溶剂热法在阵列101和002单晶多晶锌金属基板上制备纳米氧化锌

合集下载

纳米氧化锌的制备方法

纳米氧化锌的制备方法

纳米氧化锌的制备方法纳米氧化锌是一种具有广泛应用前景的纳米材料,在催化、光催化、光电子器件、生物医学和涂料等领域有着重要的应用价值。

本文将介绍几种常见的纳米氧化锌的制备方法,包括溶胶-凝胶法、热分解法、水热法和气相沉积法。

溶胶-凝胶法是一种常用的制备纳米氧化锌的方法。

其步骤如下:首先,将适量的锌盐溶解在溶剂中,例如乙醇、甲醇或水。

然后,加入适量的碱溶液用于调节pH值。

溶液中的锌离子和碱离子反应生成锌氢氧盐沉淀。

接下来,在适当的温度下,将沉淀进行热处理。

最后,通过分散剂和超声处理将沉淀分散成纳米颗粒。

该方法制备的纳米氧化锌具有粒径均匀、可控性强、纯度高等优点。

热分解法是一种制备纳米氧化锌的简单、经济的方法。

该方法以有机锌化合物或无机锌化合物为前驱体,通过热分解反应生成纳米氧化锌。

常见的有机锌化合物包括锌醋酸盐、锌乙酸盐等,无机锌化合物包括氯化锌、硝酸锌等。

首先,将前驱体在有机溶剂中溶解,然后通过热解、煅烧等方法将前驱体转化为氧化锌纳米颗粒。

该方法制备的纳米氧化锌具有晶体结构好、粒径可调节等优点。

水热法是一种常用的制备纳米氧化锌的方法。

其步骤如下:首先,将适量的锌盐和氢氧化物溶解在水中,形成混合溶液。

然后,将混合溶液加入到压力容器中,在一定的温度和压力下进行加热反应。

反应完成后,通过离心和洗涤的方式将沉淀分离,然后经过干燥处理得到纳米氧化锌。

该方法制备的纳米氧化锌具有粒径小、分散性好等优点。

气相沉积法是一种常用的制备纳米氧化锌的方法。

其步骤如下:首先,将适量的氧化锌前驱体溶解在有机溶剂中,形成溶液。

然后,将溶液填充到化学气相沉积设备中,并通过控制沉积温度、气体流量和时间等参数,使溶液中的前驱体在载气的作用下分解生成纳米氧化锌。

最后,通过对晶粒尺寸和形貌进行表征,得到纳米氧化锌的相关信息。

该方法制备的纳米氧化锌具有晶粒尺寸均匀、形貌可调节等优点。

综上所述,溶胶-凝胶法、热分解法、水热法和气相沉积法是几种常见的制备纳米氧化锌的方法。

纳米氧化锌光催化剂制备方法

纳米氧化锌光催化剂制备方法

粒 度 和组 成 均 匀 , 程 简单 连 续 , 具 工 业 化 潜 过 颇
力 , 需要 高温及 真空 条件 , 但 且有些 盐 分解 时会 产
于颗粒 尺寸 的细微化 , 比表面 积急剧增 加 , 使纳 米 氧 化锌 产生 了其本 体块状 物料 所不具 有 的表面 效 应 、 尺寸效 应和宏 观量 子隧 道效应 等 , 小 因而纳 米 氧化 锌在 磁 、 、 、 等方 面 有一 般 氧化 锌 产 品 光 电 热 所 不具 备 的优 良性 能 , 有一 系列优 异 的物理 、 具 化
法、 高能球磨法和深度塑性变形法 ; 化学方法有固相法 、 气相法 和液相法 , 液相法又可 分为沉淀法 、 溶胶 一凝胶 法 、 微乳液法 、 水热法等 。并对纳米氧化锌今 后的研究 方向进行 了展望 。 [ 关键词 ] 光催化剂 纳米氧化锌 制备方 法
Z O晶体为 六 方 晶 系结 构 ,n 离 子 的配 位 n z 数 为 4 O 离子 的配 位 数 也 是 4 属 于纤 锌 矿 结 ,卜 , 构 。室 温下禁 带宽度 约 为 32e 激 光束 能量 为 . V, 6 e 0m V。纳 米 Z O是 面 向 2 n 1世纪 的新 型高 功 能
米 粉 体 的 过 程 和 技 术 , 到 了 O —A : , Z O, 得 L 1 ,n O
收稿 日期 :O 1 6— 4 2 l —0 0 。 作 者 简 介 : 秋 红 , 士研 究 生 , 要 从 事 催 化 剂 研究 工 作 。 张 硕 主
物理制 备方 法 是 指采 用 光 、 电技 术使 材 料 在
高能球 磨法 靠 磨 机 的转 动 或 振 动 使介 质 对粉 体进行 强烈 的撞击 、 研磨 和搅 拌 , 把粉体 粉 碎 成纳 米级粒 子 。H B 高 能球磨 机 ) E M( 最早 用 于 合

