复变函数 试题剖析
复变函数的积分例题及解析

复变函数的积分例题及解析复变函数的积分(IntegrationofComplexFunctions)是数学中比较重要的概念,它是求解复变函数(complex functions)的极限问题,为此,它N也是研究分析数学物理等科学和工程领域中非常重要的内容。
本文将详细讨论复变函数积分的例题及解析,以便帮助读者更好的理解这一概念。
首先,假设,复变函数f(z)的定义域为实数轴上的一段区间,做如下导数:f/x = -Imf(z)f/y = Re f(z)由以上的极限定理可以得出复变函数的切线公式:复变函数f(z)的切线公式是:切线公式: tgθ = Imf(z)/Re f(z)其中θ是切线与x轴正半轴之间的夹角。
此外,复变函数积分还可以通过曲线积分定理求解:曲线积分定理:如果复变函数f(z)在路径L上连续,那么其积分为:∫Lf(z)dz=∫ LxRe f(z)dy -∫ LyImf(z)dx其中Re f(z)表示复变函数f(z)的实部,Imf(z)表示复变函数f(z)的虚部。
最后,例题及解析:例1:求证:若复变函数f(z)在其定义域内连续,则∫f(z)dz = 0解:首先,根据曲线积分定理,可得:∫f(z)dz=∫ LxRe f(z)dy -∫ LyImf(z)dx因为复变函数f(z)在其定义域内连续,所以两个积分项相等,即:∫ LxRe f(z)dy =∫ LyImf(z)dx由此可以推出:∫f(z)dz=∫ LxRe f(z)dy -∫ LyImf(z)dx = 0所以,证明得证。
例2:求复变函数f(z) = z2+i(z为复数)的积分解:首先,根据曲线积分定理,可得:∫f(z)dz=∫ LxRe f(z)dy -∫ LyImf(z)dx其中:Re f(z) = z2Imf(z) = 1因此,∫f(z)dz=∫ Lxz2dy -∫ Ly1dx∫f(z)dz=∫ Lxz2dy -∫ Ly1dx积分结果为:∫f(z)dz = z3/3 + i(z)综上,本文详细阐述了复变函数的积分例题及解析,从而帮助读者更好的理解这一概念。
《复变函数》考试试题与答案(一)

《复变函数》考试试题与答案(一)《复变函数》考试试题(一)一、判断问题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析.()2.有界整函数必在整个复平面为常数.()3.若{Zn}收敛,然后{rezn}{imzn}与都收敛了()4.若f(z)在区域d内解析,且f'(z)?0,那么f(z)?C(常数)5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()6.若z0是f(z)的m阶零点,则z0是1/f(z)的m阶极点.()7.若Z如果z0limf(Z)存在且是有限的,那么z0是函数f(Z)()8.若函数f(z)在是区域d内的单叶函数,则f'(z)?0(?z?d).()9.若f(z)在区域d内解析,则对d内任一简单闭曲线c? cf(z)dz?0()10.如果函数f(z)在区域D的圆中是常数,那么f(z)在区域D中是常数(II)填充空格(20点)dz?__________.(n为自然数)1、?| Zz0 |?1(z?z)n022sinz?科兹。
二3.函数sinz的周期为___________.f(z)?4.设计?1z2?1,则f(z)的孤立奇点有__________.n5。
幂级数?nzn?0的收敛半径为__________.6.如果函数f(z)在整个平面上的任何地方都被分解,则调用它_____7.若n??limzn??z1?z2?...?zn?n??n,则______________.limezres(n,0)?z8.____________;其中n是一个自然数sinz9.的孤立奇点为________.ZLMF(z)?_____;ZF(z)的极点,那么z?z010。
如果0是三.计算题(40分):1.设计1f(z)?(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz.?|z |?Cosz2。
3?2?7??1f(z)??d?c??z3.设,其中c?{z:|z|?3},试求f'(1?i).W4.找出复数z?1z?1的实部与虚部.证明问题(20分)1函数是常数。
《复变函数》考试试题与答案各种总结.docx

---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
复变函数试题(卷)和答案解析

第一章 复数与复变函数一、选择题 1.当iiz -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )(A )2 (B )i 31+(C )i -3 (D )i +37.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --43 9.满足不等式2≤+-iz iz 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )221=+-z z (B )433=--+z z (C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+-13.00)Im()Im(lim0z z z z x x --→( )(A )等于i (B )等于i -(C )等于0(D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg 3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z 所表示的区域是曲线的内部 7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线是连续点和的线段的垂直平分线 9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围. 四、设0≥a ,在复数集C 中解方程a z z =+22. 五、设复数i z ±≠,试证21z z+是实数的充要条件为1=z 或0)(=z IM . 六、对于映射)1(21zz +=ω,求出圆周4=z 的像. 七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+; 2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 n n z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>. 九、设iy x z +=,试证y x z y x +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z yx xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .第二章解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222--(B )xyi x +2(C ))2()1(222x x y i y x +-+-(D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1-(D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a ( )(A )0(B )1(C )2(D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0(B )1(C )1-(D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 (D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( ) (A )2(B )i 2(C )i +1(D )i 22+ 10.i i 的主值为( )(A )0(B )1(C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点(B )有可导点,但不解析(C )有可导点,且在可导点集上解析(D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( ) (A ))(z f 在复平面上处处解析(B ))(z f 以π2为周期(C )2)(iziz e e z f --=(D ))(z f 是无界的13.