Effect of slope angle of an artificial pool on distributions of turbulence

合集下载

斜椭圆参数方程求倾斜角

斜椭圆参数方程求倾斜角

斜椭圆参数方程求倾斜角The problem at hand is to determine the inclination angle of an oblique ellipse given its parametric equations. To solve this problem, we need to understand the concept of an oblique ellipse and its parameters, as well as the mathematical techniques involved in finding the inclination angle.An oblique ellipse is an ellipse that is not aligned with the coordinate axes. It can be described by a set of parametric equations, which relate the x and y coordinates of points on the ellipse to a parameter t. The parametric equations for an oblique ellipse are as follows:x = acos(t)cos(theta) - bsin(t)sin(theta)y = acos(t)sin(theta) + bsin(t)cos(theta)In these equations, a and b represent the semi-major and semi-minor axes of the ellipse, respectively. Theparameter t varies from 0 to 2pi, representing a complete revolution around the ellipse, and theta represents the inclination angle of the ellipse with respect to the x-axis.To find the inclination angle theta, we can use thefact that the inclination angle is the angle between the major axis of the ellipse and the x-axis. The major axis of the ellipse is the line segment that passes through the center of the ellipse and is perpendicular to the minor axis.One way to find the inclination angle is by using the concept of the derivative. We can take the derivative ofthe parametric equations with respect to t and set it equal to zero to find the critical points. The inclination angle can then be determined by evaluating the slope of the tangent line at these critical points.Another approach is to use the concept of the dot product. We can consider the vector formed by thecoefficients of the x and y terms in the parametric equations, and take the dot product of this vector with theunit vector along the x-axis. The inclination angle theta can then be found by taking the arccosine of the dot product.Alternatively, we can use the concept of the slope of a curve. By taking the derivative of the y equation with respect to the x equation, we can find the slope of the curve at any point. The inclination angle can be determined by finding the angle whose tangent is equal to this slope.In conclusion, to find the inclination angle of an oblique ellipse given its parametric equations, we can employ various mathematical techniques such as finding critical points, using dot products, or calculating the slope of the curve. These methods allow us to determine the angle at which the ellipse is tilted with respect to the x-axis.。

焊接专业英语词汇最全版本

焊接专业英语词汇最全版本

焊接专业英语词汇(共10部分)焊接专业英语词汇(共10部分)1、熔化焊熔接fusion welding压接pressure welding焊接过程welding process焊接技术welding technique焊接工艺welding technology/procedure焊接操作welding operation焊接顺序welding sequence焊接方向direction of welding焊接位置welding position熔敷顺序build-up sequence/deposition sequence焊缝倾角weld slope/inclination of weld axis焊缝转角weld rotation/angle of rotation平焊位置flat position of welding横焊位置horizontal position of welding立焊位置vertical position of welding仰焊位置overhead position of welding平焊downhand welding/flat position welding横焊horizontal position welding立焊vertical position welding仰焊overhead position welding全位置焊all position welding:熔焊时,焊件接逢所处空间位置包括平焊、横焊、仰焊等位置所进行的焊接。