纳米氧化锌的制备方法

纳米氧化锌的制备方法

纳米氧化锌的制备方法
1.方法步骤为:
(1)氧化锌溶液配制:将氧化锌置入自身重量5~10倍、40℃~75℃的去离子水中,搅拌均匀制成氧化锌溶液;(2)充气反应:向氧化锌溶液通入CO?气体,同时搅拌,加热升温到85℃~90℃,保温240~450分钟,然后停止通入CO?气
2.
2.1
(1
2.2
在可溶性锌盐中加入沉淀剂后,当溶液离子的溶度积超过沉淀化合物的溶度积时,即有沉淀从溶液中析出。

沉淀经热解得纳米氧化锌。

常见的沉淀剂为氨水、碳酸铵、和草酸铵。

不同的沉淀剂,其反应生成的沉淀产物也不同,故其分解的温度也不同。

此法操作简单易行,对设备要求不高,成本较低,但粒度分布较宽,分散性差,洗涤原溶液中阴离子较困难。

3.溶胶-凝胶法
实验原料和制备工艺
醋酸锌,柠檬酸三铵,无水乙醇,保护胶,乳化剂,蒸馏水。

以醋酸锌为原料,柠檬酸三铵为改性剂,配置一定浓度的醋酸锌溶液,搅拌均匀后,置于恒温水槽中,在搅拌加热的条件下,均匀的加入无水乙醇,2h后醋酸锌完全溶。

制备纳米材料的新方法和应用

制备纳米材料的新方法和应用

制备纳米材料的新方法和应用近年来,纳米材料的应用广泛,并在许多领域展现了强大的潜力。

纳米材料具有高比表面积、惊人的物理、化学和生物学特性以及高度定制化的结构。

然而,纳米材料制备过程中存在着诸多挑战。

许多传统的合成方法通常需要使用有害的溶剂或高温高压条件,这些条件不仅会给环境造成巨大的影响,同时也会限制纳米材料的应用,甚至不安全。

近年来,科学家们已经开发出新的方法来制备纳米材料。

这些方法旨在提高材料的效率和性能,并减少对环境的影响。

下面将介绍其中几种新的纳米材料制备方法及其应用。

1. 原子级沉淀:利用溶液中与纳米颗粒表面亲和力较强的离子,实现一层层原子的沉积,构建出纳米颗粒。

这种原子级沉淀技术在制备纳米银材料方面有着广泛的应用。

由于其良好的导电性能和抗菌性能,纳米银材料可以应用于医学、电子和水处理等领域。

2. 微生物法:利用微生物合成纳米颗粒。

不同的微生物合成不同种类的纳米材料,其中最常见的是利用银离子还原,获得银纳米颗粒。

这种方法专门运用于医学领域,制备的银纳米颗粒可用于有效地治疗皮肤病和烧伤。

3. 水热法:将金属离子和有机物质放入压力罐中,在高温高压条件下进行反应, 得到纳米材料。

这种方法常常被用于制备氧化锌、氧化铜等金属氧化物纳米材料。

这些纳米氧化物具有极高的表面积、可控制的光学特性和电化学性能,可以在光电催化、气体传感等领域得到广泛的应用。

4. 真空热蒸发法:利用高温下将材料蒸发成气态,再在低温的表面将其重结晶,制备出具有细小晶粒和高密度的纳米材料例如,这种方法可以制备出金纳米材料,应用领域包括生物医学、光学、纳米电子学等。