设α为任意实数,则α1( ) (A )无定义(B )等于1(C )是复数,其实部等于1(D )是复数,其模等于1 14.下列数中,为实数的是( )(A )3)1(i -(B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析(B )αz 的模为αz(C )αz 一般是多值函数(D )αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xv i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f6.函数)Re()Im()(z z z z f -=仅在点=z 处可导 7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数i i 的模为 9.=-)}43Im{ln(i10.方程01=--z e 的全部解为 三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(iz z z z iv i z z z z u z z w -++-+=,则0=∂∂z w.四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz wd dz dw . 六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(. 八、设s 和n 为平面向量,将s按逆时针方向旋转2π即得n .如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s ∂∂与n∂∂分别表示沿s ,n 的方向导数). 九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析. 十、解方程i z i z 4cos sin =+.第三章复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( ) (A )2i π(B )2iπ-(C )0 (D )(A)(B)(C)都有可能3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则=-⎰dz z zc 2)1(cos ( ) (A )1sin -(B )1sin (C )1sin 2i π-(D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( ) (A ))1sin 1cos 3(2-i π(B )0(C )1cos 6i π(D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( )(A )i π2-(B )1-(C )i π2(D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( )(A )于i π2(B )等于i π2-(C )等于0(D )不能确定 8.设c 是从0到i 21π+的直线段,则积分=⎰c z dz ze ( )(A )21e π-(B) 21e π--(C)i e 21π+(D) i e 21π- 9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( )(A )i π22(B )i π2(C )0(D )i π22- 10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( ) (A )ie π2(B )eiπ2(C )0(D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析(D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是( )(A)c iz +2(B )ic iz +2 (C )c z +2(D )ic z +2 14.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v +(B )),(),(y x iu y x v - (C )),(),(y x iv y x u -(D )xv i x u ∂∂-∂∂ 二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(233.设⎰=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则5.设c 为负向圆周4=z ,则=-⎰c zdz i z e 5)(π =+⎰cdz zzz6.解析函数在圆心处的值等于它在圆周上的7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内8.调和函数xy y x =),(ϕ的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为 三、计算积分 1.⎰=+-Rz dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.⎰=++22422z z z dz. 四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证1.在B 内处处有0)(≠z f ; 2.对于B 内任意一条闭曲线c ,都有0)()(=''⎰cdz z f z f 五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()( =≤n rr M n a fnn . 六、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e . 七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限⎰=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz zz f z 并由此得出⎰πθθθ202)(2cos d e f i 之值.九、设iv u z f +=)(是z 的解析函数,证明222222222))(1()(4))(1ln())(1ln(z f z f y z f x z f +'=∂+∂+∂+∂.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章级数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n ni (B )∑∞=+1!)43(n nn i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B ) ∑∞=+1)1(1n n in(B )∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n nz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛(B )条件收敛 (C )发散(D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >>(C )321R R R <=(D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1(B )2(C )2(D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为 (A ))1ln(z +(B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n nn z c ,那么幂级数∑∞=0n n n z c 的收敛半径=R ( )(A )∞+(B )1(C )2π(D )π 10.