如水平固定管所进行的环缝焊接向下立焊vertical down welding/downward welding in the vertical position向上立焊vertical up welding/upward welding in the vertical position倾斜焊inclined position welding上坡焊upward welding in the inclined position下坡焊downward welding in the inclined position对接焊butt welding角焊fillet welding搭接焊lap welding船形焊fillet welding in the downhand position/fillet welding in the flat position 平角焊horizontal fillet welding立角焊fillet welding in the vertical position仰角焊fillet welding in the overhead position坡口焊groove weldingI形坡口对接焊square butt welding喇叭形坡口焊flare groove welding卷边焊flanged edge welding纵缝焊接welding of longitudinal seam横缝焊接welding of transverse seam环缝焊接girth welding/ circumferential螺旋缝焊接welding of spiral seam/welding of helical seam 环缝对接焊butt welding of circumferential seam定位焊tack welding单面焊welding by one side双面焊welding by both sides单道焊single pass welding/single run welding多道焊multi-pass welding单层焊single layer welding多层焊multi-layer welding分段多层焊block sequence/ block welding分层多道焊multi-layer and multi-pass welding连续焊continuous welding断续焊intermittent welding打底焊backing weld封底焊back sealing weld盖面焊cosmetic welding深熔焊deep penetration welding摆动焊welding with weaving/weave bead welding前倾焊foreward welding (英国)/ forehand welding (美国) 后倾焊backward welding(英国)/ backhand welding(美国) 分段退焊backstep welding跳焊skip welding对称焊balanced welding/ balanced welding sequence左焊法leftward welding forehand welding右焊法rightward welding/backhand welding挑弧焊whipping method自动焊automatic welding手工焊manual welding/hand welding车间焊接shop welding工地焊接site welding(英国)/ field welding (美国)拘束焊接restraint welding堆焊surfacing/building up/overlaying隔离层堆焊buttering端部周边焊boxing/end return返修焊rewelding补焊repair welding塞焊plug welding槽焊slot welding衬垫焊welding with backing焊剂垫焊welding with flux backing窄间隙焊narrow-gap welding强制成形焊enclosed welding脉冲电弧焊pulsed are welding电弧点焊arc spot welding螺柱焊stud welding热风焊hot gas welding高能焊high grade energy welding固态焊接solid-state welding单面焊双面成形one-side welding with back formation 焊接条件welding condition焊接工艺参数welding parameter极性polarity正接electrode negative/straight polarity反接electrode positive/reversed polarity运条方式manipulation of electrode焊接电流welding current焊接电流增加时间welding current upslope time焊接电流衰减时间welding current downslope time电流密度current density短路电流short circuit current脉冲电流pulse level/pulse current level脉冲电流幅值pulse current amplitude基值电流background level脉冲频率pulse frequency脉冲焊接电流占空比duty cycle of pulse duration电弧电压arc voltage再引弧电压reignition voltage焊接速度welding speed行走速度rate of travel/travel speed送丝速度wire feed rate线能量heat input/energy input热输入heat input预热preheat后热postheat焊后热处理posweld heat treatment/postheat treatment 预热温度preheat temperature层间温度interpass temperature焊接终了温度finishing temperature后热温度postheating temperature焊丝伸出长度wire extension弧长arc length熔化速度melting rate熔化时间melting time熔化系数melting coefficient熔敷速度rate of deposition/deposition rate熔敷系数deposition coefficient熔敷效率deposition efficiency损失系数loss coefficient飞spatter飞溅率spatter loss coefficient融合比fusion ratio稀释dilution稀释率rate of dilution合金过度系数transfer efficiency/recovery (of an element)坡口groove坡口面groove face坡口面角度angle of bevel (英国)/ bevel angle (美国)坡口角度included angle(英国)/groove angle(美国)坡口高度groove depth钝边root face钝边高度thickness of root face/width of root face根部间隙root gap(英国)/root opening (美国)根部半径root radius/groove radius根部锐边root edge卷边高度height of flange卷边半径radius of flange单面坡口single groove双面坡口double groove坡口形式groove typeI形坡口square grooveV形坡口single V grooveY形坡口single V groove with root face双Y形坡口double Vgroove with root face带钝边U形坡口single U groove带钝边双U形坡口double U grooveVY形坡口single compound angle groove带钝边J形坡口single J groove带钝边双J形坡口double J groove单边V形坡口single bevel groove双V形坡口double V groove不对称双V形坡口asymmetric double V groove双单边V形坡口double bevel groove/K groove带垫板V形坡口V groove with backing/ single V groove with backing 喇叭形坡口flare groove锁底坡口single bevel groove with backing locked坡形板边tapered edge焊缝weld接逢seam焊缝符号welding symbol焊缝金属weld metal填充金属filler metal熔敷金属deposited metal焊缝表面weld face/ face of weld焊缝背面back of weld焊缝轴线axis of weld焊缝尺寸size of weld焊缝宽度weld width/ width of weld焊缝长度weld length/ length of weld焊缝有效长度effective length of weld焊缝厚度throat depth/ throat thickness焊缝计算厚度theoretical throat焊缝实际厚度actual throat熔深penetration/ depth of penetration焊缝成形appearance of weld焊缝成形系数form factor of weld余高reinforcement/ excess weld metal背面余高root reinforcement削平焊缝flush weld/ weld machined flush对接焊缝butt weld角焊缝fillet焊脚leg/ fillet weld leg角焊缝断面形状profile of fillet weld平形角焊缝flat fillet凸形角焊缝convex fillet weld凹形角焊缝concave fillet weld角焊缝凹度concavity侧面角焊缝side fillet weld/ fillet weld in parallel shear 正面角焊缝front fillet weld/ fillet weld in normal shear 立角焊缝fillet weld in the vertical position横角焊缝fillet weld in the horizontal position平角焊缝fillet weld in the flat position斜角焊缝oblique fillet weld连续焊缝continuous weld断续焊缝intermittent weld连续角焊缝continuous fillet weld断续角焊缝intermittent fillet weld交错断续角焊缝staggered intermittent fillet weld并列断续角焊缝chain intermittent fillet weld端接焊缝edge weld卷边焊缝flanged edge weld塞焊焊缝plug weld纵向焊缝longitudinal weld横向焊缝transverse weld环行焊缝girth weld/ circumferential weld螺旋形焊缝spiral weld/ helical weld密封焊缝seal weld承载焊缝strength weld联系焊缝connective weld定位焊缝tack weld焊道bead/ run/ pass焊波ripple焊根weld root/ root of weld焊趾weld toe/ toe封底焊道sealing run (after making main weld)/ back weld打底焊道backing weld (before making main weld)/ back weld 根部焊道root pass/ root run填充焊道filling bead盖面焊道cosmetic bead/ cover pass回火焊道temper bead/ annealing bead熔透焊道penetration bead焊层layer焊接接头welded joint接头形状joint geometry等强匹配接头equalmatching weld joint低强匹配接头undermatching weld joint超强匹配接头overmatching weld joint接头根部root of joint对接接头butt jointI形对接接头square butt jointV形对接接头single V butt jointU形对接接头single U butt jointJ形坡口接头single J butt joint双V形对接接头double V butt joint双单边V形对接接头double bevel butt joint/ K groove butt joint 带钝边U形对接接头double U butt joint带钝边J形坡口接头double J joint角接接头corner jointT形接头T joint斜T形接头inclined T joint十字接头cruciform joint/ cross-shaped joint三联接头joint among three members搭接接头lap joint套管接头muff joint/ sleeve joint双盖板接头double strapped joint盖板接头strapped joint端接接头edge joint卷边接头flanged edge joint锁底对接接头lock butt joint斜对接接头oblique butt joint混合接头mixed joint/ composite joint有间隙接头open joint无间隙接头closed joint焊接电弧welding arc电弧形态arc shape电弧物理行为arc physics behaviour引弧striking arc引弧电压striking voltage电弧气氛arc atmosphere阴极cathode热阴极hot cathode冷阴极cold cathode阴极斑点cathode spot阴极区cathode region阴极区电场强度intensity of the electric field in the cathode region 阴极压降cathode drop阳极anode阳极斑点anode spot斑点压力spot pressure阳极区anode region阳极区电场强度intensity of the electric field in the anode region 阳极压降anode drop弧柱arc column/ arc stream弧柱压降voltage drop in arc column弧柱电位梯度potential gradient in the arc column弧焰arc flame弧心arc core硬电弧forceful arc/ hard arc软电弧soft arc旋转电弧rotating arc脉冲电弧pulsed arc脉冲喷射电弧pulsed spray arc起皱现象puckering phenomena起皱电弧puckering arc起皱临界电流puckering critical current间接电弧indirect arc压缩电弧compressive arc磁控电弧magnetic controlling arc电弧力arc force电磁力electromagnectic force电磁收缩效应pinch effect电弧飘移wandering of arc电弧稳定性arc stability电弧静特性static characteristic of arc电弧动特性dynamic characteristic of arc最小电压原理principle of minimum voltage 电弧挺度arc stiffness电弧偏吹arc blow磁偏吹magnetic blow阴极清理作用cleaning action of the cathode 电弧自身调节arc self-regulation挖掘作用digging action极性效应polarity effect熔滴droplet熔滴比表面积specific surface of droplet熔滴过渡metal transfer过度频率transition frequency粗滴过渡globular transfer; drop transfer短路过渡short circuiting transfer喷射过渡spray transfer旋转喷射过渡rotating spray transfer脉冲喷射过渡pulsed spray transfer爆炸过渡explosive transfer渣壁过渡flux wall guided transfer熔池molten pool沸腾状熔池boiling molten pool弧坑crater熔渣slag渣系slag system渣系相图slag system diagram碱性渣basic slag酸性渣acid slag碱度basicity酸度acidity长渣long slag短渣short slag粘性熔渣viscous slag氧化物型熔渣oxide melting slag盐型熔渣salt melting slag盐-氧化物型熔渣salt-oxide melting slag熔渣流动性fluidity of the slag; slag fluidity 熔渣solidified slag多孔焊渣porous slag玻璃状焊渣vitreous slag自动脱落焊渣self-releasing slag脱渣性slag detachability焊接设备welding equipment; welding set焊机welding machine; welder电焊机electric welding machine; electric welder焊接电源welding power source焊接热循环weld thermal cycle焊接温度场field of weld temperature; weld temperature field准稳定温度场quasi-stationary temperature field焊接热源welding heat source点热源point heat source线热源linear heat source面热源plane heat source瞬时集中热源instantaneous concentration heat source热效率thermal efficiency热能集中系数coefficient of heat flow concentration峰值温度peak temperature瞬时冷却速度momentary cooling rate冷却时间cooling time置换氧化substitutionary oxydation扩散氧化diffusible oxydation脱氧desoxydation先期脱氧precedent desoxydation扩散脱氧diffusible desoxydation沉淀脱氧precipitation desoxydation扩散氢diffusible hydrogen初始扩散氢initial diffusible hydrogen100℃残余扩散氢diffusible hydrogen remained at 100℃残余氢residual hydrogen去氢dehydrogenation去氢热处理heat treatment for dehydrogenation脱硫desulphurization脱磷dephosphorization渗合金alloying微量合金化microalloying一次结晶组织primary solidification structure二次结晶组织secondary solidification structure联生结晶epitaxial solidification焊缝结晶形态solidification mode in weld-bead结晶层状线ripple多边化边界polygonization boundary结晶平均线速度mean solidification rate针状铁素体acicular ferrite条状铁素体lath ferrite侧板条铁素体ferrite side-plate晶界欣素体grain boundary ferrite; polygonal ferrite; pro-entectoid ferrite 粒状贝氏体granular bainite板条马氏体lath martensite过热组织overheated structure魏氏组织Widmannst?tten structureM-A组元martensite-austenite constituent焊件失效分析failure analysis of weldments冷裂判据criterion of cold cracking冷裂敏感系数cold cracking susceptibity coefficient 脆性温度区间brittle temperature range氢脆hydrogen embrittlement层状偏析lamellar segregation愈合healing effect断口金相fractography断口fracture延性断口ductile fracture韧窝断口dimple fracture脆性断口brittle fracture解理断口cleavage fracture准解理断口quasi-cleavage fracture氢致准解理断口hydrogen-embrittlement induced 沿晶断口intergranular fracture穿晶断口transgranular fracture疲劳断口fatigue fracture滑移面断口glide plane fracture断口形貌fracture apperance断口试验fracture test宏观断口分析macrofractography放射区radical zone纤维区fibrous zone剪切唇区shear lip aone焊接性weldability使用焊接性service weldability工艺焊接性fabrication weldability冶金焊接性metallurgical weldability热焊接性thermal weldability母材base metal; parent metal焊接区weld zone焊态as-welded (AW)母材熔化区fusion zone半熔化区partial melting region未混合区unmixed zone熔合区bond area熔合线weld junction (英);bond line (美)热影响区heat-affected zone (HAZ)过热区overheated zone粗晶区coarse grained region细晶区fine grained region过渡区transition zone硬化区hardened zone碳当量carbon equivalent铬当量chromium equivalent镍当量nickel equivalent舍夫勒组织图Schaeffler's diagram德龙组织图Delong’s diagram连续冷却转变图(CCT图)continuous cooling transformation 裂纹敏感性cracking sensibility焊接裂纹weld crack焊缝裂纹weld metal crack焊道裂纹bead crack弧坑裂纹crater crack热影响区裂纹heat-affected zone crack纵向裂纹longitudinal crack横向裂纹transverse crack微裂纹micro-crack; micro-fissure热裂纹hot crack凝固裂纹solidification crack晶间裂纹intercrystalline crack穿晶裂纹transcrystalline crack多边化裂纹polygonization crack液化裂纹liquation crack失延裂纹ductility-dip crack冷裂纹cold crack延迟裂纹delayed crack氢致裂纹hydrogen-induced crack焊道下裂纹underbead crack焊根裂纹root crack焊趾裂纹toe crack锯齿形裂纹chevron cracking消除应力处理裂纹stress relief annealing crack (SR crack)再热裂纹reheat crack焊缝晶间腐蚀weld intercryctalline corrosion刀状腐蚀knife line attack敏化区腐蚀weld decay层状撕裂lamellar tearing焊接性试验weldability裂纹试验cracking testIIW裂纹试验IIW cracking testY形坡口裂纹试验slit type cracking test分块形槽热裂纹试验segmented circular groove cracking test H形裂纹试验H-type cracking test鱼骨形裂纹试验fishbone cracking test指形裂纹试验finger (cracking) testT形裂纹试验Tee type cracking test环形槽裂纹试验circular-groove cracking test可调拘束裂纹试验varestraint testBWRA奥氏体钢裂纹试验BWRA cracking test for austenitie steel圆棒裂纹试验bar type cracking test; round bar cracking test里海裂纹试验Lehigh restraint cracking test圆形镶块裂纹试验circular-path cracking test十字接头裂纹试验cruciform cracking testZ向窗口拘束裂纹试验Z-direction window type restraint cracking test G-BOP焊缝金属裂纹试验G-BOP weld metal crack test巴特尔焊道下裂纹试验Battelle type underbead cracking testU形拉伸试验U-tension test缪雷克期热裂纹试验Murex hot cracking test菲斯柯裂纹试验FISCO (type) cracking testCTS裂纹试验controlled thermal severity拉伸拘束裂纹试验(TRC试验)tensile restraint cracking test刚性拘束裂纹试验(RRC试验)rigid restraint cracking test插销试验implant testTigamajig 薄板焊接裂纹试验Tigamajing thin plate cracking test焊道纵向弯曲试验longitudinal-bead test柯麦雷尔弯曲试验Kommerell bead bend test肯泽尔弯曲试验Kinzel test缺口弯曲试验notch bend test热朔性试验hot-ductility test热影响区冲击试验impact test of HAZ热影响区模拟试验synthetic heat-affected zone test最高硬度试验maximum hardness test落锤试验NRL (Naval Research Laboratory)测氢试验Hydrogen test焊接材料电极焊接材料welding consumables电极electrode熔化电极consumable electrode不熔化电极nonconsumable electrode钨电极tungsten electrode焊丝welding wire. Welding rod实心焊丝solid wire渡铜焊丝copper-plating welding wire自保护焊丝self-shielded welding wire药芯焊丝flux-cored wire复合焊丝combined wire堆焊焊丝surfacing welding rod填充焊丝filler wire焊条electrode/ covered electrode焊芯core wire药皮coating (of an electrode)/ covering (of an electrode)涂料coating flux/coating material造气剂gas forming constituents造渣剂slag forming constituents合金剂alloying constituent脱氧剂dioxidizer稳弧剂arc stabilizer粘接剂binder水玻璃water glass水玻璃模数modules of water glass酸性焊条acid electrode高钛型焊条high titania (type) electrode钛钙型焊条lime titania type electrode钛铁矿形焊条ilmenite type electrode氧化铁型焊条iron oxide type electrode/ high iron oxide type electrode高纤维素型焊条high cellulose (type) electrode石墨型焊条graphite type electrode碱性焊条basic electrode/ lime type covered electrode低氢型焊条low hydrogen type electrode高韧性超低氢焊条high toughness super low hydrogen electrode奥氏体焊条austenitic electrode铁素体焊条ferritic electrode不锈钢焊条stainless steel electrode珠光体耐热钢焊条pearlitic heat resistant steel electrode低温钢焊条low temperature steel electrode/ steel electrode for low temperature 铝合金焊条aluminum alloy arc welding electrode铜合金焊条copper-alloy arc welding electrode铜芯铸铁焊条cast iron electrode with steel core纯镍铸铁焊条pure nickel cast iron electrode球墨铸铁焊条electrode for welding spheroidal graphite cast iron铸芯焊条electrode with cast core wire镍基合金焊条nickel base alloy covered electrode蒙乃尔焊条Monel electrode纯铁焊条pure iron electrode渗铝钢焊条alumetized steel electrode高效率焊条high efficiency electrode铁粉焊条iron powder electrode底层焊条backing welding electrode深熔焊条deep penetration electrode重力焊条gravity electrode立向下焊条electrode for vertical down position welding节能焊条saving energy electrode水下焊条underwater welding electrode耐海水腐蚀焊条seawater corrosion resistant steel electrode低尘低毒焊条low-fume and harmfulless electrode/low-fume and low-toxic electrode堆焊焊条surfacing electrode耐磨堆焊焊条hardfacing electrode钴基合金堆焊焊条cobalt base alloy surfacing electrode碳化钨堆焊焊条tungsten carbide surfacing electrode高锰钢堆焊焊条high manganese steel surfacing electrode双芯焊条twin electrode绞合焊条stranded electrode编织焊条braided electrode双层药皮焊条double coated electrode管状焊条flux-cored electrode气渣联合保护型药皮semi-volatile covering焊条工艺性usability of the electrode/ technicality of the electrode焊条使用性running characteristics of an electrode/ operating characteristics of an ele ctrode焊条熔化性melting characteristics of an electrode焊条直径core diameter焊条偏心度eccentricity (of an electrode)药皮重量系数gravity coefficient of coating焊条药皮含水量percentage of moisture for covering焊条夹吃持端bare terminal (of an electrode)焊条引弧端striking end (of an elcetrode)焊剂welding flux/ flux熔炼焊剂fused flux粘结焊剂bonded flux烧结焊剂sintered flux/ agglomerated flux窄间隙埋弧焊焊剂flux for narrow-gap submerged arc welding低氢型焊剂low hydrogen type flux高速焊剂high speed welding flux无氧焊剂oxygen-free flux低毒焊剂low poison flux磁性焊剂magnetic flux电弧焊arc welding直流电弧焊direct current arc welding交流电弧焊alternating current arc welding三相电弧焊three phase arc welding熔化电弧焊arc welding with consumable金属极电弧焊metal arc welding不熔化极电弧焊arc welding with nonconsumable碳弧焊carbon arc welding明弧焊open arc welding焊条电弧焊shielded metal arc welding (SMAW)重力焊gravity welding躺焊fire cracker welding电弧堆焊arc surfacing自动堆焊automatic surfacing躺板极堆焊surfacing by fire cracker welding带极堆焊surfacing with band-electrode振动电弧堆焊vibratory arc surfacing耐磨堆焊hardfacing埋弧焊submerged arc welding (SAW)多丝埋弧焊multiple wire submerged arc welding纵列多丝埋弧焊Tandem sequence (submerged-arc welding)横列多丝埋弧焊series submerged arc welding (SAW-S)横列双丝并联埋弧焊transverse submerged arc welding热丝埋弧焊hot wire submerged-arc welding窄间隙埋弧焊narrow-gap submerged arc welding弧压反馈电弧焊arc voltage feedback controlling arc welding自调节电弧焊self-adjusting arc welding适应控制焊接adaptive control welding焊剂层burden; flux layer气体保护电弧焊gas shielded arc welding保护气体protective atmosphere惰性气体inert-gas活性气体active-gas惰性气体保护焊inert-gas (arc) welding氩弧焊argon arc welding熔化极惰性气体保护电弧焊metal inert-gas arc welding钨极惰性气体保护电弧焊tungsten inert-gas arc welding钨极氢弧焊argon tungsten arc welding脉冲氢弧焊pulsed argon arc welding熔化极脉冲氢弧焊argon metal pulsed arc welding钨极脉冲氢弧焊argon tungsten pulsed arc welding热丝MIG焊hot wire MIG welding热丝TIG焊hot wire TIG welding氨弧焊helium-arc welding活性气体保护电弧焊metal active-gas arc welding混合气体保护电弧焊mixed gas arc welding二氧化碳气体保护电弧焊carbon-dioxide arc welding; CO2 arc welding 细丝CO2焊CO2 arc welding with thin wire粗丝CO2焊CO2 arc welding with thick wire磁性焊剂CO2焊unionarc welding药芯焊丝CO2焊arcos arc process; dual shield arc welding 气电立焊electrogas (arc) welding氮弧焊nitrogen-arc welding水蒸气保护电弧焊water vapour arc welding原子氢焊atomic hydrogen welding冲器室中电弧焊controlled atmosphere arc welding旋转电弧焊rotating arc welding短路过渡电弧焊short circuiting arc welding焊丝横摆频率weaving speed of wire焊丝停摆时间electrode keep time of slider等离子弧焊plasma arc welding (PAW)等离子弧plasma arc等离子流plasma jet转移弧transferred arc非转移弧nontransferred arc联合型等离子弧combined plasma arc主弧main arc维弧pilot arc维弧电流pilot arc surrent双弧现象double arcing双弧临界电流critical current of double arcing等离子弧焊枪plasma (welding) torch压缩喷嘴constricting nozzle单孔喷嘴single port nozzle多孔喷嘴multiport nozzle压缩喷嘴孔径orifice diameter孔道长度orifice throat length孔道比orifice throat ratio等离子气plasma gas; orifice gas电极内缩长度electrode setback小孔效应keyhole effect小孔型等离子弧焊keyhole-mode welding熔透型等离子弧焊fusion type plasma arc welding大电流等离子弧焊high-current plasma arc welding中电流等离子弧焊intermediate-current plasma arc welding 小电流等离子弧焊low-current plasma arc welding微束等离子弧焊micro-plasma arc welding交流等离子弧焊AC plasma arc welding脉冲等离子弧焊pulsed plasma arc welding等离子弧堆焊plasma arc surfacing热丝等离子弧堆焊hot wire plasma arc surfacing粉末等离子弧堆焊plasma arc powder surfacing等离子-熔化极惰性气体保护电弧焊plasma MIG welding转移弧电源transferred arc power supply非转移弧电源nontransferred arc power supply电弧焊设备arc welding equipment电弧焊机arc welding machine直流弧焊机DC arc welding machine交流弧焊机AC arc welding machine交直流两用弧焊机AC/DC arc welding machine单站弧焊机single operator arc welding machine多站弧焊机multi-operator arc welding set固定式弧焊机stationary arc welding machine移动式弧焊机portable arc welding machine台式弧焊机bench arc welding machine内燃机驱动式弧焊机combustion engine driven arc welding set电动机驱动式弧焊机motor driven arc welding set熔化极弧焊机arc welding machine using a consumable electrode不熔化极弧焊机arc welding machine using a non-consumable electrode脉冲弧焊机pulsed arc welding machine气体保护弧焊机gas shielded arc welding machine氩弧焊机argon arc welding machine二氧化碳弧焊机CO2 arc welding machine钨极惰性气体保护弧焊机tungsten inert-gas welding machine熔化仍惰性气体保护弧焊机metal inert-gas welding machine气电立焊机electrogas (arc) welding machine等离子弧焊机plasma arc welding machine微束等离子弧焊机micro-plasma welding equipment原子氢焊机atomic hydrogen welding apparatus埋弧焊机submerged arc welding machine弧焊电源arc welding power source直流弧焊电源DC arc welding power source交流弧焊电源AC arc welding power source交直流两用弧焊电源AC/DC arc welding power source脉冲弧焊电源pulsed arc welding power source上升特性弧焊电源rising characteristic arc welding power source平特性弧焊电源constant –voltage arc welding power source下降特性弧焊电源dropping characteristic arc welding power source垂降特性弧焊电源constant-current arc welding power source多特性弧焊电源slope-controlled arc welding power source逆变式焊接电源inverter welding power source晶体管弧焊电源transistor arc welding power source电源动特性dynamic characteristic电源外特性external characteristic弧焊变压器arc welding transformer弧焊整流器arc welding rectifier硅弧焊整流器silicon arc welding rectifier晶闸管弧焊整流器SCR arc welding rectifier; arc welding silicon controlled rectifier脉冲弧焊整流器pulsed arc welding rectifier弧焊发电机arc welding generator焊车welding tractor焊接机头welding head行走机构traveller送丝机构wire feeder等速送丝方式constant wire-feed system变速送丝方式alternate wire-feed system跟踪装置tracer焊丝盘wire reel焊钳electrode holder焊枪welding gun电极夹electrode holder导电嘴tip; contact tube喷嘴nozzle焊剂漏斗flux-hopper高频振荡器oscillator; HF unit脉冲引弧器pulsed arc starter; surge injector脉冲稳弧器pulsed arc stabilizer脉冲激弧器pulsed arc exciter输出电抗器out put reactor镇定变阻器ballast rheostat直流分量抑制器direct current suppressor焊接回路welding circuit额定焊接电流rated welding current焊接电流调节范围range of welding current regulation空载电压open circuit voltage(no load voltage)约定负载电压conventional load voltage负载持续率duty cycle额定负载持续率rated duty cycle; standard service手工弧焊机manual arc welding machine电焊渣electroslag welding (ESW)手工电渣焊manual electroslag welding丝极电渣焊electroslag welding with wire electrode板极电渣焊electroslag welding with plate electrode熔嘴电渣焊electroslag welding with consumable nozzle 管极电渣焊electroslag welding with tube electrode窄间隙电渣焊narrow-gap electroslag welding电渣堆焊electroslag surfacing电渣焊机electrosalg welding machine熔嘴consumable nozzle; consumable wire钢档板steel shoe (钢冷却板Cu-cooling plate铜滑板copper shoe渣池slag bath渣池深度depth of slag bath渣池电压voltage of slag bath电渣过程稳定性electroslag process stability焊丝间距distance between welding wires电子束焊electron beam welding (EBW)脉冲电子束焊pulsed electron beam welding加速电压acceleration voltage/ operating voltage电子束电流beam current电子束功率beam power电子束功率密度beam power density焦点focal spot焦距focal length工作距离work distance电子束焊机electron beam welding machine高真空电子束焊机full vacuum electron beam welder低真空电子束焊机partial vacuum electron beam welder 非真空电子束焊机nonvacuum electron beam welder真空度vacuum电子枪electron gun二极电子枪diode gun三极电子枪triode gun偏压电极bias electrode电磁透镜electromagnetic lens电子束偏转线圈electron beam deflection coils导流系数perveance钉尖spiking激光焊laser welding/ laser beam welding连续激光焊continuous laser welding脉冲激光焊impulsed laser welding激光焊机laser welding equipment气体激光器gas laser固体激光器solid laser焦斑直径focussed diameter of the beam离焦量clearance between focal point and (plate) surface 焊缝深宽比weld seam depth-to-width ratio-3、气焊、热剂焊、水下焊gas welding氧乙炔焊oxy-acetylene welding氢氧焊oxy-hydrogen welding空气乙炔焊air-acetylene welding氧乙炔焊oxy-acetylene flame氢氧焰oxy-hydrogen flame氧煤气焰oxy-coal gas flame焊接火焰welding flame混合比mixing ratio混合气体可燃范围inflammable limit of the gaseous一次燃烧primary combustion二次燃烧secondary combustion燃烧速度combustion rate燃烧强度combustion intensity火焰热效率flame heating efficiency焰芯inner cone; flame cone内焰internal flame外焰flame envelope中性焰neutral flame氧化焰oxidizing flame碳化焰carburizing flame回火flashback逆火backfire回烧flashback气体发生速度gasification speed焊炬torch; blow pipe等压式焊炬balanced pressure torch射吸式焊炬injector torch氧乙炔焊炬oxy-acetylene torch焊割两用炬combined cutting and welding torch混合室mixing chamber喷射器injector焊嘴welding nozzle; welding tip液氧气化器oxygen evaporator气瓶gas cylinder乙炔瓶acetylene cylinder阀罩cylinder cap气瓶阀cylinder valve汇流排cylinder manifold减压器pressure regulator; gas regulator单级减压器single stage regulator两级减压器two stage regulator回火防止器flashback arrestor-干式回火防止器dry flashback arrestor水封式回火防止器water-closing type arrestor净化器purifier乙炔发生器acetylene generator低压乙炔发生器low pressure acetylene generator热剂补焊thermit repair welding钢轨热剂焊thermit rail welding热剂thermit powder热剂钢水thermit steel热剂反应thermit reaction热剂溶渣thermit slag热剂铸模thermit mold; mold for thermit weld热剂坩埚thermit crucible焊筋collar水下焊underwater welding水下气体保护电弧焊underwater gas shielded arc welding水下等离子弧焊underwater plasma arc welding温式水下焊wet method underwater welding干式水下焊dry method underwater welding局部干式水下焊local dry underwater welding水帘局部干式水下焊water curtain type dry underwater welding4、压焊(电阻焊摩擦焊爆炸焊扩散焊超声波焊等)电阻焊resistance welding (RW)点焊spot welding; resistance spot welding凸焊projection welding缝焊seam welding滚点焊roll-spot welding连续点焊stitch welding多点焊multiple spot welding手压点焊push welding; poke welding脉冲点焊pulsation spot welding; multiple-impulse welding双面点焊direct spot welding单面点焊indirect spot welding串联点焊series spot welding多点凸焊multiple projection welding频道进缝焊step-by-step seam welding压平缝焊mash seam welding串联缝焊series seam welding对接缝焊butt seam welding; foil-butt seam电阻对焊upset butt welding闪光对焊flash butt welding (FBW)-储能焊stored energy welding电容储能点焊condenser discharge spot welding高频电阻焊high frequency resistance welding冲击电阻焊percussion welding胶接点焊spot weld-bonding; weld-bonding闪光flashing; flash过梁bridge; lintel顶锻upsetting; upset夹紧力clamping force顶锻力upsetting force; upset force电极压力electrode force; electrode pressure电极滑移electrode skid焊接循环welding cycle预压时间squeeze time锻压时间forge-delay time; forge time焊接通电时间(电阻焊)welding time (resistance welding)预热时间preheat time加热时间heat time冷却时间cool time间歇时间quench time; chill time回火时间temper time维持时间hold time休止时间off time闪光时间flash time; flashing time顶锻时间upset time; upsetting time有电顶锻时间upset current time无电顶锻时间upset current-off time闪光速度flashing speed闪光电流flashing current; flash current顶锻电流upset current预热电流preheat current回火电流temper current调伸长度initial overhange; extension闪光留量flash allowance顶锻留量upset allowance顶锻速度upset speed电极接触面electrode contact surface贴合面faying surface焊点welding spot熔核nugget熔核直径diameter of nugget塑性金属环区corona bond焊透率penetration rate压痕indentation。