总的来说,这些新的纳米材料制备方法为我们提供了更多的机会,可以改善甚至革命传统的合成方法。

而这些纳米材料的应用领域,从医学到电子、环境科学等多个领域,并将不断拓展,变得更加广泛和多样。

纳米氧化锌的制备及应用

纳米氧化锌的制备及应用

当代化工研究Modem Chemical Research168科研开发2019•10纳米氧化锌的制备及应用*肖迪(奎屯市第一高级中学新疆833200)摘要:纳米氧化锌的制备根据反应物相态不同大致可分为固相法、液相法和气相法.本文以此为基础,综述了制备方法并指出了方法对应餉优缺点,最后对纳米氧化锌在抗菌、光催化、橡胶和陶瓷领域的应用作了简要介绍,并对未来的发展做了展望.关键词:纳米氧化锌;制备;应用中图分类号:TQ文献标识码:APreparation and Application of Nano-zinc OxideXiao Di(Kuitun No.l Senior High School,Xinjiang,833200)Abstract z The preparation of n ano-zinc oxide can be roughly divided into solid p hase method,liquid p hase method and gas phase method according to the p hase state of t he reactants.Based on this,the p reparation methods yvere summarized and their advantages and disadvantages were pointed out in this paper.Finally,the applications of n ano-zinc oxide in the f ields of a ntimicrobial,photocatalytic,rubber and ceramics were briefly introduced,and the f uture development was prospected.Key words:nano-zinc oxidei preparation^application纳米氧化锌粉体是一种粒径介于l-100nm的超微颗粒材料,由于纳米材料所呈现出的表面效应、量子隧道效应和小尺寸效应,使其具备了不同于传统材料独特的性质。

