清洗验证中目视残留限度的风险评估

合集下载

设备清洁验证风险评估

设备清洁验证风险评估

生产设备清洁验证验风险评估增禄word 资料制药有限公司风险评估——生产设备清洁验证验证范围和程度本标准起草人:本标准审核人:本标准批准人:本标准批准发布日期:年月日生效日期:年月日1.概述本公司为中药制剂生产企业,制剂剂型为丸剂(浓缩丸、水丸),主要品种为六味地黄丸、开胸顺气丸等。

生产所用设备主要分为前处理设备和制剂设备。

为确保产品质量,生产设备清洁规程需经过验证。

验证的范围和程度通过风险评估来确定。

2.风险评估工具应用失败模式效果分析,对风险发生的频率、严重性和可测性进行确认。

根据风险大小分值为1分至5分,分值越高,风险越大。

严重性以鉴别、检查、含量中分数高者计。

失败风险得分为各项得分的乘积。

总分超过36分为高风险,设备必须经过确认。

word 资料3.活性残留风险项分析如何确定残留物限度是一个相当复杂的问题,企业应当根据其生产设备和产品的实际情况,制定科学合理的,能实现并能通过适当的方法检验的限度标准。

目前企业界普遍接受的限度标准基于以下原则:1)以目检为依据的限度。

2)化学残留可接受限度。

3)微生物残留可接受限度。

3.1以目检为依据的限度若设备内表面抛光良好,残留物与设备表面有较大反差,目检能发现低于 4ug/cm2的残留。

目测要求不得有可见的残留物,在每次清洗完后都必须进行检查并对检查结果进行记录,此项检查应该作为清洗验证接受限度的第一个接受标准。

3.2化学残留可接受限度:最低日治疗剂量的 1/1000依据药物的生物学活性数据——最低日治疗剂量(MTDD)确定残留物限度是制药企业普遍采用的方法。

一般取最低日治疗剂量(MTDD)的 1/1000 为残留物限度。

可以认为即使存在很大的个体差异,该残留量也不会对人体产生药理反应。

我厂产品为六味浓缩丸系列及开胸顺气丸等水丸成方制剂,其中六味地黄丸(浓缩丸)批量大,且在浓缩丸剂中最具代表性,开胸顺气丸(水丸)批量小word 资料作为水丸制剂具有代表性,因此选定这两种产品做为验证产品。