大连东软国际软件园(河口园区)一期工程,大连,中国

大连东软国际软件园(河口园区)一期工程,大连,中国

大连东软国际软件园(河口园区)一期工程,大连,中国佚名【期刊名称】《世界建筑》【年(卷),期】2019(000)005【总页数】2页(P94-95)【正文语种】中文1 鸟瞰/Aerial view2 外景/Exterior view东软国际软件园河口园区位于大连西部一处起伏的坡地上,西临绿植优美的山地,隔旅顺南路与黄海中的小平岛港湾相望。

该项目的规划设计充分体现了山地建筑的特点,着重处理了山谷的景观效应,充分利用了周边的自然景观资源,以植根于大地的建筑语言实现自然赐景与人工造景的完美融合。

同时,软件园的单体设计根据寒地气候特征,综合建筑功能、形态等需要,合理组织和协调各建筑元素,使建筑具有较强的气候适应和调节能力,削弱冬季寒冷气候对室内热舒适环境的不利影响。

适应山地环境的建筑形态应变、适应寒冷气候的建筑空间应变回应了建筑的功能审美,设计中以平实、质朴、典雅、浑厚的城堡样式作为园区浪漫、永恒与和谐特质的形式外显。

□The Neusoft International Software Park Hekou Park is located on an undulating slope in the west of Dalian. There are beautiful mountains on the west of the park, and Xiaoping harbour in the Huanghai is across thesouth of Lvshun Road.The planning design of the project fully reflects the characteristics of the mountain buildings, focusing on the landscape effect of the valley, making full use of the surrounding natural landscape, and achieving the perfect blend of natural and artificial landscaping with the architectural language rooted in the earth. At the same time, the monomer design of the software park is based on the characteristics of the cold climate, comprehensive building functions and forms, and reasonable organisation and coordination of various architectural elements,so that the building has strong climate adaptation and adjustment capabilities, weakening the adverse effects of the indoor thermal comfort environment,from the winter cold climate. The architectural form adapts to the mountain environment and the cold climate respond to the functional aesthetic of the building. The design is characterised by plain,elegant and vigorous chateau style as the romantic,eternal and harmonious nature of the park.□3 外景/Exterior views4 外景/Exterior views6 外景/Exterior views项目信息/Credits and Data设计团队/Design Team: 李铁军,曲冰,陈嘉未,徐丽莎,张蓉/LI Tiejun, QU Bing, CHEN Jiawei, XU Lisha,ZHANG Rong建筑面积/Floor Area: 8542.32m2设计时间/Design Time: 2013-2014竣工时间/Completion Time: 2015摄影/Photos: 韦树祥/WEI Shuxiang 6 手绘草图/Sketch。