纳米氧化物材料的制备与表征方法详解

纳米氧化物材料的制备与表征方法详解

纳米氧化物材料的制备与表征方法详解纳米材料是具有纳米尺寸的固体材料,其在物理、化学和生物学等领域中具有广泛的应用潜力。

纳米氧化物材料是一类由氧化物组成的纳米颗粒,如二氧化钛、氧化锌等。

为了充分发挥纳米氧化物材料的特殊性质和应用价值,制备和表征方法的选择至关重要。

纳米氧化物材料的制备方法:1. 溶胶-凝胶法:这种方法通常适用于制备二氧化硅、二氧化钛等纳米氧化物材料。

首先,以适量的金属盐或金属碱液为前驱体,通过调整溶胶的特性,如溶剂选择、酸碱度和温度等,形成胶状物。

然后,将胶体物质经过凝胶、干燥和煅烧等步骤,最终制备出纳米氧化物材料。

2. 气相沉积法:这种方法主要应用于制备金属氧化物纤维、薄膜和纳米粉末等材料。

通过将金属有机化合物或金属烷基化合物等气体源蒸发在高温下,使其与氧气反应生成氧化物。

通常使用的气相沉积方法有化学气相沉积(CVD)和物理气相沉积(PVD)等。

3. 水热合成法:这种方法适用于制备一些具有高比表面积和独特结构的纳米氧化物材料。

通过将适量的金属盐与水热反应,在高温高压下形成胶状或晶状固体。

水热反应的时间、温度和初始浓度等因素对制备的纳米氧化物材料的结构和性质具有重要影响。

纳米氧化物材料的表征方法:1. 扫描电子显微镜(SEM):SEM是一种常用于观察纳米材料形貌和表面形态的表征技术。

它利用高能电子束与样品表面的相互作用,产生二次电子、反射电子和散射电子等信号,通过探测器捕捉并形成图像。

2. 透射电子显微镜(TEM):TEM是一种用于观察纳米材料内部结构和晶体缺陷的高分辨率表征技术。

它通过透射电子束与样品相互作用,通过透射电子和衍射电子的信息,可以得到纳米材料的晶格结构和晶体学参数等。

3. X射线衍射(XRD):XRD是一种用于分析纳米材料晶体结构和晶体学信息的常用方法。

通过样品对X射线的衍射效应进行分析,可以确定纳米材料的晶体结构、晶格常数和结晶度等参数。

4. 红外光谱(IR):这种表征方法可以用于分析纳米材料的化学成分和化学键信息。

纳米氧化锌生产工艺

纳米氧化锌生产工艺

纳米氧化锌生产工艺
纳米氧化锌生产工艺是通过先进的化学合成方法制备纳米颗粒氧化锌的过程。

以下是一个包括几个关键步骤的典型的纳米氧化锌生产工艺流程。

1. 材料准备:准备所需的原料和试剂,包括锌粉和溶剂等。

确保原料的纯度和质量。

2. 溶液制备:将锌粉溶解在适当的溶剂中,例如水或有机溶剂。

使用搅拌器将溶液搅拌均匀,以确保溶液中的锌粉均匀分散。

3. 沉淀反应:将溶液加热并加入一定量的沉淀剂,例如碳酸氢铵或氨水,促使锌离子和沉淀剂发生反应生成氧化锌沉淀。

在反应过程中,要保持适当的搅拌和温度控制,以确保反应的均匀性和高效性。

4. 沉淀分离:将反应完成后的体系进行离心或过滤分离,将沉淀从溶液中分离出来。

然后用适当的溶剂进行洗涤,去除残留的溶剂和反应产物。

5. 干燥和研磨:将纳米氧化锌沉淀进行干燥,通常采用低温干燥的方法,以避免纳米颗粒的烧结和聚集。

然后使用适当的研磨方法将干燥的沉淀研磨成所需的纳米颗粒尺寸。

6. 表征和分析:对得到的纳米氧化锌进行表征和分析,包括粒径分析、形貌观察、化学成分分析、晶体结构分析等。

这些分析结果可以用来评估纳米氧化锌的质量和性能。

7. 后续处理:根据纳米氧化锌的应用需求,可以进行一些后续处理步骤,例如表面修饰、复合材料制备等,以提高纳米氧化锌的性能和适用性。

需要注意的是,纳米氧化锌的生产工艺具有一定的复杂性和技术难度。

在实际生产中,还需要综合考虑产品质量、成本控制、环境保护等因素,选择合适的工艺和优化生产参数。

此外,安全操作和对相关法规的遵守也非常重要。

纳米氧化锌材料的制备及其光催化性能研究

纳米氧化锌材料的制备及其光催化性能研究

纳米氧化锌材料的制备及其光催化性能研究纳米氧化锌材料的制备方法有很多种,常用的方法包括溶剂热法、水热法、溶胶-凝胶法等。

其中,溶剂热法是一种常用的制备方法。

这种方法主要通过在高温、高压条件下,将溶液中的锌源与氧化剂反应生成纳米氧化锌颗粒。

溶胶-凝胶法是另一种常用的方法,通过将金属盐溶解在溶液中,并加入适当的酸或碱调节溶液的酸碱度,使其产生胶体,然后经过凝胶、干燥和焙烧等步骤得到纳米氧化锌。

纳米氧化锌材料具有较大的比表面积和较高的光吸收能力,这使得其具有优异的光催化性能。

纳米氧化锌在光照条件下,可以吸收光能,激发电子从价带向导带跃迁,产生电子空穴对。

这些电子空穴对具有强氧化性,可以氧化有机物质和降解有害物质。

此外,纳米氧化锌还具有良好的光电化学性能,可以用于光电池、光催化分解水等领域。

纳米氧化锌材料的光催化性能可以通过一系列实验来研究。

首先,可以通过紫外可见漫反射光谱(UV-Vis DRS)分析材料的光吸收能力,并确定其能带结构和能带宽度。

其次,可以采用光电流-电势曲线(I-V)测试技术来评估光电转化效率。

再次,可以通过光催化降解有机染料等实验,研究材料的光催化活性。

此外,还可以通过表面等离子体共振(SPR)等技术,研究纳米氧化锌材料的光吸收特性和光催化过程中的电荷传输过程。

纳米氧化锌材料在光催化领域的应用前景非常广阔。

其在环境污染治理方面可以应用于有机物的降解和水的净化;在能源方面可以应用于光电池、光催化分解水等;在生物医学方面可以应用于抗菌剂和药物传递等。

然而,纳米氧化锌材料的应用也面临一些挑战,如光催化剂的稳定性、光催化效率的提高等。

因此,未来的研究应进一步探索纳米氧化锌材料的制备方法和性能改进,以实现纳米氧化锌材料在各领域的广泛应用。

总之,纳米氧化锌材料通过特殊的制备方法可以得到,且具有优异的光催化性能。

纳米氧化锌的光催化性能可以通过一系列实验来研究,包括光吸收能力、光电转化效率以及光催化活性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Materials Letters 63 (2009) 1019–1022Contents lists available at ScienceDirectMaterials Lettersj o u r n a l h o m e p a g e : w w w. e l s ev i e r. c o m / l o c a t e / m a t l e tSolvothermally grown ZnO nanorod arrays on (101) and (002) single- and poly-crystalline Zn metal substratesJe Hyeong Park, P. Muralidharan, Do Kyung Kim⁎Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Koreaa r t i c l e i n f o ab s t r ac tArticle history:Received 17 November 2008Accepted 27 January 2009Available online 5 February 2009Keywords:LuminescenceSingle-crystal Zn substrateSolvothermal process1D ZnO nanorodNanomaterials1. IntroductionOne-dimensional (1D) ZnO nanorod (NR) arrays were grown on (101) and (002) single- and poly-crystallineZn substrates via direct surface-oxidation in solution, i.e. solvothermal method. The surface-oxidation wasdone in a solvent mixture of water and 1-propanol with the optimum pH adjusted by adding ammonia. X-raydiffraction patterns revealed that the ZnO NRs grown on the Zn substrates were of single-crystalline withwurtzite structure. The ZnO NRs grown on the (002) single- and poly-crystalline substrates grew in theb001N direction, in contrast to the NRs grown on the (101) single-crystal substrate which were orientedpredominantly in the b101N direction. The texture coefficient of the grown ZnO NRs was calculated from theXRD data. Well-aligned NRs that had tips of various shapes were examined by scanning electron microscopyand transmission electron microscopy techniques. The optical properties of the ZnO NRs grown on the Znsubstrates were characterized by photoluminescence (PL) spectroscopy.