ∈-时,y 的取值范围是______;②如果对任意[],x a b ∈ (b <0),都有[]2,1y ∈-,那么b 的最大值是______. 【答案】[]1,2 2- 【解析】由图象可知,当0x =时,函数在[]1,1-上的最小值min 1y =, 当1x =±时,函数在[]1,1-上的最小值max 2y =, 所以当[]1,1x ∈-,函数()y f x =的值域为[]1,2;当[]0,3x ∈时,函数()()212f x x =--+,当[)3,x ∈+∞时,函数()5f x x =-,当()1f x =时,2x =或7x =,又因为函数为偶函数,图象关于y 轴对称,所以对于任意[],(0)x a b b ∈<,要使得[]2,1y ∈-,则a R ∈,7b =-或2b =-, 则实数b 的最大值是2b =-.故答案为[]1,22-;20.(2020·金华市曙光学校高一月考)已知函数()f x 是定义在[]2,1m m -+上的偶函数,且对任意[]12,2.0x x m ∈-,当12x x ≠时,()()12120f x f x x x ->-,则m =______;不等式()()214f x f x -≤的解集为______.【答案】1 1126x x ⎧⎫-≤≤⎨⎬⎩⎭【解析】 依题意,2+1=0m m -+,解得:1m =,故函数()f x 在[2,0]-上单调递增,故()()214f x f x -≤等价于2212242214x x x x ⎧-≤-≤⎪-≤≤⎨⎪-≥⎩,解得:1126x -≤≤,不等式的解集为:1126x x ⎧⎫-≤≤⎨⎬⎩⎭ 故答案为:1, 1126x x ⎧⎫-≤≤⎨⎬⎩⎭21.(2020·安达市第七中学高一月考)设函数1()f x x x =+,1,32x ⎡⎤∈⎢⎥⎣⎦,则函数的最小值为______;若1,32x ⎡⎤∃∈⎢⎥⎣⎦,使得2()a a f x -≥成立,则实数a 的取值范围是_________. 【答案】2 (][),12,-∞-⋃+∞【解析】 因为函数1()f x x x =+,1,32x ⎡⎤∈⎢⎥⎣⎦, 易得函数在1,12⎡⎤⎢⎥⎣⎦为减函数,在[]1,3为增函数,所以min ()(1)112f x f ==+=,即函数的最小值为2, 又1,32x ⎡⎤∃∈⎢⎥⎣⎦,使得2()a a f x -≥成立,则2min ()a a f x -≥,即22a a -≥, 解得:2a ≥或1a ≤-,即实数a 的取值范围是2a ≥或1a ≤-,故答案为(1). 2 (2). (][),12,-∞-⋃+∞五、解答题22.(2020·全国高一课时练习)函数y =|x 2-2x -3|的图象如图所示,试写出它的单调区间,并指出单调性.【答案】单调增区间为:()1,1-,()3,+∞;单调减区间为:(),1-∞-,()1,3【解析】由图可知:该函数在区间(),1-∞-单调递减,在区间()1,1-单调递增,在区间()1,3单调递减,在区间()3,+∞单调递增.故该函数的单调增区间为:()1,1-,()3,+∞;该函数的单调减区间为:(),1-∞-,()1,3.23.(2020·全国高一课时练习)求证:函数f (x )=x +1x 在[1,+∞)上是增函数. 【答案】证明见详解.【解析】证明:在区间[)1,+∞上任取12x x <,则()()12121211f x f x x x x x -=-+- ()121211x x x x ⎛⎫=-- ⎪⎝⎭()()1212121x x x x x x -=-⨯因为12x x <,故可得120x x -<;又因为121,1x x >>,故可得121211,0x x x x ->>.故()()120f x f x -<,即()()12f x f x <.故()f x 在区间[)1,+∞上单调递增. 24.(2020·全国高一课时练习)设定义在[]22-,上的奇函数()f x 在区间[]0,2上单调递减,若()()10f m f m +->,求实数m 的取值范围. 【答案】11,2⎡⎫-⎪⎢⎣⎭【解析】由()f x 是奇函数,且()()10f m f m +->,得()()()11f m f m f m >--=-. 因为()f x 在[]0,2上单调递减,且在[]22-,上为奇函数, 所以()f x 在[]22-,上单调递减, 则222121m m m m -≤≤⎧⎪-≤-≤⎨⎪<-⎩,解得221312m m m ⎧⎪-≤≤⎪-≤≤⎨⎪⎪<⎩,所以112m -≤<,故实数m 的取值范围为11,2⎡⎫-⎪⎢⎣⎭. 点睛:根据函数增减性和奇偶性求解不等式,可简记为去“f ”法,当奇函数在对应区间D 单调递增时,若()()12f x f x <,则1212x x x x D D ∈⎧⎪∈⎨⎪<⎩;当奇函数在对应区间D 单调递减时,若()()12f x f x <,则1212x x x x D D ∈⎧⎪∈⎨⎪>⎩25.(2019·浙江湖州 高一期中)函数()f x 是定义在R 上的奇函数,当0x >时,()24f x x x =-. (1)设()()g x f x =,[]4,4x ∈-,求函数()g x 的值域;(2)当0m >时,若()3f m =,求实数m 的值.【答案】(1)[]4,4-;(2)1m =或3m =或2m =【解析】(1)设0x <时,则0x ->,()f x 为奇函数,且0x >时,2()4f x x x =-, ∴()()()()2244f x x x x x f x -=---=+=-,即2(4)=--f x x x .()00f =, ∴()()224,00,04,0x x x g x f x x x x x ⎧--<⎪===⎨⎪->⎩,∴当40x -≤≤时,得()22()424g x x x x =--=-++关于2x =-对称,在[]4,2--上递增,在[)2,0-递减,∴()24g -=,()40g -=,得()04g x ≤≤;当04x <≤时,由奇函数关于原点对称,得()40g x -≤≤. ∴()g x 的值域为[]4,4-;(2)由(1)知,()224,00,04,0x x x f x x x x x ⎧--<⎪==⎨⎪->⎩,∴0m >时,()224,044,4m m m f m m m m ⎧-+<≤⎪=⎨->⎪⎩,i )当04m <≤时,令243m m -+=,解得13m m ==或;ii )当4m >时,令24m m -=3,解得)22m m ==舍去综上:1m =或3m =或2m =26.(2019·云南弥勒市一中高一期末)已知函数()()f x x R ∈是奇函数,且当0x >时,()21f x x =-, (1)求函数()f x 的表达式(2)求不等式1(2)f x >-的解集 【答案】(1)21,0()0,021,0x x f x x x x ->⎧⎪==⎨⎪+<⎩(2)3{|40x x -<≤或4}1x > 【解析】(1)根据题意,函数()()f x x R ∈是奇函数,则()00f =,当0x <时,0x ->,则()()2121f x x x -=⨯--=--,又由函数()f x 为奇函数,则()()21f x f x x =--=+,则()21,00,021,0x x f x x x x ->⎧⎪==⎨⎪+<⎩,(2)根据题意,()21,00,021,0x x f x x x x ->⎧⎪==⎨⎪+<⎩, 当0x >时,()21f x x =-,此时()12f x >-即1212x ->-,解可得14x >,此时不等式的解集为14x x ⎧⎫⎨⎬⎩⎭, 当0x =时,()00f =,()12f x >-成立;此时不等式的解集为{}0, 当0x <时,()21f x x =+,此时()12f x >-即1212x +>-,解可得34x >-,此时不等式的解集为3{|0}4x x -<<, 综合可得:不等式()12f x >-的解集3{|04x x -<≤或1}4x >. 27.(2020·浙江高一课时练习)已知定义在(,0)(0,)-∞+∞上的函数()f x 满足:①对任意x ,(,0)(0,)y ∈-∞⋃+∞,()()()f x y f x f y ⋅=+;②当1x >时,()0f x >,且(2)1f = . (1)试判断函数()f x 的奇偶性.(2)判断函数()f x 在(0,)+∞上的单调性.(3)求函数()f x 在区间[4,0)(0,4]-⋃上的最大值.(4)求不等式(32)()4f x f x -+的解集.【答案】(1)偶函数;(2)增函数;(3)2;(4){2xx -∣或8}3x . 【解析】 (1)令1x y ==,则(11)(1)(1)f f f ⨯=+,得(1)0f =;再令1x y ==-,则[(1)(1)](1)(1)f f f -⋅-=-+-,得(1)0f -=.对于条件()()()f x y f x f y ⋅=+,令1y =-,则()()(1)f x f x f -=+-,∴()()f x f x -=.又函数()f x 的定义域关于原点对称,∴函数()f x 为偶函数.(2)任取1x ,2(0,)x ∈+∞,且12x x <,则有211x x >. 又∵当1x >时,()0f x >,∴210x f x ⎛⎫> ⎪⎝⎭.而()()()22211111x x f x f x f x f f x x x ⎛⎫⎛⎫=⋅=+> ⎪ ⎪⎝⎭⎝⎭, 即21()()f x f x >, ∴函数()f x 在(0,)+∞上是增函数.(3)∵(4)(22)(2)(2)f f f f =⨯=+,且(2)1f =,∴(4)2f =.又由(1)(2)知函数()f x 在区间[4,0)(0,4]-⋃上是偶函数且在(0,4]上是增函数, ∴函数()f x 在区间[4,0)(0,4]-⋃上的最大值为(4)(4)2f f =-=.(4)∵(32)()[(32)]f x f x f x x -+=-,422(4)(4)(16)f f f =+=+=, ∴原不等式等价于[(32)](16)f x x f -,又函数()f x 为偶函数,且函数()f x 在(0,)+∞上是增函数,∴原不等式又等价于|(32)|16x x -,即(32)16x x -或(32)16x x --, 得232160x x --≥或232160x x -+≤,得2x -≤或8x ≥,∴不等式(32)()4f x f x -+的解集为{2xx -∣或8}3x .。
深圳精英学校必修第一册第三单元《函数概念与性质》检测卷(答案解析)