清洁验证风险评估报告

清洁验证风险评估报告

清洁验证风险评估报告1. 引言清洁验证是指对清洁产品或服务进行验证以确保其符合预定的质量标准和卫生要求的过程。

随着清洁行业的不断发展和消费者对产品质量和安全性的关注增加,清洁验证的重要性也日益凸显。

本报告旨在对清洁验证过程中的风险进行评估,以便制定相应的管理措施和风险缓解计划。

2. 风险识别在进行清洁验证时,可能存在以下风险: - 不完整的清洁验证流程:如果验证流程不完整或不合理,可能无法全面评估清洁产品或服务的质量和卫生状况。

- 数据不准确或不可靠:如果采集的数据不准确或数据源不可靠,可能导致评估结果的失真。

- 人为误操作:人为误操作可能导致数据收集的错误或遗漏,影响验证结果的准确性。

- 潜在的质量问题:某些清洁产品或服务可能存在潜在的质量问题,可能对验证流程和结果产生不利影响。

3. 风险评估方法为了评估清洁验证过程中的风险,我们采用了以下方法: - 信息收集:收集与清洁验证相关的文献、行业标准和相关法规,了解清洁验证的要求和最佳实践。

- 风险识别:通过头脑风暴和经验分享,识别可能存在的风险。

- 风险分析:对已识别的风险进行定性和定量分析,确定其潜在影响和发生概率。

- 风险评估:根据风险的影响和发生概率,对风险进行评估,确定其优先级和严重程度。

4. 风险评估结果根据我们的风险评估,我们得出以下结果: 1. 不完整的清洁验证流程是最高优先级的风险,因为它可能导致整个验证过程的失效。

2. 数据不准确或不可靠是次高优先级的风险,因为它可能导致评估结果的失真。

3. 人为误操作是次高优先级的风险,因为它可能导致数据收集和处理的错误。

4. 潜在的质量问题是低优先级的风险,因为它可能对验证结果产生一定的影响,但不会完全失效。

5. 风险缓解计划针对上述风险,我们提出了以下风险缓解计划: 1. 完善清洁验证流程:制定详细的验证流程和标准操作程序,确保清洁验证的全面性和一致性。

2. 数据验证和审核:建立数据验证和审核机制,确保采集到的数据准确可靠,同时进行数据核查和验证。

厂房清洁验证风险评估

厂房清洁验证风险评估

1、概述由于厂房清洁涉及上一品种生产是否存在残留,因而应对厂房清洁进行风险评估。

确定厂房在清洁过程中存在的风险点,并针对风险点采取相应的控制措施,然后通过清洁验证确认清洁效果,以防止药品交叉污染,保障产品质量。

本次以最难清洁品种万通筋骨片生产结束后对该厂房进行清洁验证,以士的宁作为标定化合物。

2、目的通过对厂房清洁过程进行的风险评估,确定厂房在清洁过程中存在的风险点,并针对风险点采取相应的控制措施,确定清洁效果,以防止药品交叉污染,保障产品质量。

为厂房清洁验证提供风险分析参考依据,确保验证结果的可靠性。

3、范围洁净厂房的清洁验证。

4、风险管理分析方法失败模式分析法(FMEA)、定量进行分析。

5、职责质保部负责组织人员进行厂房清洁验证风险评估,并负责起草评估报告。

其他部门负责参与厂房清洁验证风险评估。

6.依据《药品生产质量管理规范》(2010年修订)、《药品GMP指南》。

7、质量风险评估小组成员及职责8、风险等级的确定根据危害发生频次的多少(可能性)可分为三级:第1级:很少发生——1分;第2级:偶尔发生——2分;第3级:经常发生——3分;根据危害发生的严重程度(严重性)分为三级:第1级:微小(极微少残留,不影响产品质量)——1分;第2级:中等(少量残留,对产品质量影响较小)——2分;第3级:严重(存在明显残留,严重影响产品质量)——3分;根据危害的检出程度(可检测性)分为三级:第1级:风险发生及有发生趋势时可以立即被发现——1分;第2级:风险发生后稍后才能被发现——2分;第3级:风险发生很久后才能被发现或不能被发现——3分。