低真空条件下制备的银薄膜的电阻率特性及结构_吴平

低真空条件下制备的银薄膜的电阻率特性及结构_吴平

第27卷 第3期2007年3月物 理 实 验PH YSICS EXPERIMENT ATIONV ol.27 N o.3 M ar.,2007收稿日期:2006-09-29;修改日期:2006-12-15基金项目:北京科技大学国家工科物理基础课程教学基地项目;北京科技大学教研基金项目;中国高等教育学会/十一五0教育科学研究规划项目作者简介:吴 平(1962-),女,安徽望江人,北京科技大学应用科学学院物理系教授,博士生导师,博士,主要从事功能薄膜材料、软物质研究以及物理实验的教学与研究.低真空条件下制备的银薄膜的电阻率特性及结构吴 平,邱 宏,赵云清,姜德怀,张 蓓,赵雪丹,黄筱玲,潘礼庆,田 跃(北京科技大学应用科学学院物理系,北京100083)摘 要:研究了在2.2Pa 低真空条件下用直流溅射法制备的银薄膜的电阻率特性和薄膜结构.实验表明,薄膜厚度对薄膜电阻率有显著影响,随膜厚的增加薄膜电阻率降低,在膜厚大于200nm 时趋于稳定,电阻率为2.54@10-88#m.薄膜表面和晶粒间界对传导电子的散射导致了银薄膜电阻率的尺寸效应.研究结果表明,可以在2.2Pa 的低真空条件下制备金属银薄膜,将银靶用于目前大学物理实验课中金属薄膜制备及金属薄膜电阻率测量实验是可行的.关键词:银薄膜;电阻率;结构中图分类号:O 484 文献标识码:A 文章编号:1005-4642(2007)03-0003-041 引 言北京科技大学物理系编排的金属薄膜制备及物性测量系列研究性实验已成为全校理工科本科生大学物理实验课程的重要组成部分[1~4],2004年/金属薄膜制备及电阻率测量系列实验装置0获第三届全国高校物理实验教学仪器评比一等奖.我校大学物理实验课每次课为3学时,所面向的学生为每学年数千人的理工科一、二年级学生,因此对薄膜样品制备装置操作的复杂性、获得真空所需要的时间以及仪器成本都有所限制.基于以上因素,笔者所设计的薄膜制备实验装置[5]的真空由机械泵获得,系统极限真空在2~3Pa.要在这样的低真空度下获得金属薄膜,只能使用惰性金属.金是最为理想的材料,但是在大范围实验教学当中以金作为靶材,实验耗材费用相当高.金属银也具有较强的化学惰性,在空气中不氧化,且价格比金低很多.银是可见和近红外光区的重要光学材料[6],用银与不同金属、半导体、绝缘体复合,可研制和开发具有独特性能的光电功能薄膜,如IT O/A g/IT O 多层膜[7].在制备IT O/Ag/IT O 多层膜时,ITO 要在充氧的条件下蒸镀,因而对银薄膜的电阻率和电子的迁移率都有影响,所以低真空条件下制备的银薄膜的导电性、光学性质、应力[8]以及微结构也是银薄膜应用中需要研究的基础课题[9].本文研究了低真空条件下用直流溅射法制备的银薄膜的电阻率特性和结构,探讨了银用于大学物理实验课中金属薄膜制备及金属薄膜电阻率测量实验的可行性.2 样品制备与测量所用银靶直径60mm,厚0.5mm,纯度为99.99%.靶与衬底间的距离为40mm.衬底为普通玻璃,尺寸约为2.5cm @2.5cm.镀膜前,将玻璃衬底放在丙酮中超声清洗5m in,然后放在无水乙醇中超声清洗5min,最后用吹风机热风吹干.用机械泵将镀膜室的真空抽到2.2Pa 后,向镀膜室内充入氩气,氩气压强为4.0Pa,溅射电压为1000V,溅射电流为5mA.通过控制溅射时间来控制膜厚.在室温下分别制备了沉积时间为4,6,10,15,20,30,40min 的银薄膜,用四探针法测量了银薄膜电阻率,用场发射扫描电子显微镜观察了银薄膜的表面和断面形貌.3 实验结果3.1 银薄膜的沉积速率图1~2为不同时间沉积银薄膜样品表面与(a)4min (b)6min (c)10min (d)20min (e)40min图1 不同沉积时间制备的银薄膜表面场发射扫描电子显微镜照片(a)4min(b)6min(c)10min(d)20min(e)40min图2 不同沉积时间制备的银薄膜断面场发射扫描电子显微镜照片4物 理 实 验第27卷断面的场发射扫描电子显微镜照片.从图1~2中可以看出,随着沉积时间的增加,银薄膜厚度增加,晶粒长大,但晶粒大小不均匀,有些晶粒较大,有些晶粒较小.利用扫描电子显微镜照片中的标尺对银薄膜表面形貌照片进行测量,得到4,6,10,15,20,30,40min 沉积的银薄膜的平均晶粒尺寸分别为21,29,59,71,98,126,207nm.图3给出由断面图测出的不同沉积时间制备的银薄膜的厚度.可以看到,银薄膜厚度与沉积时间呈较好的线性关系.对实验测量数据进行拟合,得到银薄膜的厚度d (nm)与沉积时间t (min)的关系为d =11.1t ,(1)即沉积速率为11.1nm /min.图3 银薄膜厚度随沉积时间的变化3.2 银薄膜的电阻率用四探针法在室温测量了不同沉积时间银薄膜的欧姆特性.银薄膜电阻率可由下式计算[1]:Q =P ln 2Rd ,(2)其中d 是银薄膜的厚度.图4给出了所制备的银薄膜的电阻率随薄膜厚度的变化.从图4可以看出,银薄膜的电阻率随膜厚的增加而降低.在膜厚小于200nm 时,银薄膜的电阻率随膜厚的增图4 银薄膜电阻率随薄膜厚度的变化加下降较快;当膜厚大于200nm 时,随薄膜厚度的增加,薄膜电阻率变化平缓,趋近一稳定值,约为2.54@10-88#m.4 讨 论银薄膜是以岛状模式生长的[10].在薄膜生长初期阶段,薄膜呈岛状结构,薄膜处于不连续状态,对这种薄膜的导电机制多数是用热发射和隧道发射理论来解释[11];随着薄膜的生长,长大的岛彼此之间相互接触,但岛之间还有沟道和孔穴存在;当薄膜继续生长到超过一定厚度时,岛之间的沟道和孔穴也被后来沉积的原子所填充,最终形成连续薄膜.但这一厚度随银薄膜的制备方法和制备条件的不同而不同[12].从图1(a)和2(a)可以看出,在本文的制备条件下,沉积4min 时银薄膜已经形成连续薄膜了.唐兆麟等[13]在真空室内原位测量了磁控溅射超薄铝膜的电阻率和薄膜厚度之间的关系,发现薄膜的不同厚度阶段,具有不同的导电特性,并提出对于连续薄膜,表面和晶界对传导电子的散射是构成薄膜电阻率尺寸效应的原因.对于很薄的薄膜,与表面散射相比,晶界散射是对电阻率的主要贡献[14~15].图4显示了银薄膜电阻率的尺寸效应.从图1~2以及测量得到的平均晶粒尺寸可以看出,在银薄膜较薄时,晶粒尺寸较小,薄膜中晶粒间界较多,晶粒间界对传导电子的散射对银薄膜电阻率有显著的影响.另一方面,块体银材料中自由电子的平均自由程约为52~57nm[16],因此当薄膜较薄时,如薄膜的厚度小于块体银材料中自由电子的平均自由程时,薄膜厚度方向的2个界面对自由电子的散射使得薄膜中自由电子的平均自由程小于块体材料中自由电子平均自由程,因而也会使薄膜的电阻率增大.由于晶粒间界散射及薄膜表面散射两方面因素的共同作用,使得银薄膜较薄时电阻率较大.当银薄膜厚度较厚时,如大于块体银材料中自由电子平均自由程时,薄膜表面对在电场作用下的自由电子的定向运动的影响变得不重要,同时晶粒长大,晶粒间界减少,晶粒间界对传导电子的散射也减小,从而薄膜电阻率下降,并逐渐趋于稳定值.具体考察由图1~2所测的薄膜厚度和平均晶粒尺寸可以看到,4min 和6min 沉积的银薄膜,其平均晶粒尺寸分别为21nm 和29nm ,膜厚分别为28nm 和75nm ,晶粒尺寸和5第3期 吴 平,等:低真空条件下制备的银薄膜的电阻率特性及结构膜厚小于或接近块体银材料中自由电子的平均自由程,因此晶粒间界和薄膜表面都对薄膜的电阻率影响较大;对于10m in沉积的银薄膜,其平均晶粒尺寸为59nm,与块体银材料中自由电子的平均自由程相当,而膜厚已为150nm,超过块体银材料中自由电子的平均自由程,因而晶粒间界对传导电子的散射是重要的,而薄膜表面的散射已变得不重要,所以电阻率有较为显著的下降.当沉积时间超过10min时,晶粒平均尺寸和银薄膜的厚度均超过了块体银材料中自由电子的平均自由程,这时晶粒间界和薄膜表面对传导电子的散射都变得不重要了,因此薄膜具有较小的电阻率,并达到稳定值.对于银块体材料Q= 1.49@10-88#m[16],在本文条件下制备的银薄膜的电阻率稳定值为2.54@10-88#m,约是银块体材料的1.7倍.薄膜材料的电阻率高于块体材料的电阻率主要是由于在薄膜中存在着大量缺陷,如空位、杂质原子、晶粒间界等,其密度远远高于块体材料内的缺陷密度,从而使薄膜材料中的缺陷对传导电子的散射概率高于块体材料内缺陷对传导电子的散射概率,导致了薄膜材料的电阻率高于块体材料的电阻率.5结论在2.2Pa低真空度下,制备了厚度为28~ 440nm的银薄膜,薄膜电阻率随膜厚的增加而下降,在膜厚大于200nm后,薄膜电阻率趋于稳定,稳定值约为2.54@10-88#m.实验结果表明,可以在低真空条件下制备金属银薄膜,将银用于大学物理实验课中金属薄膜制备及金属薄膜电阻率测量实验是可行的.参考文献:[1]吴平.大学物理实验教程[M].北京:机械工业出版社,2005.[2]吴平,邱宏,黄筱玲,等.金属薄膜制备及物性测量系列实验[J].大学物理,2006,25(5):39~41. [3]邱宏,吴平,王凤平,等.把/四探针测量金属薄膜电阻率0引入普通物理实验[J].大学物理,2004,23(5):59~61.[4]黄筱玲,田跃,邱宏.将溅射镀膜及薄膜生长动态监测技术引入普通物理实验[J].物理实验,2005,25(5):28~30.[5]黄筱玲,田跃,邱宏,等.一种薄膜生长过程原位动态特性监测实验仪器[P].专利号:Z L03200903.8.[6]何玉平,孙兆奇,李爱侠,等.Si基片上A g膜的微结构及光学常数研究[J].真空科学与技术,2002,22(1):69~72.[7]李扬,王立铎,常春,等.氧化铟锡/银/氧化铟锡多层膜作为阳极的柔性有机电致发光器件[J].科学通报,2004,49(9):850~853.[8]吴平,邱宏,姜德怀,等.用干涉方法测量薄膜应力[J].物理实验,2006,26(9):7~9.[9]K loppel A,Kr ieg seis W,M eyer B K,et al.De-pendence o f the electr ical and o pt ical behavio ur o fIT O-silver-IT O multilay ers on the silver pro per ties[J].T hin So lid Films,2000,365:139~146. [10]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,1998.106.[11]薛增泉,吴德全,李浩.薄膜物理[M].北京:电子工业出版社,1991.292.[12]徐静江,唐晋发.极薄银膜光学常数的研究[J].光学学报,1988,8(10):954~960.[13]唐兆麟,黄荣芳,闻立时.超薄铝膜电导特性的原位测量研究[J].金属学报,1996,32(3):308~312.[14]de Vr ies J W C.Resistiv ity o f thin A u films as afunction of gr ain diameter and temperature[J].Jo ur nal of P hy sics F:M etal P hy sics,1987,17(9):1945~1952.[15]范平,伍瑞锋,赖国燕.连续金属薄膜的电阻率研究[J].真空科学与技术,1999,19(6):445~451. [16]田民波,刘德令.薄膜科学与技术手册[M].北京:机械工业出版社,1991. 3.(下转第13页)6物理实验第27卷Effect of height of a sandpile on the angle of reposeZHOU Ying 1,ZHA NG Guo -qin2(1.Co lleg e of Phy sics and Electron,T aizhou University,Linhai 317000,China;2.Zhejiang Water Conservancy and H y dropow er Co lleg e,H angzhou 310018,China))Abstract:We have investigated experimentally how the height of a sandpile affects the angle of repose and have found that the ang le o f repo se depends o n the height o f sandpile,the data are fitted by ex ponential decay w hen the chute is horizontal.T he exponential decay can also be found w hen the an -g le of slope of the chute is v ar ied w ithin 0b ~11b thoug h the value of the ang le of repose is different.We have investigated five gr anules w ith different diameters and hav e found that the angle of repose ex -hibits ex ponential decay w ith the height of the sandpile.Key words:g ranular m atter;avalanche;angle o f repose[责任编辑:任德香](上接第6页)Characteristics of resistivity and structure ofsilver films deposited in low vacuumWU Ping,QIU H ong,ZH AO Yun -qing,JIA NG De -huai,ZHANG Bei,ZHA O Xue -dan,H UA NG Xiao -ling,PAN L-i qing,T IAN Yue(Departm ent of Physics,School of Applied Science,U niversity of Science and T echnolog y Beijing,Beijing 100083,China)Abstract:T he character istics of the resistivity and str ucture of silv er film s deposited in low vacu -um of 2.2Pa by DC sputtering are investigated.T he experimental results show that the resistiv ities of the silver films decrease as the film thicknesses increase.The resistivity tends to 2.54@10-88#m w hen the film thickness is larg er than 200nm.T he film thickness dependence o f the r esistivity is re -lated to the scattering of the film surfaces and the grain boundaries to the conductive electr ons.It is feasible to use silver films in the gener al physics experiment course.Key words:silv er film;resistivity;structure[责任编辑:任德香]13第3期 周 英,等:颗粒堆积高度对静止角的影响。