一、选择题1.已知定义域为R 的函数()f x 在[2)+∞,上单调递减,且(2)f x +是奇函数,则(1)f 、52f ⎛⎫⎪⎝⎭、(3)f 的大小关系是( ) A .5(1)(3)2f f f ⎛⎫<<⎪⎝⎭B .5(1)(3)2f f f ⎛⎫<< ⎪⎝⎭C .5(3)(1)2f f f ⎛⎫<<⎪⎝⎭D .5(3)(1)2f f f ⎛⎫<<⎪⎝⎭2.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-3.设函数21,2()7,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1304.已知函数()x xf x e e -=-,则不等式()()2210f xf x +--<成立的一个充分不必要条件为( ) A .()2,1- B .()0,1 C .1,12⎛⎫-⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭5.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >>6.函数y x=的值域是( ) A .11,22⎡⎤-⎢⎥⎣⎦B .[]0,1C .10,2⎡⎤⎢⎥⎣⎦D .[)0,+∞7.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (ab ),有()()0f a f b a b -<-,则不等式()0f x x<的解集是( )A .()()2021,02021,-+∞B .()()2021,00,2021-C .()(),20212021,-∞-+∞ D .()(),20210,2021-∞-8.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-⋃+∞9.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( ) A .-6 B .6 C .-8D .810.已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值,则实数t 的取值范围为( ). A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ B .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭ C .11,22⎛⎫-⎪⎝⎭ D .13,22⎛⎫⎪⎝⎭11.已知()2()ln ,(,)f x x ax b x a b R =++⋅∈,当0x >时()0f x ≥,则实数a 的取值范围为( ) A .20a -≤<B .1a ≥-C .10a -<≤D .01a <≤12.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .13.已知定义在R 上的函数()f x 满足()(2)f x f x =-,()()0f x f x +-=,且在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,则(2020.5)f =( )A .116-B .116C .14D .1214.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C.(-∞D.)+∞15.关于函数1()lg 1xf x x-=+,有下列三个命题: ①对于任意(1,1)x ∈-,都有()()f x f x -=-;②()f x 在(1,1)-上是减函数;③对于任意12,(1,1)x x ∈-,都有121212()()()1x x f x f x f x x ++=+; 其中正确命题的个数是( ) A .0B .1C .2D .3二、填空题16.已知函数()()()2223f x x x x ax b =--++是偶函数,则()f x 的值域是__________.17.研究函数())f x a b c =<<<,得到如下命题:①此函数图象关于y 轴对称;②此函数存在反函数;③此函数在()0,a 上为增函数;④此函数有最大值ab c+和最小值0; 你认为其中正确的是_______(写出所有正确的编号).18.已知函数()y f x =是奇函数,当0x <时,2()(R)f x x ax a =+∈,(2)6f =,则a = .19.已知()f x =2243,023,0x x x x x x ⎧-+≤⎨--+<⎩不等式()(2)f x a f a x +>-在[a ,a +1]上恒成立,则实数a 的取值范围是________.20.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.21.如果函数f (x )=(2)1,1,1xa x x a x -+<⎧⎨≥⎩满足对任意12x x ≠,都有()()1212f x f x x x -->0成立,那么实数a 的取值范围是________.22.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________. 23.如果方程24x +y |y |=1所对应的曲线与函数y =f (x )的图象完全重合,那么对于函数y =f (x )有如下结论:①函数f (x )在R 上单调递减;②y =f (x )的图象上的点到坐标原点距离的最小值为1; ③函数f (x )的值域为(﹣∞,2]; ④函数F (x )=f (x )+x 有且只有一个零点. 其中正确结论的序号是_____. 24.设函数()()21ln 11f x x x=+-+,则使得()()12f x f x >-成立的x 的取值范围为_____________.25.已知函数()h x ,()g x (()0g x ≠)分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0h x g x h x g x ''-<,且()10h -=.若()()0h a g a <,则a 的取值范围为__________. 26.设函数()f x x x b =+,给出四个命题:①()y f x =是偶函数;②()f x 是实数集R 上的增函数;③0b =,函数()f x 的图像关于原点对称;④函数()f x 有两个零点. 上述命题中,正确命题的序号是__________.(把所有正确命题的序号都填上)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据函数(2)f x +是奇函数和在[2)+∞,上单调递减,得到()f x 在R 连续且单调递减可得答案. 【详解】因为(2)f x +是奇函数,所以()f x 的图象关于(2,0)对称,且在[2)+∞,上单调递减,所以()f x 在(,2)-∞单调递减, 又因为()f x 定义域为R ,所以(2)0f =,所以()f x 在R 连续且单调递减,由于5132<<,所以5(3)()(1)2f f f <<.故选:D. 【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出()f x 在R 连续且单调递减,考查了学生分析问题、解决问题的能力.2.A解析:A【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.3.D解析:D 【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<. 故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.4.B解析:B 【分析】根据解析式可判断出()f x 是定义在R 的增函数且是奇函数,不等式可化为()()221f x f x <+,即得221x x <+,解出即可判断.【详解】可得()f x 的定义域为R ,x y e =和x y e -=-都是增函数,()f x ∴是定义在R 的增函数,()()x x f x e e f x --=-=-,()f x ∴是奇函数,则不等式()()2210f xf x +--<化为()()()2211f x f x f x <---=+,221x x ∴<+,解得112x -<<,则不等式成立的充分不必要条件应是1,12⎛⎫- ⎪⎝⎭的真子集, 只有B 选项满足. 故选:B. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,解题的关键是判断出()f x 是增函数且是奇函数,从而将不等式化为()()221f xf x <+求解.5.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数, 所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题6.C解析:C 【分析】令t =,转化为21ty t =+,0t ≥,根据均值不等式求解即可. 【详解】令t =,则0t ≥,当0t =时,0y =, 当0t ≠时,2110112t y t t t <==≤=++,当且仅当1t =时,即2x =时等号成立, 综上102y ≤≤, 故选:C 【点睛】关键点点睛:注意含根号式子中,经常使用换元法,利用换元法可简化运算,本题注意均值不等式的使用,属于中档题.7.C解析:C 【分析】首先判断函数在()0,∞+的单调性,然后根据函数是奇函数,可知函数在(),0-∞的单调性和零点,最后结合函数的零点和单调性,求解不等式. 【详解】对任意的正数a ,b (ab ),有()()0f a f b a b-<-,()f x ∴在()0,∞+上单调递减,定义在R 上的奇函数()f x 满足()20210f =,()f x ∴在(),0-∞单调递减,且()()202120210f f -=-=, ()0f x x <等价于()00x f x >⎧⎨<⎩ 或()00x f x <⎧⎨>⎩, 解得:2021x >或2021x <-, 所以不等式解集是()(),20212021,-∞-+∞.故选:C 【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点: 若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,+∞的单调性,去掉“f ”,转化为一般不等式求解.8.C解析:C 【分析】先求得()f x 的值域,根据题意可得()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,分0,0a a ><两种情况讨论,根据()g x 的单调性及集合的包含关系,即可求得答案.