© 2009 Elsevier B.V. All rights reserved.1-propanol. There is a possibility that large scale synthesis of well-aligned ZnO NR arrays can be achieved by this method at low- One-dimensional (1D) zinc oxide (ZnO) nanostructures (wires,rods, tubes, ribbons, and fibers) have become the focus of researchinterest due to their wide-band gap (3.37 eV), large free excitonbinding energy of 60 meV, high optical gain, and their chemical andthermal stabilities [1–3]. In particular, well-aligned 1D ZnO nanorods/nanowires with novel excitonic properties fabricated on specificsubstrates have attracted considerable interest for many potentialapplications in optoelectronic nanoscale devices, including gassensors, antistatic coatings, optical waveguides, and dye-sensitizedsolar cells [3–7].Single-crystalline ZnO nanostructures with various sizes, morphol-ogies, defects and impurities have been synthesized by variousmethods [8–10], including solvo- and hydrothermal processes [11–17]. These processes offer significant advantages, such as chemicalhomogeneity, low-temperature and high pressure that are required toincrease the solubility of the solid precursors. In general, the growth ofZnO nanostructures under the hydrothermal conditions has typicallyinvolved substrate coated with nanosized ZnO seeds. In addition, gold(Au), tin (Sn) and platinum (Pt) films having been pre-coated on thegrowth surface are also used as catalysts. To obtain NRs oriented in aspecific direction, the epitaxial orientation relationship between theNRs and the substrate is one of the important factors [13–17].ZnO NRs aligned in a specific direction have been grown by thedirect surface-oxidation of the zinc substrate in a mixture of water and⁎ Corresponding author. Tel.: +82 42 350 4118; fax: +82 42 350 3310.E-mail address: dkkim@kaist.ac.kr (D.K. Kim).0167-577X/$ – see front matter © 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.matlet.2009.01.076temperature.In the present work, we demonstrate the fabrication of well-aligned 1D ZnO NRs arrays grown on (101) and (002) single- andpoly-crystalline Zn substrates with different tip shape morphologiesvia a solvothermal process without any metal catalysts. To the best ofour knowledg e, this is the first report on the effects of single-crystal Znmetal as a source for the growth of the ZnO NRs in a specific crystallineorientation.2. ExperimentalWell-aligned 1D ZnO NR arrays were grown on the (101) and(002) single- (Mateck, Germany) and poly-crystalline zinc sheets(Samhwa, Korea). The zinc sheets acted as both a zinc precursor and asubstrate and were initially pretreated by sonication in iso-propanol,methanol, and dried in nitrogen gas. The cleaned zinc sheets wereplaced at the b ottom of the 100 mL Teflon-lined stainless steelautoclave containing a mixture of 20 mL of deionized water, and 40 mLof 1-propanol (99.5%, Junsei Chemical, Japan) as a solvent medium.The pH value of the medium was adjusted to an optimum one byadding ammonia (28 wt.