风险优先级计算公式及风险等级判断:风险优先级RPN = 严重性×可能性×可检测性风险等级的判断:低风险:风险优先级1、2、3、4;为可接受风险。

中等风险:风险优先级6、8、9;必要时制定预防和纠正措施,管理风险,降低风险。

高风险:风险优先级12、18、27。

清洁验证残留物的限度标准-概述说明以及解释

清洁验证残留物的限度标准-概述说明以及解释

清洁验证残留物的限度标准-概述说明以及解释1.引言概述部分的内容可以包括对清洁验证残留物的限度标准的简要介绍和背景说明。

下面是一个可能的概述部分的内容示例:1.1 概述随着工业生产和制造业的发展,清洁验证残留物的标准和限度成为了非常重要的议题。

在各种领域中,如食品加工、医疗器械使用和制药工业等,残留物的清洁验证已成为确保产品质量和安全性的关键步骤之一。

清洁验证残留物的限度标准是指在生产过程中,为了确保生产设备和器具的清洁程度以及生产过程中产生的残留物的控制,制定的一系列指标和标准。

这些标准的制定旨在确保生产设备和产品清洁无残留物,以降低净化工艺失败的风险,防止不洁净产品对消费者健康造成的潜在威胁。

本文将重点介绍清洁验证残留物的限度标准的制定过程和方法。

首先,我们将讨论清洁验证的重要性,以及它对产品质量和安全性的影响。

其次,我们将探讨清洁验证的方法和步骤,包括采样和分析方法等。

最后,我们将深入研究清洁验证残留物限度标准的制定,介绍相关的法规和指导原则,并探讨其在实际应用中的意义和挑战。

清洁验证残留物的限度标准制定的目的是为了确保残留物控制的合理性和有效性,为工业生产和制造业提供可靠的指导框架。

在未来的研究中,我们还需要关注新兴技术的应用,不断完善和更新清洁验证的方法和标准,以适应不断变化的生产环境和需求。

通过本文的探讨,我们希望能够加深对清洁验证残留物限度标准的理解,提高清洁验证的可行性和有效性,为确保产品质量和安全性做出积极贡献。

1.2 文章结构本文将以以下结构进行阐述清洁验证残留物的限度标准。

首先,在引言部分,将对本文的概述进行介绍,列举清洁验证残留物限度标准的重要性和目的。

接下来,在正文部分,将详细探讨清洁验证的重要性,包括其在保障产品质量和安全性方面的作用。

同时,会介绍清洁验证的方法和步骤,涉及到常用的实验方法和技术手段。

最后,将重点讨论清洁验证残留物限度标准的制定,包括目前的制定标准和存在的问题。

清洁验证中活性物质残留限度标准探讨

清洁验证中活性物质残留限度标准探讨

清洁验证中活性物质残留限度标准探讨摘要:清洁验证是确保生产设备和工作环境清洁度达标的重要步骤,对于保证产品质量和遵守相关法规具有关键性作用。

活性物质残留是清洁验证中一个重要的考察内容,它指的是生产过程中可能残留在设备和环境中的活性物质,如药品、农药、化妆品等。

活性物质残留的合理限度标准对于确保产品质量和人员健康具有重要意义。

然而,目前关于活性物质残留的限度标准存在着一定的争议和不足。

一方面,一些限度标准过于严格,导致清洁验证难以通过,给企业带来了不必要的负担。

另一方面,一些限度标准过于宽松,可能存在健康风险和产品质量问题。

通过本论文的研究,我们希望能够促进对活性物质残留限度标准的深入理解,并为相关政策的制定和企业清洁验证工作的开展提供一些有益的借鉴和建议,以确保产品质量和人员健康的安全。

关键词:清洁验证;活性物质残留;相关标准在制药、食品、化妆品等行业中,清洁验证是确保设备和工作环境清洁度达标的重要环节。

清洁验证的目的是确保生产设备和环境没有活性物质残留,以避免对产品质量和人员健康造成潜在的风险。

活性物质残留的限度标准对于企业合规性、产品质量和人员健康具有重要意义。

当限度标准过于严格时,可能导致清洁验证难以通过,增加企业的负担和成本;而当限度标准过于宽松时,可能存在健康风险和产品质量问题。

然而,目前关于活性物质残留的限度标准存在着一定的争议和不足。

希望未来能够有更科学、更合理的活性物质残留限度标准,以确保产品质量和人员健康的安全。

1、目前常见的活性物质残留限度标准的制定依据(1)国家法规和标准、国际组织的指南和标准及风险评估许多国家和地区都制定了相关的法规和标准,用于确定各种活性物质在特定产品或环境中的残留限度。

这些法规和标准的制定通常采用了综合考虑风险评估、科学研究、行业共识等多种因素的方法。

国际组织如欧盟、美国FDA、世界卫生组织(WHO)、国际卫生与环境联合会(IHEA)等经常发布指南和标准,用于指导活性物质残留限度的制定。

清洁验证的风险评估报告

清洁验证的风险评估报告

欢迎阅读
本报告属原创,同发SFDA 研修学院论坛、药智论坛和中国GMP 论坛。

以下为在做本报告中的体会:
1、 风险评估不在于形式,如本评估报告可以不用单独成文,也可以截取部分,纳入清洁验证的验证方案中,作者个人认为更为恰当。

本报告仅仅是由于其用途是为了新建厂房的数
一.质量风险评估的目的
2010版GMP 第七章“确认与验证”的第一百四十三条规定:“清洁方法应经过验证,证实其清洁的效果,以有效防止污染和交叉污染。

清洁验证应综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。


本报告的目的,就是运用风险管理的工具,全面评估公司新车间的清洁验证,通过质量风险管
清洁验证的风险评估报告
【最新资料,WORD 文档,可编辑修改】
五.失效模式和效果分析(FMEA)
1、对影响清洁验证效果的工艺参数FMEA 分析评估
六.本次风险评估结论:
影响清洁验证效果的主要中高风险点存在于人员操作、原辅料和清洁剂残留量以及清洁操作时相关的设备控制系统、环境控制系统、辅助设备等。

在清洁验证中应作为检查监控的重点,将所有中等风险和高风险点作为质量控制点,在验证方案及报告中检查记录。

对所有已知的风险均应采取针对性的CAPA措施:硬件方面,从DQ方面就实现介入,做好IQ、OQ、PQ,通过设备调试优化、加强维护保养来杜绝风险的发生;软件方面,通过参照相关指南来科学制订检验标准,系统制订相关SMP和SOP、加强人员培训和检查监控,以降低清洁验证中的风险。