【详解】因为2()(2)2,[0,2]f x x x =--+∈, 所以min max ()(0)1()(2)2f x f f x f ==⎧⎨==⎩,即()f x 的值域为[1,2],因为对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立, 所以()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,当0a >时,()g x 在[1,1]-上为增函数,所以(1)()(1)g g x g -≤≤,所以()[1,1]g x a a ∈---,所以1112a a --≤⎧⎨-≥⎩,解得3a ≥,当0a <时,()g x 在[1,1]-上为减函数,所以(1)()(1)g g x g ≤≤-,所以()[1,1]g x a a ∈---所以1112a a -≤⎧⎨--≥⎩,解得3a ≤-,综上实数a 的取值范围是(,3][3,)-∞-+∞,故选:C 【点睛】解题的关键是将题干条件转化为两函数值域的包含关系问题,再求解,考查分析理解的能力,属中档题.9.C解析:C 【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可 【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-, 故选:C 【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =;(2)()()2f x f a x =-,则函数的对称轴为x a =.10.A解析:A 【分析】根据函数的奇偶性和单调性,求出最小值取得的条件,结合开区间位置求解参数的取值范围. 【详解】由题210x x -+>恒成立,所以()()2lg 1f x x x =-+定义域为R ,()()()()2lg 1f x x x f x -=---+=,所以()()2lg 1f x xx =-+为定义在R 上的偶函数,当220,11x y x x x x ≥=-+=-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增, 所以()()2lg 1f x x x =-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增,在1,2⎛⎤-∞- ⎥⎝⎦单调递减,在1,02⎡⎤-⎢⎥⎣⎦单调递增,1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,所以函数()()2lg 1f x x x =-+在12x =和12x =-处均取得最小值,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值, 则112t t <-<+或112t t <<+, 解得:3111,,2222t ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭故选:A11.B解析:B【分析】讨论01x <<、1x =、1x >确定2()g x x ax b =++的函数值符号,根据二次函数的性质求a 的取值范围即可.【详解】当0x >时,()()2ln 0x a x x f b x ++⋅=≥, ∵01x <<时,ln 0x <,即需20x ax b ++≤成立;1x =时,ln 0x =,()0f x ≥恒成立;1x >时,ln 0x >,即需20x ax b ++≥成立;∴对于函数2()g x x ax b =++,在(0,1)上()0g x ≤,在(1,)+∞上()0g x ≥, ∴2(1)1040(0)0g a b a b g b =++=⎧⎪∆=->⎨⎪=≤⎩解得1a ≥-,故选:B【点睛】思路点睛:令2()g x x ax b =++,即()()ln f x g x x =⋅.(0,)+∞上讨论x :由()0f x ≥,根据ln x 符号确定()g x 函数值的符号.由()g x 对应区间的函数值符号,结合二次函数性质求参数范围.12.B解析:B【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项.【详解】()22,12222,1x xx x f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B .【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.13.D解析:D【分析】由已知条件可知()f x 为奇函数且周期为4,利用函数的周期,结合其区间解析式即可求(2020.5)f 的值.【详解】由()()0f x f x +-=知:()()f x f x -=-,即()f x 为奇函数,∵()(2)f x f x =-,有(2)()()f x f x f x +=-=-,∴(4)(2)()f x f x f x +=-+=,故()f x 为周期为4的函数,在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,所以121111(2020.5)(4505)()()2242f f f =⨯+===, 故选:D【点睛】本题考查了函数的性质,根据函数的奇偶性、周期性以及区间解析式求函数值,属于基础题. 14.C解析:C【分析】先解()3f t ≤,再由t 的范围求x 的范围.【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤,0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.15.D解析:D【分析】当(1,1)x ∈-时,函数1()1x f x lg x-=+恒有意义,代入计算()()f x f x -+可判断①;利用分析法,结合反比例函数及对数函数的单调性和复合函数“同增异减”的原则,可判断②;代入分别计算12()()f x f x +和1212()1x x f x x ++,比照后可判断③. 【详解】解:1()1x f x lg x-=+,当(1,1)x ∈-时, 1111()()()101111x x x x f x f x lglg lg lg x x x x +-+--+=+===-+-+,故()()f x f x -=-,即①正确; 12()(1)11x f x lg lg x x -==-++,由211y x=-+在(1,1)-上是减函数,故()f x 在(1,1)-上是减函数,即②正确; 12121212121212121211111()()()11111x x x x x x x x f x f x lglg lg lg x x x x x x x x ----+--+=+==+++++++; 12121212121212121212111()1111x x x x x x x x x x f lg lg x x x x x x x x x x +-+++--==+++++++,即③正确 故三个结论中正确的命题有3个故选:D .【点睛】本题以命题的真假判断为载体考查了函数求值,复合函数的单调性,对数的运算性质等知识点,属于中档题.二、填空题16.【分析】利用偶函数性质赋值可求出函数解析式再求值域即可【详解】因为是偶函数所以有代入得:解得:所以故答案为:解析:[)16,-+∞【分析】利用偶函数性质,赋值可求出函数解析式,再求值域即可.【详解】因为()()()()()()2222331f x x x x ax b x x x ax b =--++=-+++是偶函数, 所以有()()()()330110f f f f ⎧-==⎪⎨=-=⎪⎩,代入得:93010a b a b -+=⎧⎨++=⎩,解得:2,3a b ==-. 所以()()()()()22222242223233410951616f x x x x x x x x x x =--+-=--=-+=--≥-,故答案为:[)16,-+∞. 17.①④【分析】直接利用函数的定义域和函数的奇偶性判断①②进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④【详解】解:函数由于整理得则:由于函数为偶函数函数的图象关于y 轴对解析:①④【分析】直接利用函数的定义域和函数的奇偶性判断①②,进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④.【详解】解:函数()(0)||||f x a b c x b x c =<<<++-, 由于220a x -≥,整理得a x a -≤≤.则:()||||f x x b x c b c==++-+. 由于函数为偶函数,函数的图象关于y 轴对称,所以函数不存在反函数,存在反函数的函数的前提该函数具有单调性.故①正确②错误.因为22y a x =-在()0,a 上为减函数,所以()f x 在()0,a 上为减函数,故故③错误;可知()f x 在[],0a -单调递增,()0,a 单调递减,且为偶函数,则()f x 在0x =出取得最大值a b c+,在x a =±处取得最小值0,故④正确. 故答案为:①④.【点睛】本题考查函数性质的应用,属于基础题. 18.5【分析】先根据函数的奇偶性求出的值然后将代入小于0的解析式建立等量关系解之即可【详解】函数是奇函数而则将代入小于0的解析式得解得故答案为5解析:5【分析】先根据函数的奇偶性求出(2)f -的值,然后将2x =-代入小于0的解析式,建立等量关系,解之即可.【详解】∴函数()y f x =是奇函数,()()f x f x ∴-=-,而(2)6f =,则(2)(2)6f f -=-=-,将2x =-代入小于0的解析式得(2)426f a -=-=-,解得5a =,故答案为5.19.(-∞-2)【分析】讨论分段函数各区间上单调递减且在处连续可知在R 上单调递减结合在aa +1上恒成立根据单调性列不等式求参数范围即可【详解】二次函数的对称轴是x =2∴该函数在(-∞0上单调递减即在(-解析:(-∞,-2)【分析】讨论分段函数()f x 各区间上单调递减,且在3x =处连续可知()f x 在R 上单调递减,结合()(2)f x a f a x +>-在[a ,a +1]上恒成立,根据单调性列不等式求参数范围即可【详解】二次函数2143y x x =-+的对称轴是x =2∴该函数在(-∞,0]上单调递减,即在(-∞,0]上13y ≥同理,函数2223y x x =--+在(0,+∞)上单调递减,即在(0,+∞)上23y <∴分段函数()f x 在3x =处连续,()f x 在R 上单调递减由()(2)f x a f a x +>-有2x a a x +<-,即2x < a 在[a ,a +1]上恒成立∴2(a +1) < a ,解得a <-2∴实数a 的取值范围是(-∞,-2)故答案为:(-∞,-2)【点睛】本题考查了函数的单调性,确定分段函数在整个定义域内的单调性,再利用单调性和不等式恒成立的条件求参数范围20.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注 解析:1(,)4-+∞ 【解析】由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.21.