土木岩土工程专业术语英语词汇

土木岩土工程专业术语英语词汇

土木工程工程地质岩土工程专业术语专业英语专业词汇岩层岩性lithology,人工堆积artificial accumulation,块石碎石土block and rubble,崩坡积avalanche slope accumulation,坡积slope accumulation,碎石土rubble,残坡积residual slope accumulation,坡洪积diluvial slope accumulation,砂卵砾石sand gravel,冰水堆积outwash accumulation,砂岩夹砾岩夹页岩sandstone interbedded with conglomerate and shale,变质砂岩metamorphic sandstone,硅质板岩siliceous slate,千枚状板岩phyllitic slate,变质砾岩metamorphic conglomerate,砂岩夹砾岩sandstone interbedded with conglomerate,地质构造geological structure,剪裂隙scisson,实测、推测平移断层actual measured and speculative strike-slip fault,实测、推测逆断层actual measured and speculative thrust fault,实测、推测正断层actual measured and speculative normal fault,不同纪系地层分界线formation boundary for different system,实测、推测同纪系地层分界线actual measured and speclative formationboundary for the same system ,岩性相变界线lithofacies change boundary,断层破碎带fractured zone of the fault,地貌及物理地质现象surface feature and geophysical phenomenon,阶地前缘(齿数代表阶地级数)front of the terrace(tooth number for terraceclass),勘探及其他exploration and othera semi-infinite elastic solid|半无限弹性体AASHTO= American Association State HighwayOfficials|美国州公路官员协会active earth pressure|主动土压力additional stress|附加应力allowable bearing capacity of foundation soil|地基容许承载力alluvial expansive soil|冲积膨胀土anchored plate retaining wall|锚定板挡土墙anchored sheet pile wall|锚定板板桩墙angle of internal friction|内摩擦角angle of repose|休止角anisotropy|各向异性ANSYS Booleans|布尔运算ANSYS Booleans Intersect|布尔交运算ANSYS Booleans Overlap|布尔搭接运算ANSYS Booleans Partition|布尔分割运算ANSYS Cartesian|笛卡儿坐标ANSYS Cylindrical|柱坐标ANSYS Eigen Buckling|特征值屈伸分析ANSYS Global Cartesian|笛卡儿坐标系ANSYS Global Cylindrical|柱坐标系ANSYS Global Spherical|球坐标系ANSYS Grid|网格ANSYS Harmonic|谐振分析ANSYS Model|模态分析ANSYS Normal|法向向量ANSYS Polar|极坐标ANSYS Spectrum|谱分析ANSYS Spherical|球坐标ANSYS Static|静态分析ANSYS Substructuring|子结构分析ANSYS Tolerance|允许偏差ANSYS Transient|瞬态分析ANSYS Trial|坐标轴ANSYS Working Plane Origin|工作平面原点anti-slide pile|抗滑桩arrangement of piles|桩的布置artificial foundation|人工地基ASCE=American Society of Civil Engineer|美国土木工程师学会associated flow|关联流动Atterberg limits|阿太堡界限Barraon’s consolidation theory|巴隆固结理论bearing capacity|承载力bearing capacity of foundation soil|地基承载力bearing capacity of single pile|单桩承载力bearing stratum|持力层belled pier foundation|钻孔墩基础bench slope|台阶式坡形Biot’s consolidation theory|比奥固结理论Bishop method|毕肖普法bore hole columnar section|钻孔柱状图bored pile|钻孔桩bottom heave|(基坑)底隆起boulder|漂石boundary surface model|边界面模型box foundation|箱型基础braced cuts|支撑围护braced excavation|支撑开挖braced sheeting|支撑挡板bracing of foundation pit|基坑围护bulk constitutive equation|体积本构模型caisson foundation|沉井(箱)Cambridge model|剑桥模型cantilever retaining wall|悬臂式挡土墙cantilever sheet pile wall|悬臂式板桩墙cap model|盖帽模型casing|套管cast in place|灌注桩cement column|水泥桩cement mixing method|水泥土搅拌桩centrifugal model test|离心模型试验chemical stabilization|化学加固法clay|粘土clay fraction|粘粒粒组clay minerals粘土|矿物clayey silt|粘质粉土clayey soil|粘性土coarse sand|粗砂cobble|卵石coefficent of compressibility|压缩系数coefficient of consolidation|固结系数coefficient of gradation|级配系数coefficient of permeability|渗透系数coefficient of variation|变异系数cohesion|粘聚力collapsible loess treatment|湿陷性黄土地基处理compacted expansive soil|击实膨胀土compaction test|击实试验compactness|密实度compensated foundation|补偿性基础complex texture|复合式结构composite foundation|复合地基compressibility|压缩性compressibility modulus|压缩摸量compression index|压缩指数concentrated load|集中荷载consolidated drained direct shear test|慢剪试验consolidated drained triaxial test|固结排水试验(CD) consolidated quick direct shear test|固结快剪试验consolidated undrained triaxial test|固结不排水试验(CU) consolidation| 固结consolidation curve|固结曲线consolidation test|固结试验consolidation under K0 condition| K0固结constant head permeability|常水头渗透试验constitutive equation|本构关系constitutive model|本构模型Coulomb’s earth pressure theory|库仑土压力理论counter retaining wall|扶壁式挡土墙country rock|围岩critical edge pressure|临塑荷载cross-hole test| 跨孔试验cushion|垫层cyclic loading|周期荷载cycling load|反复荷载damping ratio|阻尼比Darcy’s law| 达西定律dead load sustained load|恒载持续荷载deep foundation|深基础deep settlement measurement|深层沉降观测deep well point|深井点deformation|变形deformation modulus|变形摸量deformation monitoring|变形监测degree of consolidation|固结度degree of saturation|饱和度density|密度dewatering|(基坑)降水dewatering method|降低地下水固结法diaphragm wall|地下连续墙截水墙dilatation|剪胀dimensionless frequency|无量纲频率direct shear|直剪direct shear apparatus|直剪仪direct shear test|直剪试验direct simple shear test|直接单剪试验direction arrangement|定向排列discount coefficient|折减系数diving casting cast-in-place pile|沉管灌注桩domain effect theory|叠片体作用理论drilled-pier foundation|钻孔扩底墩dry unit weight|干重度dry weight density|干重度Duncan-Chang model|邓肯-张模型duration of earthquake|地震持续时间dyke堤|(防)dynamic compaction|强夯法dynamic compaction replacement|强夯置换法dynamic load test of pile|桩动荷载试验dynamic magnification factor|动力放大因素dynamic penetration test|(DPT)动力触探试验dynamic pile testing|桩基动测技术dynamic properties of soils| 土的动力性质dynamic settlement|振陷(动沉降)dynamic shear modulus of soils|动剪切模量dynamic strength|动力强度dynamic strength of soils|动强度dynamic subgrade reaction method|动基床反力法dynamic triaxial test|三轴试验earth pressure|土压力earth pressure at rest|静止土压力earthquake engineering|地震工程earthquake intensity|地震烈度earthquake magnitude|震级earthquake response spectrum|地震反应谱effective stress|有效应力effective stress approach of shear strength|剪胀抗剪强度有效应力法effective stress failure envelop|有效应力破坏包线effective stress strength parameter|有效应力强度参数effective unit weight|有效重度efficiency factor of pile groups|群桩效率系数(η)efficiency of pile groups|群桩效应elastic half-space foundation model|弹性半空间地基模型elastic half-space theory of foundationvibration|基础振动弹性半空间理论elastic model|弹性模型elastic modulus|弹性模量elastoplastic model|弹塑性模型embedded depth of foundation|基础埋置深度end-bearing pile|端承桩engineering geologic investigation|工程地质勘察equivalent lumped parameter method|等效集总参数法equivalent node load|等小结点荷载evaluation of liquefaction|液化势评价ewatering method|降低地下水位法excavation|开挖(挖方)excess pore water pressure|超孔压力expansive ground treatment|膨胀土地基处理expansive soil|膨胀土failure criterion|破坏准则failure of foundation|基坑失稳falling head permeability|变水头试验fatigue test|疲劳试验Fellenius method of slices|费纽伦斯条分法field permeability test|现场渗透试验field vane shear strength|十字板抗剪强度filling condition|填筑条件final set|最后贯入度final settlement|最终沉降fine sand|细砂finite element method|有限员法flexible foundation|柔性基础floor heave|底膨flow net|流网flowing soil|流土foundation design|基础设计foundation engineering|基础工程foundation vibration|基础振动foundation wall|基础墙fractal structure|分形结构free swell|自由膨胀率freezing and heating|冷热处理法free(resonance)vibration column test|自(共)振柱试验friction pile|摩擦桩frozen heave|冻胀frozen soil|冻土general shear failure|整体剪切破化geofabric|土工织物geologic mode|地质结构模式geometric damping|几何阻尼geostatic stress|自重应力geotechnical engineering|岩土工程geotechnical model test|土工模型试验gravel|砂石gravelly sand|砾砂gravity retaining wall|重力式挡土墙ground treatment|地基处理ground treatment in mountain area|山区地基处理groundwater|地下水groundwater level|地下水位groundwater table|地下水位group action|群桩作用high pressure consolidation test|高压固结试验high-rise pile cap|高桩承台homogeneous|均质hydraulic gradient|水力梯度hydrometer analysis|比重计分析hyperbolic model|双曲线模型hysteresis failure|滞后破坏ideal elastoplastic model|理想弹塑性模型in situ test|原位测试in-situ pore water pressure measurement|原位孔隙水压量测in-situ soil test|原位试验initial liquefaction|初始液化initial pressure|初始压力initial stress field|初始应力场isotropic|各向同性ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering|国际土力学与岩土工程学会jet grouting|高压喷射注浆法Kaolinite|高岭石laminar texture|层流结构landslide precasting|滑坡预报landslides|滑坡lateral load test of pile|单桩横向载荷试验lateral pile load test|单桩横向载荷试验lateral pressure coefficient|侧压力系数layered filling|分层填筑leakage|渗流light sounding|轻便触探试验lime soil pile|灰土挤密桩lime-soil compacted column|灰土挤密桩lime-soil compaction pile| 灰土挤密桩limit equilibrium method|极限平衡法limiting pressure|极限压力lining|衬砌liquefaction strength|抗液化强度live load|活载local shear failure|局部剪切破坏long term strength|长期强度long-term strength|长期强度long-term transient load|长期荷载low pile cap|低桩承台material damping|材料阻尼mathematical method|数学模型maximum acceleration of earthquake|地震最大加速度maximum dry density|最大干密度medium sand|中砂modulus of compressibility|压缩模量Mohr-Coulomb failure condition|摩尔-库仑破坏条件Mohr-Coulomb theory|莫尔-库仑理论Mohr-Coulomb yield criterion|莫尔-库仑屈服准则moist unit weight|湿重度multi-dimensional consolidation|多维固结NATM|新奥法natural frequency of foundation|基础自振频率natural period of soil site|地基固有周期net foundation pressure|基底附加应力nonlinear analysis|非线性分析nonlinear elastic model|非线性弹性模型normal distribution| 正态分布normal stresses|正应力normally consolidated soil|正常固结土numerical geotechanics|数值岩土力学one-dimensional consolidation|一维固结optimum water content|最优含水率over consolidation ration| (OCR)超固结比overconsolidated soil|超固结土overconsolidation|超固结性overconsolidation soil|超固结土passive earth pressure|被动土压力peak strength|峰值强度peat|泥炭permeability|渗透性physical properties|物理性质pile caps|承台(桩帽)pile cushion|桩垫pile foundation|桩基础pile groups|群桩pile headt|桩头pile integrity test|桩的完整性试验pile noise|打桩噪音pile pulling test|拔桩试验pile rig|打桩机pile shoe|桩靴pile tip|桩端(头)piles set into rock|嵌岩灌注桩pillow|褥垫piping|管涌plastic drain|塑料排水带plate loading test|载荷试验Poisson ratio|泊松比poorly-graded soil|级配不良土pore pressure|孔隙压力pore water pressure|孔隙水压力pore-pressure distribution|孔压分布precast concrete pile|预制混凝土桩preconsolidated pressure|先期固结压力preconsolidation pressure|先期固结压力preloading|预压法pressuremeter test|旁压试验prestressed concrete pile|预应力混凝土桩prestressed concrete pipe pile|预应力混凝土管桩primary consolidation|主固结primary structural surface|原生结构面principal plane|主平面principal stress|主应力principle of effective stress|有效应力原理probabilistic method|概率法probability of failure|破坏概率progressive failure|渐进破坏punching shear failure|冲剪破坏quick direct shear test|快剪试验rammed bulb pile|夯扩桩rammed-cement-soil pile|夯实水泥土桩法random arrangement|随机排列Rankine’s earth pressure theory|朗金土压力理论rebound index|回弹指数recompaction|再压缩reduced load|折算荷载reinforced concrete sheet pile|钢筋混凝土板桩reinforcement method|加筋法reloading|再加载replacement ratio|(复合地基)置换率residual diluvial expansive soil|残坡积膨胀土residual soil|残积土residual strength|残余强度resistance to side friction|侧壁摩擦阻力retaining wall|挡土墙rigid foundation|刚性基础rigid plastic model|刚塑性模型rolling compaction|碾压root pile|树根桩safety factor|安全系数safety factor of slope|边坡稳定安全系数sand boiling|砂沸sand drain|砂井sand wick|袋装砂井sand-gravel pile|砂石桩sandy silt|砂质粉土saturated soil|饱和土saturated unit weight|饱和重度saturation degree|饱和度screw plate test|螺旋板载荷试验secondary consolidation|次固结secondary minerals|次生矿物secondary structural surface|次生结构面seepage|渗透(流)seepage force|渗透力seepage pressure|渗透压力seismic predominant period|地震卓越周期sensitivity|灵敏度settlement|沉降shaft|竖井身shallow foundation|浅基础shear modulus|剪切摸量shear strain rate|剪切应变速率shear strength|抗剪强度shear strength of interlayered weak surface|层间软弱面强度shear strength of repeated swelling shrinkage|反复胀缩强度shear stresses|剪应力sheet pile structure|板桩结构物shield tunnelling method|盾构法shinkrage coefficient|收缩系数shinkrage limit|缩限short –term transient load|短期瞬时荷载sieve analysis|筛分silent piling|静力压桩silt|粉土silty clay|粉质粘土silty sand|粉土size effect|尺寸效应slaking characteristic|崩解性slices method|条分法slip line|滑动线slope protection|护坡slope stability analysis|土坡稳定分析soft clay|软粘土soft clay ground|软土地基soft soil|软土soil dynamics|土动力学soil fraction|粒组soil mass|土体soil mechanics|土力学special-shaped cast-in-place pile|机控异型灌注桩specific surface|比表面积spread footing|扩展基础square spread footing|方形独立基础sshaft resistance|桩侧阻stability analysis|稳定性分析stability of foundation soil|地基稳定性stability of retaining wall|挡土墙稳定性state of limit equilibrium|极限平衡状态static cone penetration|(SPT) 静力触探试验static load test of pile|单桩竖向静荷载试验steel pile|钢桩steel piles|钢桩steel pipe pile|钢管桩steel sheet pile|钢板桩stress path|应力路径stress wave in soils|土中应力波striation|擦痕strip footing|条基strip foundation|条形基础structural characteristic|结构特征structure-foundation-soil interactionanalysis|上部结构-基础-地基共同作用分析subgrade|路基surcharge preloading|超载预压法surface compaction|表层压实法Swedish circle method|瑞典圆弧滑动法swelling index|回弹指数system of engineering structure|工程结构系统technical code for ground treatment of building|建筑地基处理技术规范tectonic structural surface|构造结构面Terzzaghi’s consolidation theory|太沙基固结理论thermal differential analysis|差热分析three phase diagram|三相图timber piles|木桩time effcet|时间效应time effect|时间效应time factor Tv|时间因子tip resistance|桩端阻total stress|总应力total stress approach of shear strength|抗剪强度总应力法tri-phase soil|三相土triaxial test|三轴试验ultimate bearing capacity of foundation soil|地基极限承载力ultimate lateral resistance of single pile|单桩横向极限承载力unconfined compression|无侧限抗压强度unconfined compression strength|无侧限抗压强度unconsolidated-undrained triaxial test|不固结不排水试验(UU) underconsolidated soil|欠固结土undrained shear strength|不排水抗剪强度Unified soil classification system|土的统一分类系统uniformity coefficient|不均匀系数unloading|卸载unsaturated soil|非饱和土uplift pile|抗拔桩vacuum preloading|真空预压法vacuum well point|真空井点vane strength|十字板抗剪强度vertical allowable load capacity|单桩竖向容许承载力vertical ultimate uplift resistance of single pile|单桩抗拔极限承载力vibration isolation|隔振vibroflotation method|振冲法viscoelastic foundation|粘弹性地基viscoelastic model|粘弹性模型viscous damping|粘滞阻尼water affinity|亲水性wave equation analysi|s波动方程分析wave velocity method|波速法well point system|井点系统(轻型)well-graded soil|级配良好土Winkler foundation model|文克尔地基模型wooden sheet pile|木板桩work hardening|加工硬化work softening|加工软化yield function|屈服函数zonal soil|区域性土一. 