清洁验证风险评估

清洁验证风险评估

清洁验证风险评估清洁验证是指对清洁性能进行验证和评估的过程,旨在确保清洁产品或服务符合预定的质量要求和标准。

对于清洁验证过程,风险评估是一个至关重要的步骤,可以帮助识别和评估潜在的风险,并采取相应的控制措施来降低这些风险的发生。

以下是一个关于清洁验证风险评估的700字的示例:清洁验证风险评估在进行清洁验证之前,必须进行全面的风险评估,以识别潜在的风险并采取相应的控制措施来减少这些风险的发生。

以下是一个针对清洁验证的风险评估过程:1. 识别潜在的风险:首先,对清洁过程中可能存在的一些潜在风险进行识别。

这些风险可能包括但不限于清洁剂残留、清洁过程不充分、清洁剂质量不合格等。

2. 评估风险的严重性:对于识别出的潜在风险,根据其潜在的严重程度进行评估。

评估的指标可能包括对产品质量的影响、对人员健康和安全的影响等。

3. 评估风险的发生概率:评估每个潜在风险发生的概率。

这可以通过识别风险发生的可能性的指标来完成,如过去的经验、数据分析等。

4. 评估控制措施的有效性:对于每个潜在风险,评估已经采取的控制措施的有效性。

这可以通过分析之前的清洁验证数据、评估清洁过程中采取的控制措施等来完成。

5. 制定风险管理策略:在评估完风险的严重性和发生概率后,根据结果制定相应的风险管理策略。

这可能包括加强清洁过程的监控、引入更有效的清洁剂、优化清洁工艺等。

6. 决定风险控制的优先级:根据风险评估结果,在所有识别出的潜在风险中确定风险控制的优先级。

对于高风险的风险,应优先采取控制措施来降低其风险水平。

7. 实施和监控控制措施:根据制定的风险管理策略,实施和监控相应的控制措施。

这可能包括建立清洁过程的监控程序、进行定期的清洁验证等。

通过进行清洁验证风险评估,可以帮助组织识别和评估潜在的风险,并采取措施来降低这些风险。

这有助于确保清洁产品或服务的质量和可靠性,同时也提升了组织对风险的管理能力和决策的准确性。

清洁验证风险评价

清洁验证风险评价

xxxxx清洁验证风险评估VP08.00起草审批:你的签名表明你已清楚了解本文件及附件内容,充分理解并认可本文件的所有条款。

1评估范围本次评估仅涉及生产过程中与药品或药材直接接触的工艺设备及与与药品或药材直接接触的中转桶、托盘等工器具。

其他在xxx生产过程中使用非直接接触设备,如称量设备,将不会在清洁验证的过程中考虑,但,并不排除我们可能通过风险评估对这类设备提出清洁的特殊要求。

2职责2.1质量保证部验证的实施,按照验证方案的要求进行取样、检测,验证报告的整理、审核2.2生产部按照清洁SOP的要求清洁设备、器具3评估依据药品生产质量管理规范(2010年修订版)4产品概述4.1工艺概述本品为中药材在一般区经前处理、醇提、乙醇回收、离心、浓缩后,转入D 级洁净区进行浓缩、收膏、配液而得。