【分析】先由条件判断出在R 上是增函数所以需要满足和单调递增并且在处对应的值大于等于对应的值解出不等式组即可【详解】对任意都有>0所以在R 上是增函数所以解得故实数a 的取值范围是故答案为:【点睛】本题考 解析:3,22⎡⎫⎪⎢⎣⎭【分析】先由条件判断出()y f x =在R 上是增函数,所以需要满足(2)1y a x =-+和x y a = 单调递增,并且在1x =处x y a =对应的值大于等于(2)1y a x =-+对应的值,解出不等式组即可.【详解】对任意12x x ≠,都有()()1212f x f x x x -->0,所以()y f x =在R 上是增函数,所以201(2)11a a a a ->⎧⎪>⎨⎪-⨯+≤⎩,解得322a ≤<, 故实数a 的取值范围是3,22⎡⎫⎪⎢⎣⎭. 故答案为:3,22⎡⎫⎪⎢⎣⎭.【点睛】本题考查含有参数的分段函数根据单调性求参数范围问题,需要满足各部分单调并且在分段处的函数值大小要确定,属于中档题. 22.【分析】根据高斯函数定义分类讨论求函数值【详解】则当时当时当时∴值域为故答案为:【点睛】本题考查新定义函数解题关键是理解新函数利用新函数定义分类讨论求解解析:{}2,1,0--【分析】根据高斯函数定义分类讨论求函数值.【详解】( 1.5,3]x ∈-,则21.750.52x --<≤, 当21.7512x --<<-时,222x y ⎡⎤=-⎢⎥⎣⎦-=, 当2102x --≤<时,122x y ⎡⎤=-⎢⎥⎣⎦-=, 当200.52x -≤≤时,022x y ⎡⎤=⎢⎥⎣⎦-=, ∴值域为{2,1,0}--.故答案为:{2,1,0}--.【点睛】本题考查新定义函数,解题关键是理解新函数,利用新函数定义分类讨论求解.23.②④【分析】根据题意画出方程对应的函数图象根据图像判断函数单调性值域最值以及函数零点个数的判断数形结合即可选择【详解】当y≥0时方程y|y|=1化为(y≥0)当y<0时方程y|y|=1化为(y<0)解析:②④【分析】根据题意,画出方程对应的函数图象,根据图像判断函数单调性、值域、最值以及函数零点个数的判断,数形结合即可选择.【详解】当y≥0时,方程24x+y|y|=1化为2214xy+=(y≥0),当y<0时,方程24x+y|y|=1化为2214xy-=(y<0).作出函数f(x)的图象如图:由图可知,函数f(x)在R上不是单调函数,故①错误;y=f(x)的图象上的点到坐标原点距离的最小值为1,故②正确;函数f(x)的值域为(﹣∞,1],故③错误;双曲线2214xy-=的渐近线方程为y12=±,故函数y=f(x)与y=﹣x的图象只有1个交点,即函数F(x)=f(x)+x有且只有一个零点,故④正确.故答案为:②④.【点睛】本题考查函数单调性、值域以及零点个数的判断,涉及椭圆和双曲线的轨迹绘制,以及数形结合的数学思想,属综合中档题.24.【分析】根据条件判断函数的奇偶性和单调性结合函数的奇偶性和单调性的性质将不等式进行转化求解即可【详解】则是偶函数当函数为增函数则等价与所以平方得所以所以即不等式的解集为故答案为:【点睛】本题主要考查解析:113x x ⎧⎫<<⎨⎬⎩⎭【分析】根据条件判断函数的奇偶性和单调性,结合函数的奇偶性和单调性的性质将不等式进行转化求解即可.【详解】()()()()2211ln 1ln 111f x x x f x x x-=+--=+-=++,则()f x 是偶函数, 当0x ≥函数()f x 为增函数,则()()12f x f x >-等价与()()12f x f x >-, 所以12x x >-,平方得22144x x x -+>, 所以23410x x -+<,所以1 13x <<,即不等式的解集为113xx ⎧⎫<<⎨⎬⎩⎭, 故答案为:113xx ⎧⎫<<⎨⎬⎩⎭. 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性是解决本题的关键,难度中等. 25.【分析】令根据当时可得因此函数在时单调递减又为奇函数由于可得即可求得答案【详解】①令当时函数在时单调递减;的解集为②函数()分别是定义在上的奇函数和偶函数是上的奇函数当时的解集为综上所述不等式的解集 解析:()()1,01,-⋃+∞【分析】 令()()()h x F x g x =,根据当0x <时, ()()()()0h x g x h x g x ''-<可得()0F x '<,因此函数()F x 在0x <时单调递减,又()F x 为奇函数,由于()10h -=,可得(1)(1)0F F -==,即可求得答案.【详解】①令()()()h x F x g x =. 当0x <时, ()()()()0h x g x h x g x ''-<,∴()()()()2()()0h x g x h F x g x x g x '=''-< ∴函数()F x 在0x <时单调递减;()10h -=,(1)(1)0F F ∴-==∴()0F a <的解集为()1,0- ②函数()h x ,()g x (()0g x ≠)分别是定义在R 上的奇函数和偶函数 ∴()()()()()()h x h x F x F x g x g x --==-=-- ∴()F x 是R 上的奇函数,∴当0x >时,()0F a <的解集为(1,)+∞综上所述,不等式()()0h a g a <的解集为:()()1,01,-⋃+∞. 故答案为:()()1,01,-⋃+∞.【点睛】本题主要考查了根据函数单调性和奇偶性解不等式,解题关键是掌握根据题意构造函数的方法和由导数判断函数单调性的解题方法,考查了分析能力和计算能力,属于中档题. 26.②③【解析】①错∵∴不是偶函数②∵由图象知在上单调递增正确③时关于原点对称正确④若时只有一个零点错误综上正确命题为②③ 解析:②③【解析】①错,∵()f x x x b =+,()()f x x x b f x -=-+≠,∴()y f x =不是偶函数.②∵22(0)()(0)x b x f x x b x ⎧+>=⎨-+≤⎩, 由图象知()f x 在R 上单调递增,正确.③0b =时,22(0)()(0)x x f x x x ⎧>=⎨-≤⎩, ()f x 关于原点对称,正确.④若0b =时,()f x 只有一个零点,错误.综上,正确命题为②③.。
宋北师大版九年级教学下数学培优二次函数

北师大版九年级数学下册培优二次函数(3)一、选择题1.二次函数 y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过()A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限2.已知二次函数y=ax 2+bx+c 的图象以下图,那么一次函数y=bx+c 和反比率函数y=a 在同一平面直角x坐标系中的图象大概是()ABCD3.抛物线y=-x 2+bx+c 的部分图象以下图,要使y >0,则x 的取值范围是()A .-4<x <1B .-3<x <1C .x <-4或x >1D .x <-3或x >14.函数图象y=ax 2+(a -3)x+1与x 轴只有一个交点则a 的值为()A 、0,1B 、0,9C 、1,9D 、0,1,95.抛物线yx 2 xp p 0的图象与x 轴一个交点的横坐标是P ,那么该抛物线的极点坐标是A .(0,-2)B .1 9 C .1 9D .1 9,4,42,2246.依据以下表格的对应值,判断方程ax 2+bx+c=0(a ≠0)一个解x的取值范围()xy=ax 2+bx+c- -A 、B 、C 、D 、7.y=x2+(1-a )x +1 是对于 x 的二次函数,当x 的取值范围是1≤x ≤3时,y 在x =1时获得最大值,则实数a 的取值范围是()。
A .a=5B .a ≥5C .a =3D .a ≥38.抛物线yx2bxc图像向右平移 2个单位再向下平移3个单位,所得图像的分析式为yx 22x3,则b 、c 的值为()A.b=2 ,c=2B.b=2,c=0C.b=-2,c=-1 D.b=-3 ,c=29.如图,两条抛物线 y 1=-1χ2+1、y 2= 1χ2-1与分别经过点(-2,0),(2,0)且平行于y 轴的两条平行线围成的22暗影部分的面积为()A.8B.6C.10D.410.已知函数y1=x2与函数y2=-1x+3的图象大概如图,若y1<y2,则自变量x的取值范围是().2A.-3<x<2B.x>2或x<-3C.-2<x<3D.x<-2或x>32222y11.已知y对于x的函数图象以下图,则当y0时,自变量x的取值范围是()A.x0B.1x1或x21O1x 2C.x1D.x1或1x212.抛物线y ax2bxc图像以下图,则一次函数y bx4acb2与反比率函数y abc在同一坐标x系内的图像大概为()x x x x x13.已知二次函数y ax2bxc(a0)经过点M(-1,2)和点N(1,-2),交x轴于A,B两点,交y轴于C则()①b2;②该二次函数图像与y轴交与负半轴③存在这样一个a,使得M、A、C三点在同一条直线上④若a1,则OAOB OC2以上说法正确的有:A①②③④B.②③④C.①②④D.①②③14.二次函数y=ax2+bx+c(a≠0)的图象以下图,其对称轴为直线x=1,有以下结论:c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是()A.①②B.①③C.②④D.③④15.二次函数y=ax2+bx+c(a≠的0)图像经过点(-1,2),且与x轴的交点的横坐标分别为x1,x2,此中-2<x1<-1,0<x2<1有以下结论:①abc>0,②4a-2b+c<0,③2a-b<0,④b2+8a>4ac此中正确的结论有()A、1个B、2个C、3个D、4个y1x3ax216.小明从图所示的二次函数y bx c的图象中,察看得出了下边五条信息:①c0;②abc0;③ab c0;④2a3b0;21012x ⑤c4b0,你以为此中正确信息的个数有()A.2个B.3个C.4个D.5个1题图ax217.已知二次函数y=y bx c的图像以下图,令M=︱4a-2b+c︱+︱a+b+c︱-︱2a+b︱+︱2a-b︱,则以下结论正确的选项是()<0>0 C.M=0的符号不可以确立y18.已知二次函数yax 2 bx c(a0)的图象以下图,有以下结论:①b 2 4ac 0;②abc0;③ 8ac0;④ 9a 3b c 0 .此中,正确结论的个数是()21Oxx 119.对于每个非零自然数n,抛物线yx 22n 1 x1与 x 轴交于 A n 、n 两点,以 A n B nn(n 1) n(n 1)B表示这两点间的距离,则 A 1B 1 A 2B 2LA 2011B2011的值是( )yAA .201120102012D .2011BD2010B .2011C .20122011二、填空题C1.已知二次函数y2(x3)2,当X 取x 1和x 2X 取x 1+x 2时函数值为Ox时函数值相等,当2.抛物线 y(m 1) x 2 ( m 2 3 4) x 5 以Y 轴为对称轴则。