级数+++++22111z z z z的收敛域是( ) (A )1<z (B )10<<z (C )+∞<<z 1(D )不存在的 11.函数21z 在1-=z 处的泰勒展开式为( )(A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 20)()(( )(A)12-ic π (B )12ic π (C )22ic π(D ))(20z f i 'π14.若⎩⎨⎧--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A )3141<<z (B )43<<z (C )+∞<<z 41(D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1(B )2 (C )3(D )4 二、填空题 1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为.2.设幂级数∑∞=0n nnz c与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是. 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为 . 6.设幂级数∑∞=0n nnz c的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为.7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为. 8.函数zze e 1+在+∞<<z 0内洛朗展开式为.9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为.三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n n n z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. 四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z ze e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++⎰ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f rn n n <<-=-⎰=++ξξξξπξ)。
《复变函数》考试试题与各种总结

《复变函数》考试一试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数 f(z) 在 z 0 分析 .( )2. 有界整函数必在整个复平面为常数.()3. 若{ z n }收敛,则{Re z n } 与{Imz n }都收敛 .( )4. 若 f(z)在地区 D 内分析,且 f '( z),则 f ( z)C(常数) . ( )5. 若函数 f(z) 在 z 0 处分析,则它在该点的某个邻域内能够睁开为幂级数 .( )6. 若 z 0 是f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .()lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 . ()8. 若函数 f(z) 在是地区 D 内的单叶函数,则f ' (z) 0(z D ) .( )9. 若 f ( z ) 在地区 D 内分析 , 则对 D 内任一简单闭曲线Cf (z)dz 0 .C( )10. 若函数 f(z) 在地区 D 内的某个圆内恒等于常数,则f(z) 在地区 D 内恒等于常数 . ()二. 填空题( 20 分)1、dz__________. ( n 为自然数) |z z 0 |1 ( z z )n2.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)z 214. 设 1,则f ( z)的孤立奇点有 __________.5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上到处分析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn______________.Re s(e zn ,0)z,此中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若z0 是f (z)lim f (z) ___的极点,则z z.三. 计算题( 40 分):f (z)1(z1)( z 2) ,求 f ( z) 在 D { z : 0| z | 1}内的罗朗展式 .1. 设1dz.2.|z| 1cos zf ( z)3 2 71dC { z :| z | 3} ,试求 f ' (1 i ).3. 设Cz,此中z 1w1的实部与虚部 .4. 求复数z 四 . 证明题 .(20 分 )1. 函数 f (z)在地区D 内分析 . 证明:假如 | f ( z) |D 内在 D 内为常数,那么它在 为常数 .2. 试证 : f (z) z(1z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值分析分支 ,并求出支割线 0 Re z 1登岸取正当的那支在z1的值 .《复变函数》考试一试题(一)参照答案一.判断题1.× 2.√ 3.√4.√ 5.√6.√7.×8.×9.× 10.×二.填空题2 i n 1 ; 3.2k , ( kz) ; 4.z i ; 5. 11.n; 2.1 0 16. 整函数;7. ;8. 1 ;9. 0;10. .(n 1)!三.计算题 .1. 解因为0 z 1, 所以 0 z 1f ( z) 12) 1 1 z n 1 (z)n.( z 1)(z 1 z z ) n 0 2 n 0 22(122. 解因为z1Re s f (z) lim 2 lim 1z cosz sin z ,z z2 2 2Re s f (z) lim z 2 11. cosz limz z z sin z2 2 2所以 1 dz 2 i(Re s f (z) Re s f (z) 0 .z 2 cos zz 2 z 23. 解令 ( ) 3 2 7 1, 则它在 z 平面分析, 由柯西公式有在 z 3内,f (z)c ( )dz 2 i (z) . z所以f (1 i ) 2 i (z) z1 i2 i (13 6i ) 2 ( 6 13i ) .4. 解令 z a bi , 则w z 1 1 2 1 2( a 1 bi ) 1 2(a 1) 2b .z 1 z 1 ( a 1)2 b2 ( a 1)2 b2 (a 1)2 b2故z 112(a 1),z 1 2b. Re( )( a 1)2 b2Im( )(a 1)2 b2z 1 z 1四.证明题.1.证明设在D内 f ( z) C .令 f ( z) u iv ,则 f ( z)2u2v2c2.两边分别对 x, y 求偏导数 , 得uu xvv x 0 (1)uu y vv y 0(2)因为函数在 D 内分析 , 所以 u x v y , u y v x . 代入 (2) 则上述方程组变成uu xvv x 0 . 消去 u x 得, (u 2 v 2 ) v x 0 .vu xuv x 01)若 u 2 v 20 , 则 f ( z)0 为常数 .2) 若 v x0, 由方程 (1) (2)及 C.R. 方程有 u x 0, u y 0 ,v y 0 .所以 u c 1, v c 2 . ( c 1, c 2 为常数 ).所以f ( z)c 1 ic 2 为常数 .2. 证明 f ( z) z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z1的 z 平面内变点就不行能单绕 0 或 1转一周 , 故能分出两个单值分析分支 .