%). The solvothermal reaction was conductedin an oven at 125 °C for 10 h. After that, the samples were taken outand rinsed with deionized water and ethanol.The as-prepared products on the substrates were characterized byan X-ray diffractometer (XRD, Rigaku, D/MAX-IIIC X-ray diffract-ometer, Tokyo, Japan) with Cu Kα radiation (λ = 0.15406 nm at 40 kVand 45 mA). The growth of ZnO crystallites on the single- and poly-crystalline Zn substrates were quantitatively characterized and1020J.H. Park et al. / Materials Letters 63 (2009) 1019–1022depends on the crystallinity and orientations of the substrates. The XRD patterns in Fig. 1(a)–(c) show that the peaks corresponding to the substrates have very weak intensity indicating that the crystalline NRs were grown densely. It can be seen in Fig. 1(a) that the intensity of the (101) peak is strong in comparison with that of the other peaks, such as (002) and (100). This indicates that the ZnO NRs grown on (101) Zn substrate were highly oriented in the b101N direction. The XRD analysis and texture coefficient calculation revealed that the (101) orientation with a high texture coefficient T c(101) is stronger than the (002) orientation with T c(002) (Table 1). The results confirmed that the ZnO NRs grown on the (101) single -crystal Zn substrate were oriented in the b101N direction. On the other hand, NRs grown on the (002) single- and poly-crystalline Zn substrates in Fig. 1 (b) and (c) show that the intensity of the (002) peak is stronger than that of the (101) and (100) peaks. It is evident from the XRD patterns in Fig. 1(b) and (c) that the ZnO crystal was oriented in the b001N direction, as seen quantitatively from the high texture coefficient of T c (002) in comparison with T c(101) (Table 1).Several reports have revealed that the ZnO NRs grown on the substrates were oriented in the b001N direction because the (001) plane (terminated with zinc) of ZnO has the maximum surface energy, while the (00-1) plane (terminated with oxygen) has the minimum surface energy. As a result, the growth along the b001N direction has a faster rate than that along other directions. The orientation is also determined by surface diffusion and in addition, surface diffusion promotes both c-axis and a-axis orientations [19]. It is widelyrecognized that during first growth, interaction between substrateand particles arriving there, play an important role in nucleation. After Fig. 1. XRD patterns of the Zn substrates and 1D ZnO NRs grown on (a) (101), (b) (002) single- and (c) poly-crystalline Zn substrates.compared with calculated texture coefficient T c(hkl). The texturecoefficient T c(hkl) is defined as follows [18]: T c(hkl) = (I (hkl)/I r(hkl))/[1/ nΣ(I (hkl)/I r(hkl))], where T c(hkl) is the texture coefficient, n is the number of peaks considered, I (hkl) are the intensities of the peaks ofthe ZnO NRs, and I r(hkl) are the peak intensities indicated in the JCPDS #36-1451 corresponding to the randomly oriented crystallites. A sample with randomly oriented crystallites presents a T c(hkl) of 1, while a larger value indicates an abundance of crystallites oriented to the (hkl) plane. Field emission scanning electron microscopy (FE-SEM, XL30, FEG, Philips, Netherlands) and transmission electron micro- scopy (TEM, JEM 3010, JEOL, Japan) were employed to characterize the morphology and structure of the prepared samples. The optical properties of the NRs were characterized at room temperature by photoluminescence (PL) spectroscopy using the 325 nm excitation wavelength from an argon ion laser (Coherent Innova Laser System).3. Results and discussionA pale gray ZnO layer grew on the surface of the (101), (002) single- and poly-crystalline zinc substrates by way of a solvothermal reaction at 125 °C for 10 h. The XRD patterns of the ZnO NRs that were grown