北京北小营中学必修一第二单元《函数》检测卷(答案解析)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()f x 在区间I 上为“缓增函数”,区间I 为()f x 的“缓增区间”.若函数()224f x x x =-+是区间I 上的“缓增函数”,则()f x 的“缓增区间”I 为( )A .[)1,+∞B .[)2,+∞C .[]0,1D .[]1,23.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -4.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >5.定义,min(,),a a ba b b a b≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .106.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x x f x ⎡⎤=-⎢⎥+⎣⎦的值域为( )A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-7.函数sin y x x =的图象可能是( )A .B .C .D .8.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( )A .[]1,4B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦9.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213xf f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( ) A .202021- B .202021+C .202020202121+-D .202020202121-+10.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3] 11.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( )A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确 12.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3二、填空题13.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.14.已知定义在 +R 上的函数 ()f x 同时满足下列三个条件:① ()31f =-;②对任意x y +∈R , 都有 ()()()f xy f x f y =+;③ 1x > 时 ()0f x <,则不等式()()612f x f x <-- 的解集为___________.15.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,()f x 的图象如图,则不等式()0xf x <的解集是___________.16.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.17.函数的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数,例如,函数()21f x x =+()R x ∈是单函数,下列命题: ①函数4()f x x =()R x ∈是单函数;②若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠;③若:f A B →为单函数,则对于任意b B ∈,在A 中至多有一个数与它对应; ④函数()f x 在某区间上具有单调性,则()f x 在其定义域上一定是单函数. 期中正确命题的序号是___________.18.若函数()log (3)4,1(43)41,1a x x f x a x a x ++≥-⎧=⎨-+-<-⎩且满足对任意的实数m n ≠都有()()0f m f n m n-<-成立,则实数a 的取值范围____.19.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.20.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 三、解答题21.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.22.已知函数()f x 对一切实数,x y 都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =.(1)求(0)f 的值,及()f x 的解析式;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,求a 的取值范围. 23.已知函数()()222f x x ax a a =-+∈R .(1)若1a =,[]2,2x ∀∈-,()f x m 成立,求实数m 的取值范围;(2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,求实数a 的最大值;(3)函数()()1g x f x x=+在区间()1,2上单调递减,求实数a 的取值范围. 24.已知函数()()90f x x x x=+≠. (1)当()3,x ∈+∞时,判断并证明()f x 的单调性; (2)求不等式()()2330f xf x +≤的解集.25.已知函数2()3f x x ax a =++-,a R ∈.当[]0,2x ∈时,()f x 的最大值是关于a 的函数()M a .求函数()M a 的表达式及()M a 的最小值26.已知函数()f x =+ (1)求()f x 的定义域和值域; (2)设()h x =231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.D解析:D 【分析】 求得()42f x x x x=+-,利用双勾函数的单调性可求出函数()f x x 的单调递减区间,并求出函数()f x 的单调递增区间,取交集可得出()f x 的“缓增区间”. 【详解】由二次函数的基本性质可知,函数()224f x x x =-+的单调递增区间为[)1,+∞.设()()42f x g x x x x==+-,则函数()g x 在区间(]0,2上为减函数,在区间[)2,+∞上为增函数,下面来证明这一结论.任取1x 、[)22,x ∈+∞且12x x >,即122x x >≥,()()()1212121212444422g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()21121212121244x x x x x x x x x x x x ---=-+=,122x x >≥,则120x x ->,124x x >,所以,()()12g x g x >,所以,函数()g x 在区间[)2,+∞上为增函数,同理可证函数()g x 在区间(]0,2上为减函数. 因此,()f x 的“缓增区间”为[)(][]1,0,21,2I =+∞=.故选:D. 【点睛】关键点点睛:本题考查函数的新定义,求解本题的关键在于理解“缓增区间”的定义,结合二次函数和双勾函数的单调性求对应函数的单调区间.3.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.4.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩ ,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.5.C解析:C 【分析】根据定义确定()F x 的解析式及单调性后可得最大值. 【详解】由2246x x x <--+得2230x x +-<,31x -<<,所以()22,3146,31x x F x x x x x ⎧-<<=⎨--+≤-≥⎩或,所以()F x 在(,3)-∞-和(0,1)上都是增函数,在(3,0)-和(1,)+∞上都是减函数,(3)9F -=,(1)1F =,所以max ()9F x =. 故选:C .【点睛】关键点点睛:本题考查求函数的最大值.解题关键是根据新函数定义确定新函数的解析式,单调性.结合单调性易得最值.6.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+, ()11,012x∴-∈-+, 1111,21222x ⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.7.A解析:A 【分析】先判断函数奇偶性,排除CD ,再结合函数在()0,π的正负选出正确答案 【详解】设()sin y f x x x ==,求得()sin f x x x -=,故函数为偶函数,排除CD ,由三角函数图像特征可知在()0,π时sin 0x >,故在()0,π时()0f x >,故A 正确 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.8.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦. 故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.9.D解析:D 【分析】采用换元法可构造方程()21213t f t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果. 【详解】由()f x 是R 上的单调函数,可设()221xf x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213tf t t ∴=-=+,解得:1t =,()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.10.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.11.