4.2设备概述目前用于本品的所有设备均为专线设备,与产品直接接触的主要设备,包括一般区设备:,D级洁净区设备:。

设备一览表4.3产品的活性成分信息4.4最难清洁活性成分本品原药材中的活性成分,除xxx溶解性较差外,其余均有较好的溶解性,较容易清除,故仅考虑XXX。

5产品的直接接触情况6设备的使用状况6.1产品批量:6.3前处理准备可能持续数天,每次只进行一种物料的粉碎。

每次粉碎后清场,并对设备进行清洁。

6.4每日生产结束后,将对使用过的设备、器具、区域进行清洁。

批次与批次之间仅进行清场活动,不清洁。

7设备的清洁方法7.2最长等待清洗时间:24小时。

7.3清洗方式的其他细节,如水量、清洗时间、清洗方式等,在下列SOP中已经详细列出8持续的清洁验证8.1以下情况发生时(但不限于),极可能引发对清洁验证的重新评估,极可能需要持续的清洁验证8.1.1本产品线上增加其他品种的产品8.1.2阶段性生产方式的改变:比如增加批次8.1.3产品批量的增加8.1.4拟延长生产后的待清洗时间8.1.5拟延长清洗后的保存时间,或改变清洗后的保存方式8.1.6清洗方式的改变:指拟在清洗程序中改变:拆卸部件、清洗剂、清洗液、清洗程序、水温、水量、流速、清洗时间等8.1.7由手动清洗方式改变为自动清洗或其他清洗方式8.1.8清洗操作者的改变:由于手工清洁的特殊性,当清洗操作者改变时,应确保他(她)已经经过培训8.2本次清洁验证将与工艺验证同步运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Risk-Management Assessment of Visible-Residue Limits in Cleaning ValidationA risk-management assessment of visible-residue limits (VRL) in cleaning validation of pharmaceutical formulations was conducted for both pharmaceutical pilot plant and manufacturing facilities. The authors discuss how potential risks were identified, analyzed for probability, considered for seriousness, and controlled through avoidance or mitigation. These opportunities for VRL implementation then were identified for both pilot plant and manufacturing settings.Sep 2, 2006By: Richard J. Forsyth, Jeffrey Hartman, Vincent Van Nostrand Pharmaceutical TechnologyBefore formal cleaning validation programs were instituted, visual inspection was the primary means of determining equipment cleanliness. The use of visual inspection is still typically a component of a cleaning validation program and for routine inspections of cleaning effectiveness, but the use of visual inspection as a sole criterion for equipment cleanliness has not been successfully implemented as a valid approach for cleaning validation.A validated cleaning program based onquantitative visual inspections inconjunction with swab testing is possible.Acceptable visible-residue limits (VRLs) canbe established in conjunction with andcompared with swab results. Assuming the swabresults demonstrated a validated cleaningprocedure, if the results are in agreement, then the VRLs may be used going forward. A similar argument has been successfully used to defend the use of rinse sampling established in conjunction with swab results.Mendenhall proposed the use of only visual examination to determine equipment cleanliness in 1989 (1). He concluded that visible cleanliness criteria were more rigid than quantitative calculations and clearly adequate. LeBlanc also explored the role of visual examination as the sole acceptance criterion for cleaning validation (2). Nonetheless, the US Food and Drug Administration saw the use of a visually clean criterion limited to between lots of the same product (3). Recent work described the implementation of VRLs for the introduction of new compounds into a pharmaceutical pilot plant with previously validated cleaning procedures (4, 5). VRLs were established for all new compounds and compared with the acceptable-residual limit (ARL). If the VRL was lower, then visual cleanliness was used to determine if the compound was a new worst-caserequiring validation. Additional work established VRLs and acceptable viewing parameters for several marketed formulations under the more challenging viewing conditions associated with larger size manufacturing equipment (6). This work was conducted in an effort to determine if VRLs and visual inspection only could be adopted as an adequate methodology in a multiproduct pharmaceutical manufacturing plant with previously validated cleaning procedures.Figure 1: A risk-analysis grid using visual-residue limits (VRLs) and acceptable-residue limits (ARLs) as criteria.The advantages of a properly validated and maintained VRL program are numerous. Visual inspection tests all visible equipment surfaces. Other than piping or tubing, most manufacturing equipment can be broken down such that the vast majority of surfaces are visible. For complex equipment and modules that are inaccessible to swabbing, rinse-sample testing can supplement visual inspections. VRL inspections reduce the personnel time needed to swab the manufacturing equipment. They eliminate ongoing analytical resource needs beyond the initial validation. Method development and validation resources for new development compounds are not required, which can be considerable. With the expanded use of VRL data in lieu of surface testing, the extent of testing and documentation necessary for each assessment is reduced, as well as the costs for long-term storage of the documentation and data. The advantage for themanufacturing area isthe instant availability of visual-testing results, which minimizes equipment downtime while waiting for analytical results and increases manufacturing productivity. Savings in manpower,analytical instrumentation, and documentation free these resources for other tasks.Implementing a VRL program includes the assumption of some degree of risk. Risks arise from the uncertainties of implementing a new cleaning strategy and can