综合类geotechnical engineering岩土工程foundation engineering基础工程soil, earth土soil mechanics土力学cyclic loading周期荷载unloading卸载reloading再加载viscoelastic foundation粘弹性地基viscous damping粘滞阻尼shear modulus剪切模量5.soil dynamics土动力学6.stress path应力路径7.numerical geotechanics 数值岩土力学二. 土的分类1.residual soil残积土groundwater level地下水位2.groundwater 地下水groundwater table地下水位3.clay minerals粘土矿物4.secondary minerals次生矿物ndslides滑坡6.bore hole columnar section钻孔柱状图7.engineering geologic investigation工程地质勘察8.boulder漂石9.cobble卵石10.gravel砂石11.gravelly sand砾砂12.coarse sand粗砂13.medium sand中砂14.fine sand细砂15.silty sand粉土16.clayey soil粘性土17.clay粘土18.silty clay粉质粘土19.silt粉土20.sandy silt砂质粉土21.clayey silt粘质粉土22.saturated soil饱和土23.unsaturated soil非饱和土24.fill (soil)填土25.overconsolidated soil超固结土26.normally consolidated soil正常固结土27.underconsolidated soil欠固结土29.soft clay软粘土30.expansive (swelling) soil膨胀土31.peat泥炭32.loess黄土33.frozen soil冻土三. 土的基本物理力学性质 compression index2.cu undrained shear strength3.cu/p0 ratio of undrained strength cu to effective overburden stress p0 (cu/p0)NC ,(cu/p0)oc subscripts NC and OC designated normally consolidated and overconsolidated, respectively4.cvane cohesive strength from vane test5.e0 natural void ratio6.Ip plasticity index7.K0 coefficient of “at-rest ”pressure ,for totalstressesσ1 andσ28.K0‟ domain for effective stressesσ1 … andσ2‟9.K0n K0 for normally consolidated state 10.K0u K0 coefficient under rapid continuous loading ,simulating instantaneous loading or an undrained condition 11.K0d K0 coefficient under cyclic loading(frequency less than 1Hz),asa pseudo- dynamic test for K0 coefficient12.kh ,kv permeability in horizontal and vertical directions, respectively13.N blow count, standard penetration test14.OCR over-consolidation ratio15.pc preconsolidation pressure ,from oedemeter test16.p0 effective overburden pressure 17.p s specific cone penetration resistance, from static cone test 18.qu unconfined compressive strength19.U, Um degree of consolidation ,subscript m denotes mean value of a specimen20.u ,ub ,um pore (water) pressure, subscripts b and m denote bottom of specimen and mean value, respectively21.w0 wL wp natural water content, liquid and plastic limits, respectively22.σ1,σ2 principal stresses, σ1 … andσ2‟ denote effective principal stresses23.Atterberg limits阿太堡界限24.degree of saturation饱和度25.dry unit weight干重度26.moist unit weight湿重度27.saturated unit weight饱和重度28.effective unit weight有效重度29.density密度pactness密实度31.maximum dry density最大干密度32.optimum water content最优含水量33.three phase diagram三相图34.tri-phase soil三相土35.soil fraction粒组36.sieve analysis筛分37.hydrometer analysis比重计分析38.uniformity coefficient不均匀系数39.coefficient of gradation级配系数40.fine-grained soil(silty and clayey)细粒土41.coarse- grained soil(gravelly and sandy)粗粒土42.Unified soil classification system土的统一分类系统43.ASCE=American Society of Civil Engineer美国土木工程师学会44.AASHTO= American Association State HighwayOfficials美国州公路官员协会45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering国际土力学与岩土工程学会四. 渗透性和渗流1.Darcy’s law 达西定律2.piping管涌3.flowing soil流土4.sand boiling砂沸5.flow net流网6.seepage渗透(流)7.leakage渗流8.seepage pressure渗透压力9.permeability渗透性10.seepage force渗透力11.hydraulic gradient水力梯度12.coefficient of permeability渗透系数五. 地基应力和变形1.soft soil软土2.(negative) skin friction of drivenpile打入桩(负)摩阻力3.effective stress有效应力4.total stress总应力5.field vane shear strength十字板抗剪强度6.low activity低活性7.sensitivity灵敏度8.triaxial test三轴试验9.foundation design基础设计10.recompaction再压缩11.bearing capacity承载力12.soil mass土体13.contact stress (pressure)接触应力(压力)14.concentrated load集中荷载15.a semi-infinite elastic solid半无限弹性体16.homogeneous均质17.isotropic各向同性18.strip footing条基19.square spread footing方形独立基础20.underlying soil (stratum ,strata)下卧层(土)21.dead load =sustained load恒载持续荷载22.live load活载23.short –term transient load短期瞬时荷载24.long-term transient load长期荷载25.reduced load折算荷载26.settlement沉降27.deformation变形28.casing套管29.dike=dyke堤(防)30.clay fraction粘粒粒组31.physical properties物理性质32.subgrade路基33.well-graded soil级配良好土34.poorly-graded soil级配不良土35.normal stresses正应力36.shear stresses剪应力37.principal plane主平面38.major (intermediate, minor) principal stress最大(中、最小)主应力39.Mohr-Coulomb failure condition摩尔-库仑破坏条件40.FEM=finite element method有限元法41.limit equilibrium method极限平衡法42.pore water pressure孔隙水压力43.preconsolidation pressure先期固结压力44.modulus of compressibility压缩模量45.coefficent of compressibility压缩系数pression index压缩指数47.swelling index回弹指数48.geostatic stress自重应力49.additional stress附加应力50.total stress总应力51.final settlement最终沉降52.slip line滑动线六. 基坑开挖与降水1 excavation开挖(挖方)2 dewatering(基坑)降水3 failure of foundation基坑失稳4 bracing of foundation pit基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall挡土墙7 pore-pressure distribution孔压分布8 dewatering method降低地下水位法9 well point system井点系统(轻型)10 deep well point深井点11 vacuum well point真空井点12 braced cuts支撑围护13 braced excavation支撑开挖14 braced sheeting支撑挡板七. 深基础--deep foundation1.pile foundation桩基础1)cast –in-place灌注桩diving casting cast-in-place pile沉管灌注桩bored pile钻孔桩special-shaped cast-in-place pile机控异型灌注桩piles set into rock嵌岩灌注桩rammed bulb pile夯扩桩2)belled pier foundation钻孔墩基础drilled-pier foundation钻孔扩底墩under-reamed bored pier 3)precast concrete pile预制混凝土桩4)steel pile钢桩steel pipe pile钢管桩steel sheet pile钢板桩5)prestressed concrete pile预应力混凝土桩prestressed concrete pipe pile预应力混凝土管桩2.caisson foundation沉井(箱)3.diaphragm wall地下连续墙截水墙4.friction pile摩擦桩5.end-bearing pile端承桩6.shaft竖井;桩身7.wave equation analysis波动方程分析8.pile caps承台(桩帽)9.bearing capacity of single pile单桩承载力teral pile loadtest单桩横向载荷试验11.ultimate lateral resistance of single pile单桩横向极限承载力12.static load test of pile单桩竖向静荷载试验13.vertical allowable load capacity单桩竖向容许承载力14.low pile cap低桩承台15.high-rise pile cap高桩承台16.vertical ultimate uplift resistance of singlepile单桩抗拔极限承载力17.silent piling静力压桩18.uplift pile抗拔桩19.anti-slide pile抗滑桩20.pile groups群桩21.efficiency factor of pile groups群桩效率系数(η)22.efficiency of pile groups群桩效应23.dynamic pile testing桩基动测技术24.final set最后贯入度25.dynamic load test of pile桩动荷载试验26.pile integrity test桩的完整性试验27.pile head=butt桩头28.pile tip=pile point=pile toe桩端(头)29.pile spacing桩距30.pile plan桩位布置图31.arrangement of piles =pile layout桩的布置32.group action群桩作用33.end bearing=tip resistance桩端阻34.skin(side) friction=shaft resistance桩侧阻35.pile cushion桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test拔桩试验38.pile shoe桩靴39.pile noise打桩噪音40.pile rig打桩机八. 地基处理--ground treatment1.technical code for ground treatment of building建筑地基处理技术规范2.cushion垫层法3.preloading预压法4.dynamic compaction强夯法5.dynamic compaction replacement强夯置换法6.vibroflotation method振冲法7.sand-gravel pile砂石桩8.gravel pile(stone column)碎石桩9.cement-flyash-gravel pile(CFG)水泥粉煤灰碎石桩10.cement mixing method水泥土搅拌桩11.cement column水泥桩12.lime pile (lime column)石灰桩13.jet grouting高压喷射注浆法14.rammed-cement-soil pile夯实水泥土桩法15.lime-soil compaction pile 灰土挤密桩lime-soil compacted column灰土挤密桩lime soil pile灰土挤密桩16.chemical stabilization化学加固法17.surface compaction表层压实法18.surcharge preloading超载预压法19.vacuum preloading真空预压法20.sand wick袋装砂井21.geofabric ,geotextile土工织物posite foundation复合地基23.reinforcement method加筋法24.dewatering method降低地下水固结法25.freezing and heating冷热处理法26.expansive ground treatment膨胀土地基处理27.ground treatment in mountain area山区地基处理28.collapsible loess treatment湿陷性黄土地基处理29.artificial foundation人工地基30.natural foundation天然地基31.pillow褥垫32.soft clay ground软土地基33.sand drain砂井34.root pile树根桩35.plastic drain塑料排水带36.replacement ratio(复合地基)置换率九. 固结consolidation1.Terzzaghi’s consolidation theory太沙基固结理论2.Barraon’s consolidation theory巴隆固结理论3.Biot’s consolidation theory比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil超固结土6.excess pore water pressure超孔压力7.multi-dimensional consolidation多维固结8.one-dimensional consolidation一维固结9.primary consolidation主固结10.secondary consolidation次固结11.degree of consolidation固结度12.consolidation test固结试验13.consolidation curve固结曲线14.time factor Tv时间因子15.coefficient of consolidation固结系数16.preconsolidation pressure前期固结压力17.principle of effective stress有效应力原理18.consolidation under K0 condition K0固结十. 抗剪强度shear strength1.undrained shear strength不排水抗剪强度2.residual strength残余强度3.long-term strength长期强度4.peak strength峰值强度5.shear strain rate剪切应变速率6.dilatation剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法8.total stress approach of shear strength抗剪强度总应力法9.Mohr-Coulomb theory莫尔-库仑理论10.angle of internal friction内摩擦角11.cohesion粘聚力12.failure criterion破坏准则13.vane strength十字板抗剪强度14.unconfined compression无侧限抗压强度15.effective stress failure envelop有效应力破坏包线16.effective stress strength parameter有效应力强度参数十一. 本构模型--constitutive model1.elastic model弹性模型2.nonlinear elastic model非线性弹性模型3.elastoplastic model弹塑性模型4.viscoelastic model粘弹性模型5.boundary surface model边界面模型6.Duncan-Chang model邓肯-张模型7.rigid plastic model刚塑性模型8.cap model盖帽模型9.work softening加工软化10.work hardening加工硬化11.Cambridge model剑桥模型12.ideal elastoplastic model理想弹塑性模型13.Mohr-Coulomb yield criterion莫尔-库仑屈服准则14.yield surface屈服面15.elastic half-space foundation model弹性半空间地基模型16.elastic modulus弹性模量17.Winkler foundation model文克尔地基模型十二. 地基承载力--bearing capacity of foundation soil1.punching shear failure冲剪破坏2.general shear failure整体剪切破化3.local shear failure局部剪切破坏4.state of limit equilibrium极限平衡状态5.critical edge pressure临塑荷载6.stability of foundation soil地基稳定性7.ultimate bearing capacity of foundation soil地基极限承载力8.allowable bearing capacity of foundation soil地基容许承载力十三. 土压力--earth pressure1.active earth pressure主动土压力2.passive earth pressure被动土压力3.earth pressure at rest静止土压力4.Coulomb’s earth pressure theory库仑土压力理论5.Rankine’s earth pressure theory朗金土压力理论十四. 土坡稳定分析--slope stability analysis1.angle of repose休止角2.Bishop method毕肖普法3.safety factor of slope边坡稳定安全系数4.Fellenius method of slices费纽伦斯条分法5.Swedish circle method瑞典圆弧滑动法6.slices method条分法十五. 挡土墙--retaining wall1.stability of retaining wall挡土墙稳定性2.foundation wall基础墙3.counter retaining wall扶壁式挡土墙4.cantilever retaining wall悬臂式挡土墙5.cantilever sheet pile wall悬臂式板桩墙6.gravity retaining wall重力式挡土墙7.anchored plate retaining wall锚定板挡土墙8.anchored sheet pile wall锚定板板桩墙十六. 板桩结构物--sheet pile structure1.steel sheet pile钢板桩2.reinforced concrete sheet pile钢筋混凝土板桩3.steel piles钢桩4.wooden sheet pile木板桩5.timber piles木桩十七. 浅基础--shallow foundation1.box foundation箱型基础2.mat(raft) foundation片筏基础3.strip foundation条形基础4.spread footing扩展基础pensated foundation补偿性基础6.bearing stratum持力层7.rigid foundation刚性基础8.flexible foundation柔性基础9.embedded depth of foundation基础埋置深度 foundation pressure基底附加应力11.structure-foundation-soil interactionanalysis上部结构-基础-地基共同作用分析十八. 土的动力性质--dynamic properties of soils1.dynamic strength of soils动强度2.wave velocity method波速法3.material damping材料阻尼4.geometric damping几何阻尼5.damping ratio阻尼比6.initial liquefaction初始液化7.natural period of soil site地基固有周期8.dynamic shear modulus of soils动剪切模量9.dynamic magnification factor动力放大因素10.liquefaction strength抗液化强度11.dimensionless frequency无量纲频率12.evaluation of liquefaction液化势评价13.stress wave in soils土中应力波14.dynamic settlement振陷(动沉降)十九. 动力机器基础1.equivalent lumped parameter method等效集总参数法2.dynamic subgrade reaction method动基床反力法3.vibration isolation隔振4.foundation vibration基础振动5.elastic half-space theory of foundationvibration基础振动弹性半空间理论6.allowable amplitude of foundation基础振动容许振幅7.natural frequency of foundation基础自振频率二十. 地基基础抗震1.earthquake engineering地震工程2.soil dynamics土动力学3.duration of earthquake地震持续时间4.earthquake response spectrum地震反应谱5.earthquake intensity地震烈度6.earthquake magnitude震级7.seismic predominant period地震卓越周期8.maximum acceleration of earthquake地震最大加速度二十一. 室内土工实验1.high pressure consolidation test高压固结试验2.consolidation under K0 condition K0固结试验3.falling head permeability变水头试验4.constant head permeability常水头渗透试验5.unconsolidated-undrained triaxial test不固结不排水试验(UU)6.consolidated undrained triaxial test固结不排水试验(CU)7.consolidated drained triaxial test固结排水试验(CD)paction test击实试验9.consolidated quick direct shear test固结快剪试验10.quick direct shear test快剪试验11.consolidated drained direct shear test慢剪试验12.sieve analysis筛分析13.geotechnical model test土工模型试验14.centrifugal model test离心模型试验15.direct shear apparatus直剪仪16.direct shear test直剪试验17.direct simple shear test直接单剪试验。