因为当 z 从支割线登岸一点出发, 连续改动到 z0,1 时 , 只有 z 的幅角增添. 所以f ( z)z(1 z) 的幅角共增添. 由已知所取分支在支割线登岸取正当 , 于是可以为该2分支在登岸之幅角为 0, 因此此分支在z1 的幅角为 , 故 f ( 1)2e2i2i .2《复变函数》考试一试题(二)一 . 判断题 . (20 分)1.若函数 f (z)u(x, y) iv ( x, y) 在 D 内连续,则 ux,y) 与 v x,y ) 都在 D 内连续.( (( )2. cosz与sinz 在 复 平面 内 有界 .( )3. 若 函 数 f ( z)在 z 0分析,则f ( z) 在z 0 连 续 .()4. 有界整函数必为常数 .( )5.如 z 0 是函数 f ( z) 的天性奇点,则 lim ( ) 必定不存在 .()z z 0f z6. 若 函 数 f ( z) 在 z 0 可 导 , 则f ( z) 在 z 0解 析 .( )7. 若 f ( z) 在地区 D 内分析 , 则对 D 内任一简单闭曲线 Cf ( z)dz 0 .C( )8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )9. 若 f ( z) 在 区 域D 内 解 析 , 则 | f ( z)| 也 在D内分析.( )10. 存在一个在零点分析的函数f ( z) 使 f (1 ) 0 且 f ( 1) 1 , n 1,2,... . n12n2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z __, z __2. 设 f ( z) ( x 2 2 xy) i (1 sin( x 2 y 2 ), z x iy C ,则 lim f (z) ________.z 1 i3.dz_________.( n 为自然数)|z z 0 | 1( z z )n4.幂级数nz n 的收敛半径为 __________ .n 05. 若 z 0 是 f ( z) 的 m 阶零点且 m>0,则 z 0 是 f '( z) 的_____零点 .6.函数 e z 的周期为 __________.7. 方程 2z 5 z 3 3z 8 0 在单位圆内的零点个数为 ________. 8. 设 f ( z)1 ,则 f ( z) 的孤立奇点有 _________. z 219. 函数 f (z) | z |的不分析点之集为 ________.10. Res(z 1,1) ____ .z4三 . 计算题 . (40分 )1.求函数sin(2z3)的幂级数睁开式 .2.在复平面上取上半虚轴作割线 . 试在所得的地区内取定函数z在正实轴取正实值的一个分析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z| 1)i的右半圆 .sin z dzz 2( z) 24.求2.四. 证明题 . (20 分)1. 设函数 f ( z) 在地区 D内分析,试证:f ( z) 在 D 内为常数的充要条件是 f (z) 在D内分析 .2.试用儒歇定理证明朝数基本定理 .《复变函数》考试一试题(二)参照答案一. 判断题 .1.√2.×3.√4.√5.× 6.×7.×8.√9.× 10.× .二.填空题, i ; 2. 3 (1 sin 2)i ; 3. 2 i n 1; 5. m 1.,0 n ; 4.12 16. 2k i ,( k z) .7. 0;8. i ;9. R ;10. 0.三. 计算题1. 解 sin(2 z3 ) ( 1)n (2 z3 )2n 1 ( 1)n 22n 1 z6 n 3 .n 0 (2 n 1)! n 0 (2 n 1)!2. 解令 z re i .i 2 k则 f ( z)z re2,(k 0,1).又因为在正实轴去正实值,所以k 0 .i所以 f (i)e 4 .3. 单位圆的右半圆周为 ze i ,2.2izdz2deiei22i.所以i224. 解zsin z dz 2 i (sin z)2 i cos z2)2( zz2z 2=0.2四. 证明题 .1. 证明(必需性 ) 令 f ( z)c 1 ic 2 , 则 f ( z) c 1 ic 2 . ( c 1 ,c 2 为实常数 ).令 u( x, y) c 1, v( x, y) c 2 . 则 u x v yu yv x 0 .即 u, v 知足 C.R., 且 u x , v y ,u y , v x 连续 , 故 f (z) 在 D 内分析 .(充分性 ) 令 f ( z)u iv , 则 f (z) uiv ,因为 f ( z) 与 f ( z) 在 D 内分析 , 所以u x v y , u yv x , 且 u x ( v)y v y , u y ( v x ) v x .比较等式两边得 u x v yu y v x 0 . 进而在 D 内 u, v 均为常数 , 故 f (z) 在 D 内为常数.2. 即要证“任一n 次方程a 0 zna 1zn 1a n 1z an0 ( a 0 0) 有且只有 n个根” .证明 令 f (z)a 0 z na 1z n 1a n 1z a n0 , 取 Rmax a 1a n,1 , 当a 0z在C : z R上时,有( z) a 1 R n 1a n 1 R a n ( a 1a n )R n 1 a 0 R n .f ( z) .由儒歇定理知在圆z R 内 , 方程 a 0 z n a 1z n 1 a n 1 z a n 0 与 a 0 z n 0 有相同个数的根 . 而 a0 z n 0 在z R 内有一个n 重根z 0 .所以n次方程在 z R 内有 n 个根.《复变函数》考试一试题(三)一. 判断题 . (20 分).1. cos z 与 sin z 的周期均为2k . ( )2. 若 f ( z) 在 z0处知足柯西 - 黎曼条件 , 则 f ( z) 在 z0分析 . ( )3. 若函数 f ( z) 在 z0处分析,则 f ( z) 在 z0连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n} 都收敛. ( )5.若函数 f ( z) 是地区 D 内分析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D内为常数 . ( )6. 若函数 f ( z) 在 z0分析,则 f ( z) 在 z0的某个邻域内可导 . ( )7. 假如函数 f ( z) 在D { z :| z | 1} 上分析,且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) . ()8. 若函数 f ( z) 在 z0 处分析,则它在该点的某个邻域内能够睁开为幂级数.( ) 9. 若 z0是f ( z)的 m阶零点 , 则 z0是 1/ f ( z)的 m阶极点 . ( )10. 若z0是 f (z)的可去奇点,则 Res( f ( z), z0 ) 0. ( )二. 填空题 . (20 分)1. 设 f ( z) 1 ,则 f ( z) 的定义域为 ___________.z2 12. 函数 e z的周期为 _________.3. 若 z n n 2 i (1 1) n,则lim z n__________.1 n n n4. sin 2 z cos2 z ___________.dz5.|z z0 | 1(z z ) n_________. (n为自然数)6. 幂级数nx n的收敛半径为__________.n 07. 设 f (z) 11 ,则 f ( z) 的孤立奇点有 __________.z28. 设 e z1,则 z ___ .9.若z 0 是 f (z)的极点,则 lim f (z) ___.z z 0z10.Res(en ,0)____ .z三 . 计算题 . (40 分)11.将函数f ( z)z 2e z 在圆环域 0z内展为 Laurent级数 .2.试求幂级数n! z n 的收敛半径nn n.3. 算以下积分:e zdz,此中 C 是 | z | 1.Cz 2(z29)4. 求 z92z 6 z 2 8z2 0 在| z|<1 内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在地区 D 内分析 . 证明:假如 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,而且假设存在着一个正整数 n ,以及两个正数 R 及 M ,使适当 | z|R 时| f ( z) |M | z |n ,证明 f (z) 是一个至多 n 次的多项式或一常数。