on the (101) and (002) single- and poly-crystalline zinc substrates together with those of the substrates are shown in Fig. 1(a)–(c). The diffraction peaks of the ZnO NRs are indexed in a hexagonal wurtzite structure ZnO (space group P63mc), which agrees well with the reported values of lattice constants (a = 0.324 nm, and c = 0.520 nm) of zincite of the JCPDS # 36-1451.The orientation of the substrates and the calculated texture coefficient of the ZnO NRs are presented in Table 1. The experiment an initial layer covering the substrate has formed, actual growth begins, during which interaction only occurs between particles of the initial layer. This is true even for amorphous glass substrates, where no epitaxial growth is expected [20,21]. Therefore, it can be concluded in the present study that the ZnO crystallites grow in a specific direction depending on the formation initial nuclei through surface diffusion on the metallic Zn substrate.Fig. 2(a), (c), (e) and (f) shows the SEM micrographs of densely grown ZnO NRs on the (101), (002) single- and poly-crystalline Zn substrates. The micrographs in Fig. 2(a), (c), (e) and (f) show that the aligned ZnO NRs are oriented perpendicular to the substrate. These ZnO NRs have the same averaged height (~4–5 µm) and diameters (~200 nm). By changing the reaction time period the height of theZnO NRs could be varied from several hundred nm to several µm. Fig. 2 (b) and (d) shows the SEM and inset TEM images of sharp or prismatic and flat tip shapes of ZnO NRs grown from the (101) and (002) single - crystals, respectively. Fig. 2(f) shows the side-view of the aligned ZnO NRs grown on the poly-crystalline Zn substrate and also the clear tip shape of the NRs.ZnO NRs grown on the Zn substrates in a basic medium of water/1- proponol under a high pressure may be simplified as follows: Zn 2+ + 4OH −→ [Zn(OH)4]2− and [Zn(OH)4]2−→ Z nO + H 2O + 2OH −. This ensures the dissolution of the Zn 2+ ion from the metal surface and complexes causing it to form Zn(OH)2 and with the excess OH − ions to produce [Zn(OH)4]2− ions. These Zn(OH)2 and [Zn(OH)4]2− trans- forms to a ZnO seed at high temperature and pressure. These seeds agglomerate together to form a hexagonal planar nucleus [22]. One face of the hexagonal sheet is Zn rich of ZnO and forms (001)was repeated for reproducibility and uniformity. The orientation of the single-crystal substrates plays a vital role in determining the preferential growth direction of ZnO crystals. The relative intensities of the major peaks of the ZnO crystals in Fig. 1(a)–(c) were found to be different from one another. This is because their growth orientationJ.H. Park et al. / Materials Letters 63 (2009) 1019–1022 1021 Fig. 2. SEM micrographs of the 1D ZnO NRs grown on (a) (101), (c) (002) single-, and (e) poly-crystalline Zn substrates and high magnification SEM, and inset TEM images of the ZnONRs grown from (b) (101) and (d) (002) single-crystals and (f) side-view of the ZnO NRs grown on the poly-crystalline Zn substrates.orientation and can attract new ZnO species to the surface and thereby originate growth. The present experimental results demonstrate theentire Zn2+ ion nuclei originated via the dissolution of (101) and (002) orientations of Zn substrates. As a result, it can be concludedFig. 