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数;但()()f x g x +、()()f x h x +、()()g x h x +均为增函数; 故①错误; ②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数; 故②正确. 故选:D . 【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数.12.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.二、填空题13.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可.【详解】若存在[1,)x ∈+∞,不等式2212ax x x -+成立, 即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x =-+,[1,)x ∈+∞,问题转化为求()f x 的最大值, 而2117()2()48f x x=-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>; ()f x m <有解min ()f x m ⇔<.14.【分析】用赋值法由已知得到把转化为即再用定义法证明在上为减函数利用单调性可得答案【详解】因为对任意有令得所以令则所以可等价转化为即设当时则所以所以在上为减函数故由得得又所以原不等式的解集为故答案为:解析:()13,【分析】用赋值法由已知得到()()()9332f f f =+=-,把()()612f x f x <--转化为()()61(9)f x f x f <-+,即()()699f x f x <-,再用定义法证明()f x 在(0,)+∞上为减函数,利用单调性可得答案. 【详解】因为对任意12,(0,)x x ∈+∞,有()()()f xy f x f y =+,令x y ==fff =+,得()231f f ==-,所以12f =-, 令3x y ==,则()()()9332f f f =+=-,所以()()612f x f x <--可等价转化为()()61(9)f x f x f <-+, 即()()699f x f x <-,设120x x <<,12,(0,)x x ∈+∞,当1x > 时 ()0f x <,则()()()22211111·x x f x f x f f x f x x x ⎛⎫⎛⎫==+< ⎪ ⎪⎝⎭⎝⎭,所以()12()f x f x >,所以()f x 在(0,)+∞上为减函数,故由()()699f x f x <-, 得699x x >-,得3x <,又1x >,所以原不等式的解集为(1,3). 故答案为:(1,3) 【点睛】 思路点睛:确定抽象函数单调性解函数不等式的基本思路: 第一步(定性)确定函数在给定区间上的单调性和奇偶性;第二步(转化)将函数不等式转化为不等式类似()()f M f N <等形式;第三步(去)运用函数的单调性“去掉”函数的抽象符号f “”,转化成一般的不等式或不等式组;第四步(求解)解不等式或不等式组确定解集.15.【分析】由奇函数的图象关于原点对称便可得出f (x )在-50上的图象这样根据f (x )在上的图象便可得出xf (x )<0的解集【详解】奇函数图象关于原点对称作出在的图象如下:由得或由图可知或的解集为【点睛 解析:[)(]5,22,5--【分析】由奇函数的图象关于原点对称便可得出f (x )在[-5,0]上的图象,这样根据f (x )在[]5,5-上的图象便可得出xf (x )<0的解集.【详解】奇函数图象关于原点对称,作出()f x 在[]5,5-的图象如下:由()0xf x <得()00x f x <⎧⎨>⎩或()00x f x >⎧⎨<⎩,由图可知52x -≤<-或25x <≤,()0xf x ∴<的解集为[)(]5,22,5--.【点睛】本题考查函数奇偶性、函数图象的综合,解题关键是根据函数奇偶性作出函数图象,利用数形结合思想求解,属于中等题.16.【分析】分析的奇偶性根据的结果求解出的值【详解】令因为为上的奇函数且也为上的奇函数所以为上的奇函数所以所以且所以故答案为:【点睛】结论点睛:已知(1)当为奇数时且此时为奇函数;(2)当为偶数时为偶函数 解析:12-【分析】分析()()2h x g x =-的奇偶性,根据()()22h h +-的结果求解出()2g -的值. 【详解】令()()()2h x g x af x bx =-=+,因为()f x 为R 上的奇函数,且y bx =也为R 上的奇函数,所以()()2h x g x =-为R 上的奇函数,所以()()220h h +-=, 所以()()22220g g -+--=,且()216g =,所以()212g -=-, 故答案为:12-. 【点睛】结论点睛:已知()(),0nf x x a n Z n =+∈≠,(1)当n 为奇数时,且0a =,此时()f x 为奇函数; (2)当n 为偶数时,()f x 为偶函数.17.②③【分析】结合单函数的定义对四个命题逐个分析可选出答案【详解】命题①:对于函数设则由与可能相等也可能互为相反数即不是单函数故①错误;命题②:假设因为函数为单函数所以与已知矛盾故即命题②正确;命题③解析:②③ 【分析】结合单函数的定义,对四个命题逐个分析,可选出答案. 【详解】命题①:对于函数4()f x x =()R x ∈,设()4400f x x a ==,则0x a =±,由a 与a -可能相等,也可能互为相反数,即4()f x x =不是单函数,故①错误;命题②:假设12()()f x f x =,因为函数()f x 为单函数,所以12x x =,与已知12x x ≠矛盾,故12()()f x f x ≠,即命题②正确;命题③:若:f A B →为单函数,则对于任意b B ∈,()b f a =,假设不只有一个原象与其对应,设为12,,a a ,则()()12f a f a ==,根据单函数定义,可得12a a ==,又因为原象中元素不重复,故函数:f A B →至多有一个原象,即命题③正确; 命题④:函数()f x 在某区间上具有单调性,并不意味着在整个定义域上具有单调性,则可能存在不同的12,x x ,使得12()()f x f x =,不符合单函数的定义,故命题④错误. 综上可知,真命题为②③. 故答案为②③. 【点睛】关键点点睛:本题考查新定义函数,解题关键是根据新定义的特点,弄清新定义的性质,按照新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决,考查学生的逻辑推理能力,计算求解能力,属于中档题.18.【分析】根据对任意实数都有成立得出在R 上单调递减从而得出解出a 的范围即可【详解】函数对任意的实数都有成立得在R 上单调递减∴故答案为:【点睛】关键点点睛:依函数单调性的定义得函数在R 上单调递减利用分段解析:324a ≤<. 【分析】根据对任意实数m n ≠,都有()()0f m f n m n-<-成立,得出()f x 在R 上单调递减,从而得出()()()4300143141log 134a a a a a ⎧-<⎪<<⎨⎪-⋅-+-≥-++⎩,解出a 的范围即可.【详解】函数()f x 对任意的实数m n ≠,都有()()0f m f n m n-<-成立,得()f x 在R 上单调递减,∴()()()4300143141log 134a a a a a ⎧-<⎪<<⎨⎪-⋅-+-≥-++⎩34301242a a a a ⎧<⎪⎪⎪⇒<<⇒≤<⎨⎪⎪≥⎪⎩.故答案为:324a ≤<. 【点睛】关键点点睛:依函数单调性的定义得函数在R 上单调递减,利用分段函数的单调性求解.19.【分析】根据分段函数的单调性在各个分段上递增且在衔接点处也要递增列式即可得解【详解】由是上的增函数则:解得故答案为:【点睛】本题考查了分段函数单调性问题考查了一次函数的单调性属于中档题求分段函数递增 解析:[1,6)【分析】根据分段函数的单调性,在各个分段上递增,且在衔接点处也要递增,列式即可得解. 【详解】由(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数, 则:60065a a a a ->⎧⎪>⎨⎪-≤⎩,解得16a ≤<,故答案为:[1,6). 【点睛】本题考查了分段函数单调性问题,考查了一次函数的单调性,属于中档题. 求分段函数递增(递减)要注意以下两点: (1)在各个分段上分别递增(递减);(2)在衔接点处也要递增(递减),此处为易错点.20.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解. 【详解】当1a >时,xy a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,xy a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.三、解答题21.(1)单调递增;证明见解析;(2)14⎧⎫⎨⎬⎩⎭.【分析】(1)首先判断()00f =,再令y x =-,判断函数的奇偶性,再设任意1210,2x x ⎛⎫>∈ ⎪⎝⎭,利用已知条件列式()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,判断符号,证明函数的单调性;(2)不等式转化为1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭,再利用函数的单调性,去掉“f ”后,求t 的取值范围. 【详解】解:(1)令0x y ==,则22(0)(0)1(0)f f f =-,得(0)0f =,再令y x =-,则()()(0)01()()f x f x f f x f x +-==-⋅-,∴()()0f x f x +-=,∴()f x 为奇函数, 对任意1210,2x x ⎛⎫>∈ ⎪⎝⎭, 令1x x =,2y x =-, 则()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,∵当102x <<时,()0f x >, ∴()120f x x ->,()()1210f x f x +>, 从而()()120f x f x ->, ∴()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增.(2)∵()f x 为奇函数,∴1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭, ∵()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增,且(0)0f =, ∴()f x 在11,22⎛⎫-⎪⎝⎭上单调递增,由题意得: 111222t x -<-<及12t x x ->-在11,22x ⎛⎫∈- ⎪⎝⎭上恒成立, ∴max min11112222x t x ⎛⎫⎛⎫-≤≤+⎪ ⎪⎝⎭⎝⎭,得1144t -≤≤①; max 12t x ⎛⎫≥- ⎪⎝⎭,11,22x ⎛⎫∈- ⎪⎝⎭,得14t ≥②,由①②可知,t 的取值集合是14⎧⎫⎨⎬⎩⎭. 