《复变函数》考试试题(一)解读

《复变函数》考试试题(一)解读《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( )9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=?Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.()二.填空题(20分)1、 =-?=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||?=z dz z3. 设?-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z 在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=?Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=?+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.3.=-?=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:?-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ?=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ()8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-?=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =nzze . 三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)1、__________.(为自然数)2。
_________。
3.函数的周期为___________.4.设,则的孤立奇点有__________。
5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________。
7.若,则______________.8。
________,其中n为自然数.9。
的孤立奇点为________。
10.若是的极点,则。
三.计算题(40分):1. 设,求在内的罗朗展式.2.3. 设,其中,试求4. 求复数的实部与虚部.四。
证明题.(20分)1。
函数在区域内解析. 证明:如果在内为常数,那么它在内为常数。
2。
试证:在割去线段的平面内能分出两个单值解析分支,并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)二。
填空题. (20分)1。
设,则2。
设,则________。
3. _________。
(为自然数)4. 幂级数的收敛半径为__________ 。
5. 若z0是f(z)的m阶零点且m>0,则z0是的_____零点。
6. 函数e z的周期为__________.7. 方程在单位圆内的零点个数为________.8. 设,则的孤立奇点有_________。
9。
函数的不解析点之集为________。
10. .三。
计算题. (40分)1。
求函数的幂级数展开式。
2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值。
3。
计算积分:,积分路径为(1)单位圆()的右半圆。
4. 求。
四。
证明题。
(20分)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析。
2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分)1. 设,则f(z)的定义域为___________.2。
《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1、若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析、 ( )2、有界整函数必在整个复平面为常数、 ( )3、若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛、 ( )4、若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)、 ( )5、若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数、 ( )6、若z 0就是)(z f 的m 阶零点,则z 0就是1/)(z f 的m 阶极点、 ( )7、若)(lim 0z f z z →存在且有限,则z 0就是函数f(z)的可去奇点、 ( )8、若函数f(z)在就是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠、 ( ) 9、 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f 、( )10、若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数、( ) 二、填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________、(n 为自然数)2、=+z z 22cos sin _________、 3、函数z sin 的周期为___________、4、设11)(2+=z z f ,则)(z f 的孤立奇点有__________、5、幂级数nn nz∞=∑的收敛半径为__________、6、若函数f(z)在整个平面上处处解析,则称它就是__________、7、若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________、8、=)0,(Re n zz e s ________,其中n 为自然数、9、 zz sin 的孤立奇点为________ 、10、若0z 就是)(z f 的极点,则___)(lim 0=→z f z z 、三、计算题(40分):1、 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式、2、 .cos 11||⎰=z dz z3、 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4、 求复数11+-=z z w 的实部与虚部、四、 证明题、(20分) 1、 函数)(z f 在区域D 内解析、 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数、 2、 试证: ()f z =0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值、 《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1、 2101i n n π=⎧⎨≠⎩ ; 2、 1; 3、 2k π,()k z ∈; 4、 z i =±; 5、 16、 整函数;7、 ξ;8、 1(1)!n -; 9、 0; 10、 ∞、三.