be diminished by generating more data, spending more resources, and taking more time. A balance of quality, time, and cost is necessary to manage risks associated with a VRL program. Risk management identifiesTable I: Applications and risk assessment of visible-residue limits (VRLs).the risks, analyzes the seriousness and probability of the risks, and plans appropriate responses to prevent or mitigate the risks. Risk analysis includes the benefits of viewing risk objectively and realistically, prioritizing resources, and justifying decisions to support prudent risk-taking.A risk-management assessment of VRL applications includes theidentification of potential risks. The potential risk analysis determined the probability of occurrence and seriousness. Probabilities occur in low, medium, and high categories. Likewise, risk seriousness has designations of low, medium, and high. Individual risks populate a matrix of probability versus seriousness.Risk evaluation leads to risk management. Risk avoidanc e takes the necessary steps to prevent a risk from occurring. Risk mitigation lessens the probability and seriousness of the risk. Risk acceptance isappropriate if the probability of occurrence is low or will not be serious enough to compromise product quality.RiskidentificationThe most serious risk using VRLs is thepotential that dirty equipment passes visualinspection and the subsequently manufacturedformulation is compromised. Another risk is aregulatory agency challenge to the VRLapproach. Finally, the subjectivity of visualassessment is a risk. The closer a VRL is tothe ARL, the greater this risk becomes. In addition to these risks, there are limitations when applying VRLs. To date, VRL determinations have been limited to stainless steel surfaces, which comprise the vast majority of equipment surfaces. Other materialsRisk analysis: key terminologyof construction were not evaluated because of their poor reflective properties and would have to be addressed separately. VRL applications also have obvious limitations with respect to assessing microbiological control, particularly with wet-processing equipment. Acleaning-validation program would still need to assess the risks for microbial contamination of equipment. Surface sampling and rinse testing would be required to demonstrate a satisfactory state of control with respect to bioburden.Risk analysisRisk analysisSeveral causes are possible for dirty equipment passing visual inspection and compromising the subsequently manufactured formulation. The most likely scenario is that the inspector either did not perform a 100% inspection or performed an inadequate inspection on the equipment. As shown in Figure 1, the seriousness of an inadequate inspection is high because the subsequent batch could be compromised. The range of probability of an inadequate inspection depends on several factors. Training of the inspectors is a crucial component if VRLs are used to determine equipment cleanliness. Each active pharmaceutical ingredient (API) has a characteristic VRL, and inspectors must be familiar with the appearance of each residue. Visual inspection must be performed appropriately by inspecting all contact surfaces of the product with proper viewing angles of lighting and equipment. Documented training must be updated as new APIs and formulations are introduced into the manufacturing matrix.VRLs resulting in residues above the ARL are a potential risk. A comparison of the VRL relative to the ARL is essential before any use of VRLs is initiated. The VRL must be lower than the ARL to use the VRL for cleaning evaluation. Although the seriousness for this risk is high, the probability is low.The risk of a regulatory agency challenge is more likely when using VRLs only if there is not an initial validation study incorporating surface or rinsate testing. FDA has stated that the use of visual examination is limited between batches of the same product (2). Agencies from the European Union, Japan, and Canada also are likely to challenge a cleaning validation program using VRLs. The probability of an agency questioning the use of VRLs is high. The seriousness of the risk depends on the extent of VRL use and the data generated to support VRL use. VRL implementation can range from very specific situations, to more general applications, to the basis for an entire cleaning validation program. The data to support the use of VRL can range from a single, general limit (7, 8) to specific VRL determinations for each API and drug product (4, 6).The subjectivity of VRL determinations and routine visual inspections are an ongoing risk. The probability and seriousness of this risk depend on the extent of training, ongoing monitoring, and VRL data generation, which can be minimized in a well-run VRL program by using at least four observers to determine VRLs and redundant monitoring, resulting in low probability and low seriousness.Other uses of VRL in the pilot plant include technology transfer to a contract or other manufacturing facility. Since