Effect of Injection Angle on Artificial Cavitation Using the Design of Experiment Method

Effect of Injection Angle on Artificial Cavitation Using the Design of Experiment Method

J. Marine Sci. Appl. (2017)16: 173-181 DOI: 10.1007/s11804-017-1408-8Effect of Injection Angle on Artificial Cavitation Using the Design of Experiment MethodM. Ghorbani Shahr-e-Babaki 1, A. Jamali Keikha 1* and A. Behzad Mehr 21. Department of Mechanical Engineering, Chabahar Maritime University, Chabahar 99717-56499, Iran2. Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan 98155-987, IranAbstract: Using the supercavitation phenomenon is necessary to reach high velocities underwater. Supercavitation can be achieved in two ways: natural and artificial. In this article, the simulation of flows around a torpedo was studied naturally and artificially. The validity of simulation using theoretical and practical data in the natural and artificial phases was evaluated. Results showed that the simulations were consistent with the laboratory results. The results in different injection coefficient rates, injection angles, and cavitation numbers were studied. The obtained results showed the importance of cavitation number, injection rate coefficient, and injection angle in cavity shape. At the final level, determining the performance conditions using the Design of Experiment (DOE) method was emphasized, and the performance of cavitation number, injection rate coefficient, and injection angle in drag and lift coefficient was studied. The increase in injection angle in the low injection rate coefficient resulted in a diminished drag coefficient and that in the high injection rate coefficient resulted in an enhanced drag coefficient .Keywords: injection angle, supercavitation, artificial cavitation, torpedo, design of experiment, drag coefficient, lift coefficientArticle ID: 1671-9433(2017)02-0173-091 Introduction The super cavitation process should be used to reach high velocities underwater. This phenomenon can be achieved naturally and artificially. Bulbs are usually generated by a device called a cavitator, which is placed at the tip of the vehicle and implemented especially for this purpose. Cavitators come in different types, including conic, cuneal, and disc shape (Goel, 2002). Cavitational streams areexpressed as 21/2v c P PV σρ∞∞-=, where P ∞ and V ∞ are absolutepressure and relative velocity of a water stream with a torpedo, respectively, P v is the steam pressure in the peak temperature of liquid, and ρ is the liquid density.The use of a cavitator may not be sufficient to create cavitation. Therefore, air is blown at the tip of the different parts of the body of a vehicle to continuously generate cavitation (Goel, 2002). The amount of air with a gas injectionReceived date: 18-Oct-2016 Accepted date: 01-Dec-2016*Corresponding author Email: A.J.Keikha@cmu.ac.ir© Harbin Engineering University and Springer-V erlag Berlin Heidelberg 2017rate coefficient 2gg nQ q V D ∞=, where Q g is the gas volumeflow, and D n is the cavity diameter.Cavitational streams are dynamic and complex. The smallest change in the stream field affects the shape of the bulb and its parameters. As it also influences the prediction and development of the bulb, the numerical and experimental research in the cavitation field has been conducted broadly. Previous literature investigated the changes in different parameters, including cavitator shape, attack angle, and gas injection rate coefficient, among others, and analyzed their effects on natural and artificial cavitation bulbs. On the basis of previous studies, we consider that to investigate under-water vehicles, such as torpedoes, the following points should be regarded in the model:• The existence of a body at the back of the cavitator should be considered as the body behind the cavitator affects the shape and symmetry of the bulb (Schauer, 2003; Ma et al., 2006; Alishahi, 2010).• The effect of gravity should be observed (Zhang et al., 2007).• If the body is symmetric, a good correspondence will be achieved between 2D and 3D results, and the return and hydro pulse leakages will be visible (Ahn et al ., 2012).• The number of natural cavitation affects the bulb shape made out of gas injection; therefore, these two phenomena should be investigated together (Yang et al., 2009; Wei et al., 2009).• The artificial supercavitation is a timely phenomenon (Zou et al ., 2010; Vlasenko and Savchenko, 2012)One of the most important experimental studies conducted in recent years is Schauer (2003). We used Schauer’s model in the present study because the details of Schauer’s study are completely available. Moreover, the model enables us to examine artificial and natural cavitation separately and simultaneously, which is one of the purposes our study, and to investigate artificial supercavitation in low velocity in torpedoes. In the current research, a numerical study was implemented in two dimensions, and the change in injection angle in artificial cavitation and the effect of this change on the field of the speed of the stream and the bulb shape were investigated. A side from the parameters mentioned by (Wei etM. Ghorbani Shahr-e-Babaki et al., Effect of Injection Angle on Artificial Cavitation Using the Design of Experiment Method 174al., 2009), the gas injection angle is also an important factor influencing the shape of the bulb. Therefore, the three parameters of injection rate coefficient, injection angle, and cavitation number can affect on the drag and lift coefficients. Through the Design of Experiment (DOE) method, we defined the practical conditions of the experiment. The DOE was implemented to define the practical conditions. The relations of the objective functions of the lift and drag coefficients were calculated according to injection angle, injection rate coefficient, and cavitation number, and the related charts were presented.2 Numerical simulationIn this numeral solution, the non-linear Reynolds averaged Navier-Stokes equations and the auxiliary equation for the volume fraction of water are solved based on pressure completely and implicitly. A simple algorithm was used for the dependency of the velocity and pressure field (Baradaran Fard and Nikseresht, 2012). Non-temporal resolution was used for natural cavitation and temporal resolution was used for artificial cavitation (Alishahi, 2010). A mixed model was used to demonstrate the multi-phase flow (Hashem Abadi and Dehnavi, 2011). The turbulence model of the mixture is a multi-phase turbulence model as pre-supposed. This model is the extension of the single phase k-ε model. In this situation, taking advantage of the mixture features and the mixture velocities to determine the turbulence stream characteristics is sufficient. The geometry of the torpedo is designed based on the geometry implemented in Schauer’s experiment (Schauer, 2003) in which the cavitator diameter is 10 mm, the diameter of the torpedo body is 16 mm, and the length of the torpedo is 107 mm.Fig. 1 shows the circumference and the solution borders surrounding the torpedo. Regarding the asymmetry of the bulb in the presence of the acceleration of gravity around the torpedo body, the axial symmetry of the shape is ignored (Zhang et al., 2007).The upper border of the stream is located at 30D n, i.e., 300 mm away from the cavitator, and the downstream border is located 700 mm away from the cavitator. The upper and lower walls are 100 mm away from the center line (Ji et al., 2010). The upper border of the velocity stream at the entrance and the downstream pressure at exit in the torpedo body is the pre-condition for non-slipping. For air injection in artificial cavitation, entering velocity in the injection point and in the upper and lower walls are regarded as the pre-conditions of freely slipping.Fig. 1 Solution borders 2.1 Independence from networksFor the stream parameters to be independent from a number of networks, the ideal network for the solution field should be chosen in a way that it does not increases the calculations and does not introduce errors into the simulation.In Fig. 2, the velocity profiles for the three networks in the three cross-sections with distances of 3, 9, and 15 cm at the back of the cavitator are shown. As defined in the figure, the changes in the velocity profile in two networks, namely, 52 060 and 140 340, are close to each other. As a result, network 52 060 is independent from network changes.(a) Velocity profile in x = 0.03 m(b) Velocity profile in x=0.09 m(c) Velocity profile in x=0.15 mFig. 2Analysis of the independence of the velocity profile network in three cross-sections2.2 Analyzing the network qualityWe analyze Y+ around the torpedo body to analyze the quality of the selected network. To attain this aim, Y+ should be less than 100 (Ji et al., 2010, Roohi et al., 2013). Y+ is a non-dimensional distance. It is often used to describe how coarse or fine a mesh is for a particular flow pattern. It is important in turbulence modeling to determine the proper size of the cells near domain walls. The turbulence model wall laws have restrictions on the Y+ value at the wall. For instance, the standard K-epsilon model requires a wall Y+Journal of Marine Science and Application (2017)16: 173-181 175value between approximately 300 and 100. A faster flow near the wall will produce higher values of Y +, so the grid size near the wall must be reduced.As shown in Fig. 3, the amount of Y + is below 60. Therefore, network 52 060 is selected as the optimal network for simulation. Fig. 4 shows network 52 060 along the edges of the shape in detail.Fig. 3 Amount of Y +around the torpedo body in 52 060network(a) Network around the torpedo body(b) Close to tip view of the torpedo (c) Close to end view of the torpedoFig. 4 Selected network 52 0603 Validation of artificial cavitationFig. 5 presents the results of artificial cavitation compared with those of the experimental one. To calculate the artificial cavitation number in terms of the length and diameter of the bulb, the semi-experimental wide relation is used. The wide realtion for a disc cavitator with zero attack number is defined as follows (Schauer, 2003):1.1181.08ncL D σ= (1)0.5680.5341cD σ=+ (2)where D n is the cavitator diameter, 21/2cc P P V σρ∞∞-=is theartificial cavitation number, and P c is the inside pressure of the bulb.As shown in Fig. 5, the shape of the simulated bulbs matches well with the experimental results.Fig. 5 Comparison of the simulation results withSchauer’s laboratory results (Schauer, 2003)4 Result and discussion4.1 Effect of gas injection methodTo examine the effect of the gas injection method on the air stream entrance border, we implement the angle condition to enable the preferred angle to enter the air stream. The injection angles in three situations are the 0°, 30°, and 60° angle changes.(a) 0 degree injection angle(b) 30 degree injection angle(c) 60 degree injection angleFig. 6 Comparison of changes in the artificial cavitationphase in different injection angles at an injection rate coefficient of 0.18 and σv =1As shown in Fig. 6, the increase in angle results in theM. Ghorbani Shahr-e-Babaki et al., Effect of Injection Angle on Artificial Cavitation Using the Design of Experiment Method176 increase in volume of the bulb. To what extent these changes are useful and how other parameters (e.g., amount of the injection rate coefficient and number of natural cavitation) affect the artificial cavitation bulb in different angles should also be investigated.In Fig. 7, phase counters are compared in three different injection angles and injection rate coefficients at σv =1. Phase counters are presented according to the increase in injection rate coefficients from right to left and according to injection angle from up to down.0 degree injection angle:30 degree injection angle:60 degree injection angle:(a) 0.18 injection rate coefficient (b) 0.32 injection rate coefficient (c) 0.45injection rate coefficientFig. 7 Comparison of phase counters in three different injection angles and injection rate coefficients at σv =1With increasing angle, the bulb length in all three injectionrate coefficients, except the 0.32 injection rate and 60° injection angle, also increases. The shape of the bulb phase counter around the torpedo in the 0.18 injection rate coefficient and 30° injection angle is near the phase counter shape in the 0.32 rate coefficient and 0° injection angle. This fact applies to the shape of the bulb phase counter around the torpedo in the 0.18 injection rate coefficient and 60° injection angle. In other words, the bulb shape in the 0.18 injection rate coefficient gets closer to the bulb shape in the 0.32 injection rate coefficient with increasing injection angle. However, this outcome does not mean that the change in injection angle is useful 100%. The increase in injection rate coefficient causes pulsing cavitation in the 0.45 injection rate coefficient. This situation is observed in the 0.32 injection rate coefficient and 30°injection angle. The figure shows that the bulb in the 0.32 injection rate coefficient and 30° injection angle is near the bulb in the 0.45 injection rate coefficient and 0° angle. In the other words, the cavitation bulb may reach an inconsistent state with the increase in injection rate coefficient and injection angle. In the 0.45 injection rate coefficient, anincrease in injection angle causes an increase in the wave-like state in the bulb wall. It also disturbs the bulb symmetry to 0.5 volume fraction of the phase changes (i.e., the green color in 0.45 injection rate coefficient of the phase counter). An increase in bulb asymmetry disturbs the upside and the downside with an increase in injection angle. Up to this stage, variation analysis of the changes in cavitation number 1 is conducted. Cavitation number 1.5 is also simulated, and the results of phase counters are similar to those of cavitation number 1. As no steam is found in the steam phase, we do not mention the results. The situation in cavitation number 0.5 is different as some steam is observed. In this special condition, artificial and natural cavitations exist simultaneously together. Fig. 8 presents the comparison of the interaction of the two phases in the injection rate coefficients of 0.18 and 0.45, 0° injection angle, and σv =0.5. The increase in injection rate coefficient removes the steam phase caused by natural cavitation. In the 0.45 injection rate coefficient, an air injection penetrates the forward side of the torpedo and surrounds the whole torpedo body. This issue is investigated in a previous study (Ji et al., 2010).Journal of Marine Science and Application (2017)16: 173-181 177(a) Water phase change counter in 0.18 injection rate coefficient(b) Water phase change counter in 0.45 injection rate coefficient(c) Steam phase change counter in 0.18 injection rate coefficient(d) Steam phase change counter in 0.45 injection rate coefficient Fig. 8 Comparison of interaction between two phases in the 0.18 and 0.45 injection rate coefficients, 0°injection angle, and σv=0.55 Design of experimentsThe shape of the bulb and its effects are shown in the drag and lift coefficients. Therefore, the general result is affected in terms of the three parameters of injection rate coefficient, injection angle, and cavitation number on the drag and lift coefficient. The test design is examined using the DOE method to determine the change in injection angle and effect parameters. The DOE method shows the parameter number and each parameter level in the target subject with a random test. The current study addresses the factorial design at three levels. Therefore, to observe the change in target subject and operation of the injection angle, the three parameters of cavitation number, injection angle, and injection rate coefficient are considered in three cases (Table 1). Cavitation number is for visible velocity and temperature (i.e., for evaporation pressure), and water pressure is at three levels of 0.5, 1, and 1.5. Torpedo velocity is not high in the injection in primary moments when natural cavitation is achieved. Therefore, natural cavitation is considered for an amount when natural cavitation is not or is forming. The injection angle is considered at three logical levels of 0°, 30°, and 60° and the injection rate coefficient is considered at the three levels of 18%, 32%, and 45%. The injection rate coefficient inthe bulb is made as a permanent and perfect artificial cavitation.Table 1 Parameters and amounts at three levelsFactors ParametersLevel(+1)Level(0)Level(−1)A Cavitationnumber 1.5 1 0.5B Injection rate coefficient 0.45 0.320.18C Injectionangle 60300 5.1 Variance analysisTo determine the effect ratio of parameters on drag and lift, this test targets subjects so that dramatist models are made in the form of (33)27. The second model 2FI and quadratic model are used to model the drag and lift coefficient. In models A, B, and C, cav, air, and tet correspond to the introducer cavitation number, injection rate coefficient, and injection angle, respectively. V ariance analysis is confirmed in these models (Table 2). To examine the correctness of the relations among previous amounts in each drag and lift coefficient by deferent points, the relation between the internal and external extents for solving from the dramatist model improves the error percentages. Consistently, the internal extent is less than 4% and the external extent is less than 7% (Table 3).The final relation to predict the lift and drag coefficients is obtained as follows:drag0.368890.48694cav0.45062air0.0025tet0.061728cav air0.000138889cav tet0.00761317air tet=+⨯-⨯-⨯-⨯⨯+⨯⨯+⨯⨯(3)222lift 1.76346 3.77389cav 4.47051air0.00124074tet0.18519cav air0.005cav tet0.022634air tet1.99111cav8.56577air0.000146914tet=+-⨯-⨯-⨯-⨯⨯+⨯⨯+⨯⨯+⨯+⨯-⨯(4)5.2 Drag coefficient graphsAs shown in Fig. 9, changes in the drag coefficient according to the injection angle and injection rate coefficientin the cavitation number are different. Each of the three cavitation numbers for a low injection rate coefficient (less than 28%) increases the injection angle because of the decrease in drag coefficient. However, an injection with a high injection rate coefficient (higher than 35%) increases the angle because of the increase in drag coefficient. In Fig. 10, the changes in drag coefficient are according to the injection angle and cavitation number in the injection rate coefficient. Fixed drag lines are similar to parallel lines. Grades of the drag coefficient lines are fixed in the injection rate coefficientat 18%. They gradually increase with the increase in injectionM. Ghorbani Shahr-e-Babaki et al., Effect of Injection Angle on Artificial Cavitation Using the Design of Experiment Method 178rate coefficient and increase to 45% when the injection rate coefficient is negative.In these shapes, changes in the injection angle are not desirable (Fig. 11). In high injection rate coefficients, an increase in injection angle causes an increase in an undesirable drag coefficient. Fixed drag lines are similar to parallel lines. Increasing the angle increases the grade of fixed drag coefficient lines.Table 2 Variance analysisSource Sum of squares Degree of freedom Mean square F-value p-value Model 1.04 6 0.17 32.77 <0.000 1 significant A-cav 1.00 1 1.00 189.40 <0.000 1 significant B-air 0.026 1 0.026 5.00 0.003 68 significant C-tet 2.222E-005 1 2.222E-005 4.204E-0030.009 489 significant AB 2.083E-004 1 2.083E-0040.039 0.008 446 significant AC 5.208E-005 1 5.208E-0059.854E-0030.009 219 significant BC 0.011 1 0.011 2.16 0.001 574 significant(a) Variations of drag coefficients according to the angle and injectionrate coefficient (in cavitation number 1.5)(b) Variations of drag coefficients according to the angle and injectionrate coefficient (in cavitation number 1)(c) Variations of drag coefficients according to the angle and injectionrate coefficient (in cavitation number 0.5)Fig. 9 Variations of drag coefficient according to the angle and injection rate coefficient in different cavitationnumbers (a) Drag coefficient variations according to injection angle andcavitation number (injection rate coefficient of 0.18)(b) Drag coefficient variations according to injection angle andcavitation number (injection rate coefficient of 0.32)(c) Drag coefficient variations according to injection angle andcavitation number (injection rate coefficient of 0.45)Fig. 10 Drag coefficient variations according to injection angle and cavitation number in different injectionrate coefficientsJournal of Marine Science and Application (2017)16: 173-181 179 Table 3 Percentage of error between the predicted values through the relationship and simulation valueVariation range CavitationnumberInjectionrateInjectionangleMaximization coefficient Relation prediction coefficient Error percentageLift Drag Lift Drag LiftDragWithin range 1.25 0.18 30 −0.28 0.85 −0.271 3 0.853 9 3.091 8 0.456 9 Within range 1.25 0.18 60 −0.4 0.86 −0.395 5 0.825 2 1.122 7 4.046 1 Within range 1.25 0.18 60 −0.27 0.82 −0.264 1 0.815 3 2.200 2 0.577 4 Within range 1 0.32 45 −0.45 0.72 −0.434 4 0.695 3 3.463 6 3.436 3 Within range 1.25 0.32 0 −0.45 0.82 −0.470 3 0.808 7 4.510 6 1.381 0 Without range 1 0.32 75 −0.6 0.725 −0.633 2 0.697 5 5.54 3.791 5Without range 1.25 0.6 300.80.78 0.845 20.728 15.6446.648 4(a) Variations of drag coefficients according to injection rate coefficientand cavitation number (0° injection angle)(b)Variations of drag coefficients according to injection rate coefficientand cavitation number (30° injection angle)(c) Variations of drag coefficients according to injection rate coefficientand cavitation number (60°injection angle)Fig. 11 Variations of drag coefficients according to injection rate coefficient and cavitation numberin different degrees of injection angle (a) Variations of lift coefficients according to angle and injection ratecoefficient (in cavitation number 1.5)(b) variations of lift coefficients according to angle and injection ratecoefficient (in cavitation number 1)(c) variations of lift coefficient according to angle and injection ratecoefficient (in cavitation number 0.5)Fig. 12 Variations of lift coefficients according to angle and injection rate coefficient in different cavitationnumbersM. Ghorbani Shahr-e-Babaki et al., Effect of Injection Angle on Artificial Cavitation Using the Design of Experiment Method 1805.2 Lift coefficient graphsThis section examines the graph changes in the lift coefficient in relation to the three parameters of injection rate, injection angle, and cavitation number. These changes depend on designers’ ideas or on the application of a torpedo from the shot place to the up or down part or with no movement. The conclusion on these graphs is that they can reach the special target.The lift coefficient increases in each of the three cavitation numbers by increasing the injection rate coefficient (Fig. 12). In a high injection rate coefficient, the change in lift coefficient is achieved by increasing the injection angle. Moreover, the lift coefficient increases with the increasing injection rate coefficient and injection angle. A high cavitation number means that the velocity of a low torpedo’s change in the extent of lift coefficient according to angle injection and injection rate coefficient has increased intensity, and a low cavitation number means decreased intensity. In this shape, the injection rate coefficient presented in the order of up to down increases more than the other results in this shape. In each cavitation number, the extent of change of the lift coefficient according to cavitation number and injection angle is small. For injection rate coefficients of 18% and 32%, and injection angle of 30° is observed, and the lift coefficient in the extent of change in cavitation number is fixed (Fig. 13). The extent of changes of the lift coefficient in Fig. 14 is in the order of up to down with a decreased injection angle. In this figure, the results indicate that the lift coefficient lines according to cavitation number and injection rate coefficient increase similar to concentric circles.(a) Variations of lift coefficients according to cavitation number andinjection angle (in 0.18° injection rate coefficient)(b) Variations of lift coefficients according to cavitation number andinjection angle (in 0.32° injection rate coefficient)(c) Variations of lift coefficients according to cavitation number andinjection angle (in 0.45° injection rate coefficient)Fig. 13 Variations of lift coefficients according to cavitation number and injection angle indifferent degrees of injection rate coefficient (a) Variations of lift coefficients based on cavitation number andinjection rate coefficient (in 60° injection angle)(b) Variations of lift coefficients based on cavitation number andinjection rate coefficient (in 30° injection angle)(c) Variations of lift coefficients based on cavitation number andinjection rate coefficient (in 0°injection angle)Fig. 14 Variations of lift coefficient based on cavitation number and injection rate coefficient in differentdegrees of injection angleJournal of Marine Science and Application (2017)16: 173-181 1816 ConclusionsThis study uses a test plan to determine the condition operation. Tests examining the operation of the three basic parameters of cavitation number, injection rate coefficient, and injection angle are performed at three levels. The end relation for drag (using the 2FI model) and lift coefficients (using the quadratic model) according to these parameters is attained. Then, the comparison between the calculation amount of these relations with the amount produced from the dramatist correctness relation (with errors less than 4% in the internal solution extent and less than 7% in the external solution extent) is discussed.The mutual effects of cavitation number, injection rate coefficient, and injection angle on the lift and drag coefficients are in accordance with the relationships of different diagrams. These diagrams enable designers to change the angle and injection rate coefficient in different torpedo velocities (cavitation number) according to their purpose. As indicated in the diagrams, if the injection rate has an angle, it causes a remarkable improvement in decreasing the drag factor. However, in increasing the injection rate, the angle should be decreased to prevent the increase in drag coefficient.NomenclatureP∞Absolute pressure, N/m2Q g Gas volume flow, m3/sq g Gas injection rate coefficientV∞Reference velocity, m/s2σc Artificial cavitation numberρWater density, kg/m3D Largest cavity diameter, mD n Cavitator diameter, mL Cavity length, mP c Pressure inside the bulb, N/m2P v Steam pressure, N/m2σv Natural cavitation numberReferencesAhn BK, Lee TK, Kim HT, Lee CS, 2012. Experimental investigation of supercavitating flows. International Journal of Naval Architecture and Ocean Engineering,4(2), 123-131.DOI: 10.3744/JNAOE.2012.4.2.123 Alishahi MM, 2010. The effect of the injected gas at super- gas injection (with the first leak). The Tenth Conference of Iranian Aerospace Society, 5.Baradaran Fard M, Nikseresht AH, 2012. Numerical simulation of unsteady 3D cavitating flows over axisymmetric cavitators.Scientia Iranica, 19(5), 1258-1264.DOI: 10.1016/j.scient.2012.07.013Goel A, 2002. Control strategies for supercavitating vehicles. PhD thesis, University of Florida, Gainesville.Hashem Abadi SH, Dehnavi MA 2011. CFD simulation of multiphase flows with Fluent software. Andishe Sara, 208. Schauer TJ, 2003. An experimental study of a ventilated supercavitating vehicle. PhD thesis, University of Minnesota. Ma C, Jia D, Qian ZF, Feng DH, 2006. Study on cavitation flows of underwater vehicle. Journal of Hydrodynamics,18(3), 373-377.DOI: 10.1016/S1001-6058(06)60081-4Ji B, Luo XW, Peng XX, Zhang Y, Wu YL, Xu HY, 2010.Numerical investigation of the ventilated cavitating flow around an under-water vehicle based on a three-component cavitation model. Journal of Hydrodynamics,22(6), 753-759.DOI: 10.1016/S1001-6058(09)60113-XRoohi E, Zahiri AP, Passandideh-Fard M, 2013. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Applied Mathematical Modelling, 37(9), 6469-6488.DOI: 10.1016/j.apm.2012.09.002Vlasenko YD, Savchenko GY, 2012. Study of the parameters of a ventilated supercavity closed on a cylindrical body. In: Supercavitation, Springer, 201-214.DOI: 10.1007/978-3-642-23656-3_11Wei YJ, Cao W, Wang C, Zhang JZ, Zou ZZ, 2009. Experimental research on character of ventilated supercavity. New Trends in Fluid Mechanics Research, Springer, Berlin, Heidelberg, 348-351.DOI: 10.1007/978-3-540-75995-9_108Yang WG, Zhang YW, Kan L, Deng F, 2009. Experimental investigation on the property of high-speed ventilated supercavitation. New Trends in Fluid Mechanics Research, Springer, Berlin, Heidelberg, 475-478.DOI: 10.1007/978-3-540-75995-9_152Zhang XW, Wei YJ, Zhang JZ, Wang C, Yu KP, 2007.Experimental research on the shape characters of natural and ventilated supercavitation. Journal of Hydrodynamics, 19(5), 564-571.DOI: 10.1016/S1001-6058(07)60154-1Zou W, Yu KP, Wan XH, 2010. Research on the gas-leakage rate of unsteady ventilated supercavity. Journal of Hydrodynamics 22(5), 778-783.DOI: 10.1016/S1001-6058(10)60030-3。