【点睛】关键点点睛:本题考查抽象函数证明单调性和奇偶性,以及不等式恒成立求参数的取值范围,一般抽象函数证明单调性和奇偶性时,采用赋值法,利用定义证明,本题不等式恒成立求参数,采用参变分离的方法,转化为求函数的最值. 22.(1)()02f =-;()22f x x x =+-;(2)2a ≤.【分析】(1)通过对抽象函数赋值,令1,1x y =-=进行求解,即得(0)f ;令0y =可消去y ,再结合()0f 的值,即求得解析式; (2)先讨论1x =时不等式恒成立,21x 时,再通过分离参数法求得a 的取值范围即可. 【详解】解:(1)令1,1x y =-=,可得()()()01121f f -=--++,又由()10f =,解得()02f =-;令0y =,得()()()01f x f x x -=+,又因()02f =-,解得()22f x x x =+-;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,即()213x a x -≤+,若1x =时不等式即04≤,显然成立; 若21x时,10x ->,故231x a x +≤-恒成立,只需2min31x a x ⎛⎫+≤ ⎪-⎝⎭,设()()()22121434()12111x x x g x x x x x---++===-+----,设(]1,0,3t x t =-∈则4()2g t t t=+-是对勾函数,在()0,2递减,在()2,3递增,故2t =时,即1x =-时min ()2g x =,故2a ≤,综上, a 的取值范围为2a ≤. 【点睛】 方法点睛:抽象函数通常利用赋值法求函数值或者求解析式;二次函数含参恒成立的问题,一般是通过分离参数进行求解,当然也可以根据判别式法进行求解,视具体情况而定. 23.(1)10m ≥(2)1-(3)158a ≥ 【分析】(1)转化为max ()m f x ≥,利用二次函数单调性求出最大值即可得解; (2)将不等式化为1222a x x +<+恒成立,利用12(0,)x x +∈+∞可解得结果; (3)因为211()()22g x f x x ax a x x=+=-++在区间()1,2上单调递减,设1212x x <<<,则12()()0g x g x ->,即121212a x x x x >+-对任意的1212x x <<<恒成立,根据1212111522224x x x x +-<+-=⨯可得1524a ≥,得158a ≥即为所求. 【详解】(1)若1a =,22()22(1)1f x x x x =-+=-+在[2,1)-上递减,在(1,2]上递增,所以max ()(2)10f x f =-=,因为对[]2,2x ∀∈-,()f x m 即222x x m -+≤成立,所以max ()10m f x ≥=. (2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,则22112212|2222|2||x ax a x ax a x x -+-+->-,即121212|||2|2||x x x x a x x -⋅+->-,因为0a <,12120,0,x x x x >>≠,所以1222x x a +->,即1222a x x +<+恒成立, 因为120x x +>,所以220a +≤,得1a ≤-,所以实数a 的最大值为1-.(3)211()()22g x f x x ax a x x=+=-++在区间()1,2上单调递减, 设1212x x <<<,则12()()g x g x -=22112212112222x ax a x ax a x x -++-+-- 1212121()(2)x x x x a x x =-+--0>对任意的1212x x <<<恒成立,因为120x x -<,所以1212120x x a x x +--<,即121212a x x x x >+-对任意的1212x x <<<恒成立,因为1212111522224x x x x +-<+-=⨯,所以1524a ≥,即158a ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤; 24.(1)单调递增,证明见解析;(2){}1-. 【分析】(1)根据函数单调性定义,判断当123x x <<时,()()120,0?f x f x -><即可; (2)法一:根据函数()()90f x x x x=+≠得到()()233f x f x +解析式,解关于x 的二次型不等式即可.法二:根据函数为奇函数,和定义域内的单调性,将()()2330f xf x +≤转化为解()()233f x f x ≤-,分0x >,1x =-,1x <-,10x -<<讨论使得()()233f x f x ≤-成立x 时的范围为其解集. 【详解】解:(1)设123x x <<, 则()()()()121212121212999x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎝⎭+⎭ 因为12120,90x x x x -<->, 所以()()120f x f x -<, 所以()f x 在(3,)+∞上单调递增. (2)法一:原不等式可化为2233330x x x x+++, 即21120x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,所以121x x -+, 当0x >时,12x x+,不合题意,舍去;当0x <时,只需解12x x-+,可化为2(1)0x +,所以1x =-. 综上所述,不等式的解集为{}1-. 法二:由(1)的解答过程知()f x 在(0,3)上单调递减,在()3,+∞上单调递增, 又()f x 为奇函数,()()2330f xf x +≤, 所以()()()2333f x f x f x ≤-=-,当0x >时,2(3)0,(3)0f x f x >-<,与上式矛盾,故舍去;当1x =-时,上式成立;当1x <-时,2333x x >->,则()()233f xf x >-,与上式矛盾,故舍去; 当10x -<<时,20333x x <<-<,则()()233f x f x >-,与上式矛盾,故舍去; 综上所述,不等式的解集为{}1-.【点睛】确定函数单调性的四种方法:(1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.25.7,2()5,23,2a a M a a a a +>-⎧⎪==-⎨⎪-<-⎩,5.【分析】讨论对称轴2a x =-和定义域的关系,分三种情况得到函数()M a ,根据分段函数求()M a 的最小值.【详解】 函数()f x 的对称轴为2a x =-,[]0,2x ∈,不确定区间与对称轴的关系,分三类进行讨论:(1)当12a -<时,2a >-,()(2)7M a f a ==+; (2)当12a -=时,2a =-,()(0)(2)M a f f f ===; (3)当12a ->时,2a <-,()(0)3M a f a ==-.所以,7,2()5,23,2a a M a a a a +>-⎧⎪==-⎨⎪-<-⎩.当2a >-时,()5M a >,2a <-时,()5M a >,所以当2a =-时,()M a 有最小值5.【点睛】思路点睛:含参二次函数求最值,当不能确定对称轴是否属于区间[],m n ,则需分类讨论,以对称轴与区间的关系确定讨论的标准.26.(1)定义域为[1,1]-,值域为2](2)1m ≤-或1m ≥【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域; (2)换元,令t =2]∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果.【详解】 (1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤, 所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4]∈,又()0f x ≥,所以()2]f x ∈.(2)()h x ==令t =2]∈,则22t =-, 所以2()()4t h x g t t ==+14t t=+, 因为()g t在2]上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立,所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或, 所以1m ≤-或1m ≥.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、链接中考1、(2011天津中考13题) 已知一次函数的图象经过点(0.1).且满足y 随x 的增大而增大,则该一次函数的解析式可以为__________ (写出一一个即可).2、(2013天津中考题)若一次函数y=kx+1(k 为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是 .3、(2008天津中考10题)在平面直角坐标系中,已知点A (4-,0)、B (2,0),若点C 在一次函数221+-=x y 的图象上,且△ABC 为直角三角形,则满足条件的点C 有(A )1个(B )2个(C )3个(D )4个 5、(2014年天津中考9题)已知反比例函数xy 10=,当1<x <2时,y 的取值范围是 (A )0<y <5(B )1<y <2 (C )5<y <10(D )y>106、(2014年天津中考14题)已知反比例函数xky =(k 为常数,0≠k )的图象位于第一、第三象限,写出一个符合条件的k 的值为 .7、(2008天津中考13题)已知抛物线y=x 2-2x -3,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .8、(2014年天津中考16题)抛物线322+-=x x y 的顶点坐标是 .9、(2010天津中考10题)已知二次函数y=ax 2+bx+c(a ≠0) 的图象如图所示,有下列结论: ①240b ac ->;②0abc >;③80a c +>;④930a b c ++<.其中,正确结论的个数是( )(A )1(B )2(C )3(D )410、(2010年天津中考20题)已知反比例函数1k y x-=(k 为常数,1k ≠). (Ⅰ)若点2A (1 ),在这个函数的图象上,求k 的值;4、(2008天津中考17题)已知关于x 的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).(Ⅱ)若在这个函数图象的每一支上,y 随x 的增大而减小,求k 的取值范围; (Ⅲ)若13k =,试判断点34B ( ),,25C ( ),是否在这个函数的图象上,并说明理由.11、(2013年天津中考20题)已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3). (Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围 三、例题分析例1、已知正比例函数y=kx ,当x=2时,y=6,则k= 。