cleaning procedures between facilities are different, VRLs would be a quick, simple verification of cleaning in place of analytical method transfer and testing. This strategy applies more to early development where the number of manufactured batches is limited and for compounds that are relatively nontoxic.VRLs also can be used for the introduction of new equipment into the facility. VRLs would be used to ensure baseline cleanliness and demonstrate equivalency with respect to the cleaning efficacy of a previously validated procedure. Developing the cleaning procedure for new or modified equipment in with VRLs is an efficient way to get equipment on line.The optimization of new cleaning procedures during development is a potential application for VRLs. Cleaning cycle times could be challenged with VRL determination as the acceptance criteria. A more immediate benefit would be realized with manual cleaning procedures. Personnel who clean the equipment could effectively determine optimal scrub times and rinse volumes with a visual limit.The cleaning-validation program of the pilot plant was based on qualitative visual inspection and swab-sample testing (9). A recent cleaning validation study (10) used VRLs along with swab-sample testing. The cleaned equipment passed both the swab testing and VRL inspection. Nonetheless, the swab-assay results were higher than expected based on the VRL data. An investigation concluded that the compound had reacted and formed an enantiomer with greater ultraviolet absorbance. The investigation demonstrated the value of establishing VRL data in conjunction with swab recoveries.Uses of VRLs in a manufacturing facilityUses of VRLs in a manufacturing facilitySeveral opportunities to apply VRLs as a surrogate to surface sampling have been identified in manufacturing facilities using good manufacturing practices (GMPs). Process controls and procedures also have been identified to mitigate the risks when applying VRLs in a GMP facility.Given that VRL determinations for drug-product formulations have been established (4, 6) and the relative accessibility to visual inspections with this equipment, the scope of these applications would be primarily applicable to pharmaceutical manufacturing and primary packaging operations.As with pilot-plant facilities, VRL data may be used to develop new or optimize existing cleaning procedures. For manual cleaning procedures where the VRL is less than the ARL, the extent of routine documentation and cleaning records could be streamlined in a GMP facility. Once optimal scrub times and rinse volumes have been validated and incorporated into the cleaning procedure, visual cleanliness may be the only critical cleaning parameter that would require documentation on a routine basis. With VRL data, a check by a second person for visual cleanliness confirms performance and ensures that the level of residuals is below the acceptable residue level. This procedure may obviate the need to record actual cleaning parameter data (i.e., scrub times and rinse volumes) on a routine basis and reduce the volume of GMP documentation that must be maintained for marketed drug products.VRL data and visual inspection may be applied to support the introduction of new products into existing validated product matrices. The use of product matrices or bracketing product residues to validate a "worst case" for multiproduct equipment modules is a common practice in industry and supported by regulatory guidance (2, 11–13). Best practices include an evaluation of the different products and intermediates with respect to solubility and cleanability. Laboratory studies may be performed to directly compare the relative cleanability between the targeted compounds and products. Methodologies for rapid and inexpensive testing for cleanability have previously been reported (14). The relative toxicity data for all compounds in the matrix should also be reviewed, with the ARL set using the most potent compound. To validate the matrix, validation studies would challenge the cleaning on the worst-case compound to remove using an ARL calculated for the most potent compound in the matrix. As new products are introduced, toxicity and cleanability must be assessed as to whether the compound represents a new worst case. If not a new worst case, the VRL of the new compound can be compared with the validated ARL. If the new compound is less than the ARL, visual inspection alone should be satisfactory for revalidation of the cleaning procedure for a new product.The interval of use (manufacturing campaign) and the interval between end of use and cleaning are process parameters that must be validated. Theoretically, the more batches a piece of equipment processes, the greater the soil load, and the more difficult it is to clean. Hence, theneed to challenge cleaning cycles after campaigns of different lengths. Nonetheless, some products' physical, chemical, and surface adhesion properties do not change over the campaign length. For manufacturing these