基于黏弹性人工边界条件的岩质边坡动力反应分析

基于黏弹性人工边界条件的岩质边坡动力反应分析

水利与建筑工程学报Joprnai of Watee Resoprees and Architectural Engineering 第3卷第(期2 0 2 1年2月Vol. 19 No. 1Feb. ,202)DOI :19. 3969/C issc. 9672 - 1144.2021 61631基于黏弹性人工边界条件的岩质边坡动力反应分析景鹏旭6尹 超4,门丽君5,许杰夫6杨清逸4(1中国地震应急搜救中心,北京60042; 2.北京交通大学,北京60055;3.山西工程技术学院,山西阳泉045000 ;4.北京清控人居光电研究院有限公司,北京60089)摘要:基于数值分析方法,以二维岩质边坡为例,通过布置在边界处的弹簧和阻尼器构成黏弹性人工 边界条件,探讨边坡尺寸、形状以及地震波的类型对放大效应的影响。

结果表明地震波频率和坡角是地 震响应的决定性因素,坡高对于边坡特征点(坡脚、坡顶)的变化敏感性较低。

结论如下:对于同一地震 波频率,不同坡高对于地震放大效应的影响较小,差别仅在于边坡越高,坡脚距离坡顶的距离越长,这部分的动力响应越明显;对于同一边坡角度,随着入射地震波的频率越高,坡面的放大系数逐渐增加;对于 同一边坡高度,随着边坡的角度变陡,坡面的放大系数逐渐增加。

综上所述,在岩质边坡抗震设计时应 考虑放大效应的影响。

关键词:岩质边坡;黏弹性边界人工边界;放大效应;频率中图分类号:TU443 文献标识码:A 文章编号:372—134(2021)01—030—05Dynamic Response Analysis of Rock Slope Based onViscoelastic ArtificiaO Boundary ConditionJING Pengxu 1, YIN Chav -, MEN Lijun 5, XU Jiefu 1, YANG Qingyl 3(1. National Earthquake Response Support Service , Beijing 100049, China ;2. Beijing Jiaotong Universito , Beijing 140055 , China ;3. Shanxi Instituto r Techalogy , Yaagquaa , Shanxi 045400 , China ;4. Bejinq Tsinghua Holdings Humag Sethemenie Piqhhng Research Instituto Cn. ,Lth , Bejing 100089 , China)Abstrrci : BwS on tUe dumericai vOysis methoU , this pwer tafes a two - 47x 60X01 roch slope as an example , and discusses the inUuences of the size and shape of the slope and the type of seismic wavv on the ampliXcakon ebeO by forming a viscoelastic artificial bouudam condition with springs and dampem arraoaen at the boundarp. The msuVsshow that seismic wavv 001X0 and slope angle are the decisivv factori Ur seismic response , and slope height is less sehitav te Ovges in slope characteristic 00X01:0 ( slope U o W slope top) : The conclusions are as follows. F os the sameseismic wavv Uequency , diOerent slope heightu havv dss impact on the seismic ampliXcakon effect. The only (11X60- e n ee is that the highes the slope , the longe s the distance betwe e n the slope toe and the slope top , the more odvious thedynamic response of this pan. Fos the same slope angle , as the Uequency of the incident sb s mic wavv is highes , the slope amplification fOctos grafualip increases. Foe the same slope heighw as the slope angle becomes steepe, the slopeampliOcakon factor grafuakp increases. In summarp , the impacts of the amplification effect should be cousideren in theseismic design of roch slopes.Key w ord t : rrck slope ; viscoelastio boundary ; artiOciaO boundary ; ampliOcotion effeci : frequency收稿日期:2222-S6-77 修稿日期:22229974基金项目:中国地震应急搜救中心青年基金(SJ1991 -作者简介:景鹏旭(699—)男,山西太原人,硕士,工程师,主要从事岩土工程、地震工程等方面的研究工作。

精选人工智能介绍英文版

精选人工智能介绍英文版
人工智能介绍英文版
Artificial intelligence has a saying: singularity! After the singularity, artificial intelligence can create a more intelligent artificial products, and then the development of the slope will suddenly steep up. Maybe Terminator is coming!
Artificial Intelligence and Its Impact on Our Future
人工智能介绍英文版
We know that people are thinking through the neurons, and the computer is through a program to execute the work instructions. So, if one day the procedure can replace the neurons, the computer will not be able to produce ideas?
人工智能介绍英文版
This is the United States Google's Boston power company's latest release of a robot called Handle.
人工智能介绍英文版
This is Spot:
人工智能介绍英文版
And this is Atlas
人工智能介绍英文版
It is up to 1.9 meters tall and weighs about 150 kilograms, walking like a human being with his legs. It is mainly used to assist in the rescue work, but after programming, it has the ability to pass through the rugged terrain and the operation of electrical equipment, can form the future “mechanical infantry regiment”".
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档