计算题、1、 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑、 2、 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-、 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰、 3、 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰、所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+、 4、 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++、 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b-=+++、 四、 证明题、1、 证明 设在D 内()f z C =、令2222(),()f z u iv f z u v c =+=+=则、两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-、 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩、 消去x u 得, 22()0x u v v +=、 1) 若220u v +=, 则 ()0f z = 为常数、2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =、 所以12,u c v c ==、 (12,c c 为常数)、 所以12()f z c ic =+为常数、2、证明()f z =0,1z =、 于就是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支、由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π、 所以()f z =2π、 由已知所取分支在支割线上岸取正值, 于就是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==、《复变函数》考试试题(二)一. 判断题、(20分)1、 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续、 ( )2、 cos z 与sin z 在复平面内有界、 ( )3、 若函数f (z )在z 0解析,则f (z )在z 0连续、 ( )4、 有界整函数必为常数、 ( )5、 如z 0就是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在、 ( )6、 若函数f (z )在z 0可导,则f (z )在z 0解析、 ( )7、 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f 、( )8、 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛、 ( ) 9、 若f (z )在区域D 内解析,则|f (z )|也在D 内解析、 ( )10、 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f 、( )二、 填空题、 (20分)1、 设i z -=,则____,arg __,||===z z z2、设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________、3、=-⎰=-1||00)(z z n z z dz_________、(n 为自然数)4、 幂级数0n n nz ∞=∑的收敛半径为__________ 、5、 若z 0就是f (z )的m 阶零点且m >0,则z 0就是)('z f 的_____零点、6、 函数e z 的周期为__________、7、 方程083235=++-z z z 在单位圆内的零点个数为________、 8、 设211)(zz f +=,则)(z f 的孤立奇点有_________、 9、 函数||)(z z f =的不解析点之集为________、10、 ____)1,1(Res 4=-zz 、 三、 计算题、 (40分)1、 求函数)2sin(3z 的幂级数展开式、2、 在复平面上取上半虚轴作割线、 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值、3、 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆、4、 求dzz zz ⎰=-22)2(sin π、四、 证明题、 (20分)1、 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件就是)(z f 在D 内解析、2、 试用儒歇定理证明代数基本定理、《复变函数》考试试题(二)参考答案一. 判断题、1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×、 二、 填空题1、1,2π-, i ; 2、 3(1sin 2)i +-; 3、2101i n n π=⎧⎨≠⎩; 4、 1; 5、 1m -、 6、 2k i π,()k z ∈、 7、 0; 8、 i ±; 9、 R ; 10、 0、 三、 计算题1、 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑、2、 解 令i z re θ=、则22(),(0,1)k if z k θπ+===、又因为在正实轴去正实值,所以0k =、所以4()if i eπ=、3、 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤、所以22222ii i iz dz de ei ππθθππ---===⎰⎰、4、 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0、四、 证明题、1、 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-、 (12,c c 为实常数)、 令12(,),(,)u x y c v x y c ==-、 则0x y y x u v u v ====、 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析、 (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-、比较等式两边得 0x y y x u v u v ====、 从而在D 内,u v 均为常数,故()f z 在D 内为常数、2、 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”、证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<、()f z =、由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相 同个数的根、 而 00na z = 在 z R < 内有一个 n 重根 0z =、 因此n 次方程在z R <内有n 个根、《复变函数》考试试题(三)一、 判断题、 (20分)、1、 cos z 与sin z 的周期均为πk2、 ( ) 2、 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析、 ( )3、 若函数f (z )在z 0处解析,则f (z )在z 0连续、 ( )4、 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛、 ( )5、 若函数f (z )就是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数、 ( )6、 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导、 ( )7、 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f 、 ( )8、 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数、( )9、 若z 0就是)(z f 的m 阶零点, 则z 0就是1/)(z f 的m 阶极点、 ( ) 10、 若z 就是)(z f 的可去奇点,则)),((Res 0=z z f 、( )二、 填空题、 (20分)1、 设11)(2+=z z f ,则f (z )的定义域为___________、2、 函数e z的周期为_________、3、 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________、4、 =+z z 22cos sin ___________、5、 =-⎰=-1||00)(z z n z z dz_________、(n 为自然数) 6、 幂级数∑∞=0n n nx 的收敛半径为__________、7、 设11)(2+=z z f ,则f (z )的孤立奇点有__________、8、 设1-=ze ,则___=z 、9、 若0z 就是)(z f 的极点,则___)(lim 0=→z f z z 、10、 ____)0,(Res =n zze 、三、 计算题、 (40分)1、 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数、2、 试求幂级数nn n z nn ∑+∞=!的收敛半径、3、 算下列积分:⎰-C z z z ze )9(d 22,其中C 就是1||=z 、4、 求0282269=--+-z z z z在|z |<1内根的个数、四、 证明题、 (20分) 1、 函数)(z f 在区域D 内解析、 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数、 2、 设)(z f 就是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 就是一个至多n 次的多项式或一常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数复习提要 第1章:复数与复变函数复数是用有序数对),(y x 定义的,其中y x ,为实数。
要注意,因为复数是“有序数对”,所以一般地讲,),(),(x y y x ≠。
正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示,即},:),({R b a b a z C ∈==复数的四则运算定义为),(),(),(d b c a d c b a ++=+ ),(),(),(d b c a d c b a --=- ),(),(),(ad bc bd ac d c b a +-=⋅0,),(),(),(222222≠++-++=÷d c d c ad bc d c bd ac d c b a 复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ⋅=⋅④乘法结合律 321321)()(z z z z z z ⋅⋅=⋅⋅⑤乘法对加法的分配律 3121321)(z z z z z z z ⋅+⋅=+⋅),(y x -称为),(y x z =的共轭复数,记为z 。
22y x +称为),(y x z =的模,记为z 。
共轭复数满足 z zz z zz z z z Im i2,Re 2,2=-=+=⋅ 2121z z z z ±=± 2121z z z z ⋅=⋅ 0,)(22121≠=z z zz z 例1 设i 3,i 5221+=-=z z ,求21z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。
解 为求21z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=⋅⋅=zz z z z z z例2 求复数)i 21)(i 34()i 21)(i 34(+--+=A 的模.解 令i 21,i 3421-=+=z z ,有2121z z z z A ⋅⋅=由共轭复数的运算结果得1212121212121=⋅⋅=⋅⋅=⋅⋅=z z z z z z z z z z z z A复数的三角式 )s i n i (c o s θθ+=r z (其中z r =) 复数的三角式 θi e r z = 由此得如下关系式)(i 21i 2i 1212121e e e θθθθ+⋅=⋅=⋅r r r r z z0,e e e 2)(i 21i 2i 1212121≠==-z r r r r z z θθθθ θn n n r z i e = 2121z z z z ⋅=⋅0,22121≠=z z z z z)A r g ()A r g ()A r g (2121z z z z +=⋅)A r g ()A r g ()A r g (2121z z z z -=对于复数θi e r z =,它的n 次方根为)1,,1,0(e π2i-==+n k r z nk nn θ。
例3 求8)i 1(+.解 4πi e 2i 1=+,故有16e 16e)2()e 2()i 1(2πi 4π8i 884πi8====+⋅例4 设i z +=1,求4z .解 因4πie 2=z ,故4arg ,2π==z z .于是,z 的四个四次方根为 16πi80e 2=w 169πi81e2=w 16π17i82e 2=w 16π25i83e2=w0z 点的ρ邻域为复数集合}:{0ρ<-z z z ,记为),(0ρz N 。
0z 点的去心ρ邻域为复数集合}0:{0ρ<-<z z z ,记为),(0*ρz N 。
无穷远点的ρ邻域为复数集合}:{ρ>z z ,记为),(ρ∞N 。
对于区域D ,若D 中任意一条简单闭曲线的内部仍属于D ,则称D 为单连通区域。
不是单连通区域的区域称为复连通区域。
复变函数)(z f w =的定义类似于数学分析中实函数)(x f y =的定义,不同的是前者)(z f w =是复平面到复平面的映射,所以无法给出它的图形。
复变函数在一点的极限可用两个二元实函数在一点的极限来讨论,即 A z f A z f z z z z z z Re )(Re lim )(lim 000Im Im Re Re =⇔=→→→且A z f z z z z Im )(Im lim 00Im Im Re Re =→→复变函数期末复习提要第2章:解析函数函数在一点可导的定义是设函数)(z f w =定义在区域D 内,D z z D z ∈∆+∈)(,00,若zz f z z f z ∆-∆+→∆)()(lim存在,则称此极限为函数)(z f 在点0z 的导数,记为)(0z f ',即 zz f z z f z f z ∆-∆+='→∆)()(lim)(0000 (2.1)此时,称函数)(z f 在点0z 可导,否则,称函数)(z f 在点0z 不可导。
函数在一点解析的定义是设函数)(z f w =定义在区域D 内,0z 为D 内某一点,若存在一个邻域),(0p z N ,使得函数)(z f 在该邻域内处处可导,则称函数)(z f 在点0z 解析。
此时称点0z 为函数)(z f 的解析点。
若函数)(z f 在点0z 不解析,则称0z 为函数)(z f 的奇点。
函数在一点解析,则在该点可导,反之则未必。
例1 试证:函数)Re()(z z f =在复平面上处处不可导。
分析:导数是一个特定类型的极限,要证明复变函数在某点的极限不存在,只需要找两条特殊的路径,使自变量沿这两条路径趋于该点时,函数值趋于不同的值。