products (dry processing), certain types of equipment do not allow residues to accumulate over time by design. This equipment is sloped for gravity removal of product, whereby the soil load (both the amount and nature of the soil) after one batch is comparable to the load after multiple batches within a campaign (i.e., "freely draining"). This can be verified by visual inspection on a routine basis. For stable products, manufactured in freely draining equipment, there should be low-to-no process risks with respect to extending a validated campaign length based on visual inspection. Routine inspections for visual cleanliness would mitigate any potential process risks with carryover of process residuals and confirm cleaning performance. This same rationale could be applied to extending validated times for the interval between the end of use and equipment cleaning.Once a cleaning process is validated in a GMP manufacturing environment, the process should be monitored periodically to ensure consistent and robust performance. Independent visual inspections should be incorporated into the periodic assessment program to confirm that cleaning processes remain in a state of control. A second person should check for visual cleanliness, and the frequency of recleaning is an appropriate metric for assessing cleaning performance. This additional control helps to ensure robustness of the validated cleaning procedure. With an appropriate VRL program, visual inspection may be used rather than surface and rinsate testing to demonstrate continued consistent cleaning performance.ConclusionConclusionVisible-residue limits (VRL) have been evaluated for pilot plants and manufacturing facilities from a risk-assessment perspective. Opportunities for VRL implementation have been identified with the acceptable mitigation of the associated risks.ReferencesReferences1. D.W. Mendenhall, "Cleaning Validation," Drug Development and Industrial Pharmacy 15 (13), 2105–2114 (1989).2. D.A. LeBlanc, "'Visually Clean' as a Sole Acceptance Criteria for Cleaning Validation Protocols," PDA J. Pharm. Sci. and Technol. 56 (1), 31–36 (2002).3. US Food and Drug Administration, Guide to Inspection of Validation of Cleaning Processes, (FDA, Division of Field Investigations, Office of Regional Operations, Office of Regulatory Affairs, Rockville, MD, July 1993).4. R.J. Forsyth, V. Van Nostrand, and G. Martin, "Visible Residue Limit for Cleaning Validation and Its Potential Application in a Pharmaceutical Research Facility," Pharm. Technol. 28 (10), 58–72 (2004).5. R.J. Forsyth and V. Van Nostrand, "The Use of Visible Residue Limit for Introduction of New Compounds in a Pharmaceutical Research Facility," Pharm. Technol. 29 (4), 134–140 (2005).6. R.J. Forsyth and V. Van Nostrand, "Application of Visible Residue Limit for Cleaning Validation in a Pharmaceutical Manufacturing Facility," Pharm. Technol. 29 (10), 152–161 (2005).7. G.L. Fourman and M.V. Mullen, "Determining Cleaning Validation Acceptance Limits for Pharmaceutical Manufacturing Operations," Pharm. Technol. 17 (4), 54–60 (1993).8. K.M. Jenkins and A.J. Vanderwielen, "Cleaning Validation: An Overall Perspective," Pharm. Technol. 18 (4), 60–73 (1994).9. R.J. Forsyth and D. Haynes, "Cleaning Validation in a Pharmaceutical Research Facility," Pharm. Technol. 22 (9), 104–112 (1998).10. R.J. Forsyth et al."Correlation of Visible Residue Limits with Swab Results for Cleaning Validation," Pharm. Technol., in-press.11. European Commission, "Qualification and Validation,"EudraLex,Medicinal Products for Human and Veterinary Use: Good Manufacturing Practice,Vol. 4, Annex 15 (European Commission, Brussels, Belgium, July 2001).12. Pharmaceutical Inspection Cooperation Scheme (PIC/S),R ecommendations on Validation Master Plan, Installation and Operational Qualification, Non-Sterile Process Validation, Cleaning Validation, (PIC/S, Geneva, Switzerland, August 2002).13. Health Canada, Health Products and Food Branch Inspectorate, "Cleaning Validation Guidelines" (Health Canada, Ottawa, Ontario, Canada, June 2002).14. R. Sharnez, et al., "In Situ Monitoring of Soil Dissolution Dynamics:A Rapid and Simple Method for Determining Worst-Case Soils for Cleaning Validation," PDA J. Pharm. Sci. and Technol. 58 (4), 203-214 (2004).Richard Forsyth* is an associate director in global clinical GMP quality Forsyth*with Merck & Co., Inc, WP53C-307, West Point, PA 19486, tel. 215.652.7462, fax 215.652.7106, richard_forsyth@Jeffrey Hartman** is a validation manager in regulatory and analytical sciences with Merck & Co., Inc., WP97B-120, West Point, PA 19486, tel. 215.652.8101, fax 215.652.3314, jeffrey_hartman@ Vince Van Nostrand is a research chemist in medicinal chemistry with and Vince NostrandMerck and Co., Inc.*To whom pilot-plant correspondence should be addressed.** To whom manufacturing correspondence should be addressed. Submitted: May 16, 2006. Accepted: June 21, 2006.Keywords: cleaning, inspection, risk management, validation, visible residue limit, VRL。

相关文档
最新文档