例2、已知反比例函数y= kx 图像经过点(2,3),则反比例函数的解析式为 。
例3、如图1,过反比例函数图象上一点A 分别向两坐标轴作垂线,则垂线与坐标轴围成的矩形ABOC 的面积是8,则该反比例函数的解析式为________.例5.若抛物线y=ax 2+bx+c 的顶点坐标为(1,3),且与y=2x 2的开口大小相同,方向相反,则该二次函数的解析式 。
例6、(1)已知一次函数y=kx+b 的图像经过两点A(1,1),B(2,-1),求这个函数的解析式.(2)求与直线y x =平行,并且经过点P(1,2)的一次函数解析式.例7、(1)已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
(2)二次函数的图象经过A (-1,0),B (3,0),C(3,6),求该二次函数的解析式。
(3)二次函数的图像图象过点(0,-2)(1,2)且对称轴为直线x=32,求该二次函数的解析式则该二次函数的解析式为 .例4、抛物线y=x 2+x-2关于x 轴对称的解析式为 。
抛物线y=x 2+x-2关于y 轴对称的解析式为 。
抛物线y=x 2+x-2关于原点对称的解析式为 。
抛物线y=x 2+x-2绕顶点旋转1800后所得到的解析式为 。
三例题分析例1、 已知反比例函数y= kx (k ≠0)的图象与一次函数y =3x+m 的图象相交于点(1,5),(1) 求这两个函数的解析式;(2) 求这两个函数图象的另一个交点的坐标.例2、已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数 的图象的两个交点.求(1)此反比例函数和一次函数的解析式;(2)并根据图象写出使反比例函数的值大于一次函数的值x 的的取值范围.( (2010年天津中考16题)已知二次函数y=ax 2+bx+c(a ≠0) 中自变量x 和函数值y 的部分对应值如下表:xm y =例4、 已知二次函数y=ax 2(a ≠0)的图象与直线y=-2x+8相交于A 、B 两点,若点A 的坐标为(5,-2),求点B 的坐标。
例6、.当b<0是一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系内的图象可能是( )例7.在同一坐标系中,函数y= ax 2+c 与y= cx(a<c)图象可能是图所示的( )A B C D 四、链接中考2、(2010天津中考12题)已知一次函数26y x =-与3y x =-+的图象交于点P ,则点P 的坐标3、(2009天津中考20题)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支.(Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数y=2x 的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.(II) 当x>3时,试判断1y 与2y 的大小.井说明理由。
5、(2012天津中考20题)已知反比例函数1k y x-=(k 为常数,1k ≠). (Ⅰ)其图象与正比例函数y x =的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值;(Ⅱ)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点11()A x y ,、22()B x y ,,当12y y >时,试比较1x 与2x 的大小反比例函数图象和性质测试题一.选择题1.已知反比例函数xky =的图象经过点P(一l,2),则这个函数的图象位于( ). A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 2.在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k =( ). A .1-B .0C .1D .23.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是( ). A.(3,-2 )B.(-2,-3 )C.(2,3 )D.(3,2)4.点(13)P ,在反比例函数k y x =(0k ≠)的图象上,则k 的值是( ).A.13 B.3 C.13-D.3-5.矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为( ).4、(2011天津中考20题)已知一次函数1y x b =+(b 为常数)的图象与反比例函数2ky x=(k 为常数.且0k ≠) 的图象相交于点P(3.1). (I) 求这两个函数的解析式;6.如图1,点P 在反比例函数1y x =(x > 0)的图象上,且横坐标为2..若将点P 先向右平移两个单位,再向上平移一个单位后所得的点为P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( ).A.)0(5>-=x xy B.)0(5>=x xyC. )0(6>-=x xy D.)0(6>=x xy图1 图2 7.如图2, ()11,P x y 是双曲线xy 5-=上任意一点, N x PN 轴于⊥, M y PM 轴于⊥,则()=ONPM S 长方形. A.1- B.5- C.3D.58.反比例函数21a y x--=(a 为常数)的图象上有三点()()()1233,,1,,2,y y y --,则1y 、2y 、3y 的大小关系是().A.2y <3y <1yB. 3y <2y <1yC. 1y <2y <3yD. 3y <1y <2y . 二.填空题 9.反比例函数 xm y 1+=的图象经过点(2,1),则m 的值是 . 10.反比例函数的图象经过点P (2-,1),则这个函数的图象位于第 象限. 11.点P (),m n 是反比例函数ky x=的图象上一点,且5m n +=.写出一个符合条件的反比例函数为________.13.点A (2,1)在反比例函数y kx=的图象上,当1﹤x ﹤4时,y 的取值范围是 . P14.反比例函数ky x=的图象如图4, 点A 是双曲线上一点, AM x M ⊥轴于,若2MOA s ∆=,则k =__________. 21.若y x 与成反比例,且6x =时,5y =. (1) 求y x 与之间的函数关系式; (2) 当10x =时,求y 的值; (3) 当100y =时, 求x 的值. 23.函数xk1y -=的图象与直线x y =没有交点,求k 的取值范围.24.如图8,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点,根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值.26.如图9,反比例函数xy 2=的图象与一次函数b kx y +=的图象交于点A(m,2),点B(-2,n ),一次函数图像与y 轴的交点为C.(1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOC 的面积.1y kx =+一、选择题(每小题4分,共40分) 2、反比例函数y=2x的图象位于( ) A :第一、二象限 B :第一、三象限 C :第二、三象限 D :第二、四象限3、函数y=1x与函数y=x 的图象在同一平面直角坐标系内的交点个数是( ).A :1个B :2个C :3个D :0个4、已知点A (-1,5)在反比例函数(0)ky k x=≠的图象上,则该函数的解析式为( ) A :1y x = B :25y x = C :5y x=- D :5y x =5、若反比例函数(0)ky k x=≠经过(-2,3),则这个反比例函数一定经过( )A :(-2,-3)B :(3,2)C :(3,-2)D :(-3,-2)6、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x之间的函数关系式的大致图像应为( )7、如图,过反比例函数xy 2009=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) A :S 1>S 2 B :S 1=S 2 C :S 1<S 2 D :大小关系不能确定 8、已知反比例函数(0)ky k x=<的图象上有两点1122(,)(,)A x y B x y ,且12x x <则12y y -的值是( )A :正数B :负数C :非正数D :不能确定 9、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) A :正比例函数 B :反比例函数 C :一次函数 D :不能确定10、函数 与ky =)A :B :C :D : 二、填空题(每小题4分,共40分)A11、反比例函数35y x=-中,比例系数k= ; 12、如果函数25(2)ky k x -=-是反比例函数,那么k= ;13、如图:在反比例函数(0)ky k x=≠图象上取一点A 分别作AC ⊥x 轴,AB ⊥y 轴, 且S 矩形ABOC = 12,那么这个函数解析式为 ;14、已知函数(0)k y k x=≠,当12x =-时,6y =,则函数的解析式为 ; 15、反比例函数k y x =的图象经过3(,5)2-和(a ,-3),则a= ;16、已知正比例函数y kx =和反比例函数3y x=的图象都过A (m ,1),则m= ;正比例函数的解析式为 ;17、函数2y x=- 的图象,在每一象限内,y 随x 的增大而 (填“增大”或“减小”); 18、如果反比例函数ky x=的图象经过点(-3,-4),那么这个函数的图象应分别分布在 象限;19、已知y -2与x 成反比例,当x=3时,y=1,则y 与x 的函数关系式为 ; 20、反比例函数3k y x +=的图象在二、四象限,则k 的取值范围是 。