证 对任意点z ,因zz z z z z f z z f ∆-∆+=∆-∆+)Re()Re()()( 令y x z ∆+∆=∆i ,于是有yx xz z f z z f ∆+∆∆=∆-∆+i )()( 由于上式当z z ∆+沿平行于虚轴的方向趋于点z 时(即0,0→∆=∆y x ),其极限为0;当z z ∆+沿平行于实轴的方向趋于点z 时(即0,0→∆=∆x y ),其极限为1,所以zz f z z f z ∆-∆+→∆)()(lim不存在,故)(z f 在点z 处不可导。
由点z 的任意性,函数)Re()(z z f =于复平面上处处不可导。
若函数),(i ),()(y x v y x u z f ++=定义在区域D 内,则函数)(z f 在区域D 内为解析函数的充分必要条件是:⑴),(y x u 与),(y x v 在D 内可微。
⑵x y y x v u v u -==,在D 内成立。
条件⑵称为柯西——黎曼条件或C.— R.条件。
函数)(z f 在区域D 内为解析函数的充分必要条件是: ⑴y x y x v v u u ,,,在D 内连续.⑵x y y x v u v u -==,在D 内成立.例2 试证函数1)(+=z z f 在复平面解析. 证 令y x z v u z f i ,i )(+=+=,则 1i 1)(++=+=y x z z f y x i 1++= v i u +=于是1+=x u y v = 从而有0,1==y x u u 1,0==y x v v显然,y x y x v v u u ,,,在复平面上处处连续,且满足C.— R.条件,故函数)(z f 在复平面解析。
函数)(z f 在区域D 内为解析函数的充分必要条件是)](Im[z f 为)](Re[z f 的共轭调和函数。
例3 设222),(y xy x y x u --=,试求以),(y x u 为实部的解析函数),(i ),()(y x v y x u z f +=,使得i )0(=f .解 依C.— R.条件有y x u v x y 22-== 于是⎰-=y y x v d )22( )(22x y xy ϕ+-= 由此得)(2x y v x ϕ'+= y u -= y x 22+= 从而有c x x +=2)(ϕ 因此c x y xy y x v ++-=222),( (c 为任意常数) 故得)2(i 2)(2222c x y xy y xy x z f ++-+--= c z i )i 1(2++= 将i )0(=f 代入上式,得i c f ==i )0( 由此得1=c ,故得i )i 1()(2++=z z f 经验证,所得)(z f 既为所求。
复变函数期末复习提要 第3章:初等函数⒈理解z z sin ,e 与z cos 的定义及其主要性质; ⒉知道支点概念。
幂函数定义3.1 设y x z i +=,n 为正整数,称n z w =为幂函数. 根式函数定义3.3 设)0(e i ≠=θr z ,称满足z w n = (n 为不小于2的正整数)的w 为z 的n 次根式函数,或简称根式函数,记作n z w =⑴根式函数为多值函数,它不是解析函数.对于每一个确定的)0(e i ≠=θr z ,都有n 个不同的w 与之对应,即有n nr w θi0e = nnr w π2i1e +=θ (3.1)nn n n r w π)1(2i1e-+-=θ因为根式函数是多值函数,所以,它不是解析函数.⑵根式函数在从原点起沿正实轴剪开的复平面上可分出n 个单值函数.定义3.4 设函数)(z F w =为多值函数,若当变点z 从起始点0z 出发绕一条包围点a 的简单闭曲线连续变动一周再回到起始点0z 时,函数)(z F 从一个支变到另一个支,则称点a 为函数)(z F 的支点.⑶根式函数n z w =的每个单值支在从原点起始沿正实轴剪开的复平面上为解析函数. 指数函数定义3.5 设y x z i +=,称)s i n i (c o s e e y y x z ⋅+= (3.2) 为指数函数,其等式右端中的e 为自然对数的底,即 2.71828e =. ⑴对任意二复数111i y x z +=与222i y x z +=,有2121e e e z z z z +=⋅⑵z e 在复平面上为解析函数,且有z z e )(e =' ⑶对任意一复数y x z i +=,有π2)(A r g,e e k y z x z +== (k :整数) ⑷z e 只以i π2k (k 为整数)为周期. ⑸21e e z z =的充分必要条件是i π212k z z =- (k 为整数)⑹z z e lim ∞→不存在.⑺设y x z i +=,若0=y ,则x z e e =;若0=x ,则y y y sin i cos e i ⋅+=这便是欧拉公式.⑻若y x z i +=,则zz e e =. 例1 试证z z e1e =-. 证:设y x z i +=,由定义得及(实)三角函数的性质得)]sin(i )[cos(e e y y x z -⋅+-=-- xyy es i n i c o s ⋅-= )s i n i (c o s e )s i n i )(c o s s i n i (c o s y y y y y y x⋅+⋅+⋅-=)s i n i (c o s e s i n c o s 22y y yy x ⋅++=ze 1=对数函数定义3.6 设∞≠,0z ,称满足z w =e的w 为z 的对数函数,记作z w Ln =令v u w z r z i ,,0,e i +=∞≠=θ由定义3.6可得z w Ln =)π2(ln k i r ++=θz i z A r g ln += (k :整数) 即对于每一个∞≠,0z ,有无穷个不同的w ,即有)π4(i ln 2k z w ++=θ )π2(i ln 1k z w ++=θθi ln 0+=z w (3.3))π2(i ln 1k z w -+=-θ )π4(i ln 2k z w -+=-θ与之对应,因此,对数函数为多值函数,从而,它不是解析函数. 例2 计算)i 1(Ln +.解:)i 1(Arg i i 1ln )i 1(Ln +++=+)π24π(i 2ln 21k ++= (k :整数)三角函数定义3.7 设z 为复数,称i2e e i i zz -- 与2e e i i z z -+分别为z 的正弦函数和余弦函数,分别记作i2e e sin i i zz z --=与 2e e cos i i z z z -+= 正、余弦 函数的性质:⑴z sin 与z cos 在复平面解析,且有z z z z sin )(cos ,cos )(sin -='='⑵三角学中实变量的三角函数间的已知公式对复变量的三角函数仍然有效:例如,由定义可推得1cos sin 22=+z z z z cos )2sin(=+πz z sin )2cos(-=+π212121sin cos cos sin )sin(z z z z z z ±=±212121sin sin cos cos )cos(z z z z z =±z z sin )sin(-=- z z cos )cos(=-⑶z z z i e sin i cos =+⑷z sin 仅在πk z =处为零,z cos 仅在π2πk z +=处为零,其中的k 为整数. ⑸z sin 与z cos 均以π2k (k 为整数)为周期;⑹命题“若z 为复数,则1cos ,1sin ≤≤z z ”不真. ⑺z z sin lim ∞→与z z cos lim ∞→均不存在.例3 试证z z z i 2i e sin i 21e =-证:由定义zz z z z i 2i i i ei 21e i 2e e sin -=-=- 可得z z z i 2i e sin i 21e =-例4 计算)i 1cos(+的值.解 由定义得2e e 2e e )i 1cos(1i 1i )i 1(i )i 1(i +--+-++=+=+ 1s i n )e e (21i 1c o s )e e (2111-++=-- 复变函数期末复习提要 第4章:解析函数的积分理论⒈理解积分基本定理、积分基本公式、高阶导数公式;⒉了解刘维尔定理、最大模原理,掌握证明它们的方法;⒊掌握利用积分基本定理和莫瑞拉定理判别解析函数的方法;⒋熟练掌握利用积分基本定理、积分基本公式和高阶导数公式计算函数沿闭曲线的积分。