3. PL spectra for the 1D ZnO NRs grown on the (a) (101), (b) (002) single- and (c) polycrystalline Zn substrates. The inset shows the PL spectra of entire ranges from 350 to 600 nm. that Zn2+ ion nuclei originated from different orientations of the substrates and that those seeds agglomerate together to form a hexagonal planar nucleus on the orientation corresponding to the formation of the ZnO crystals. Further experiments are under way to challenge this study, and to improve particle organization and orientation.Fig. 3 shows the PL spectra of the aligned ZnO NRs grown on the Zn substrates, measured in the range of 350 nm to 450 nm, with the inset showing the entire range from 350 to 600 nm. The intense PL peaks centered at ~374 (3.31 eV), 372 (3.32 eV) and 368 (3.36 eV) for the ZnO NRs grown on the (101), (002) single- and poly-crystalline substrates, respectively. The broad UV emission peak range from 368to 376 nm may correspond to the band edge emission resulting fromthe recombination of the free excitonic centers [23]. In Fig. 3(b) and (c), the FWHM values of the PL spectra are extremely large and PL peak energies of the NRs grown on the (002) single- and poly- crystalline are higher than the calculated free-exciton energy. The higher PL energies may be attributed to additional UV emission possibly arises from the interface layer between the substrate and the ZnO NRs. In particular, ZnO NRs grown on (101) show very weak peaks at 477 nm and 490 nm. This may be attributed to weak blue bands.4. ConclusionThe 1D ZnO NRs were successfully grown on (101), (002) single- and poly-crystalline Zn substrates in a basic medium of water/1- proponol via the solvothermal process. The reaction process was1022 J.H. Park et al. / Materials Letters 63 (2009) 1019–1022achieved via the simple surface-oxidation of the Zn substrates and theZnO NRs were grown without any surface catalyst. ZnO NRs that werealigned along the specific orientation were grown with various tipshapes by simply altering the Zn substrates orientations. Thussynthesized aligned ZnO NRs can be directly used for the specificapplications, including UV lasers, piezoelectric antenna arrays andfield emission devices.AcknowledgementsThis work was supported by the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D program fundedby the MOST and Brain Korea 21 program from Korean Ministry of Education. PM thanks to the Korea Research Foundation Grant fundedby the Korean government (MOEHRD) (KRF-2005-005-J09701). References[1] Ng HT, Li J, Smith MK, Nguyen P, Cassell A, Han J, et al. Science 2003;300:1249.[2] Guo L, Ji YL, Xu H, Simon P, Wu Z. J Am Chem Soc 2002;124:14864–5.[3] Wang ZL, Song J. Science 2006;312:242–6. [10][11][12][13][14][15][16][17][18][19][20][21][22][23]Yan H, He R, Pham J, Yang P. Adv Mater 2003;15:402–5.Wang X, Summers CJ, Wang ZL. Nano Lett 2004;4:423–6.Cheng C, Xu G, Zhang H, Luo Y, Li Y. Mater Lett 2008;62:3733–5.Hamann TW, Martinson ABF, Elam JW, Pellin MJ, Hupp JT. Adv Mater2008;20:1560–4.Xing GZ, Yi JB, Tao JG, Liu T, Wong LM, Zhang Z, et al. Adv Mater 2008;20:3521–7.Xu C, Rho K, Chun J, Kim DE. Appl Phys Lett 2005;87 253104-1-3.Manzoor U, Kim DK. Scripta Mater 2006;54:807–11.Polsongkrama D, Chamninok P, Pukird S, Chow L, Lupan O, Chai G, et al. Physica B 2008;403:3713–7.Wang Z, Huang B, Liu X, Qin X, Zhang X, Wei J, et al. Mater Lett 2008;62:2637–9.Wang J, Sha J, Yang Q, Ma X, Zhnag H, Yu J, et al. Mater Lett 2005;59:2710–4.Vayssieres L. Adv Mater 2003;15:464–6.Movahedi M, Kowsari E, Mahjoub AR, Yavari I. Mater Lett 2008;62:3856–8.Le HQ, Chua SJ, Koh YW, Loh KP, Fitzgerald EA. J Cryst Growth 2006;293:36–42.Wang JX, Sun XW, Yang Y, Huang H, Lee YC, Tan OK, et al. Nanotech2006;17:4995–8.Romero R, Leinen D, Dalchiele EA, Ramos-Barrado JR, Martín F. Thin Solid Films2006;515:1942–9.Kajikawa Y. J Cryst Growth 2006;289:387–94.Znaidi L, Soler Illia GJAA, Benyahia S, Sanchez C, Kanaev AV. Thin Solid Films2003;428:257–62.Hong J, Helming H, Jiang X, Szyszka B. Appl Surf Sci 2004;226:378–86.Li W-J, Shi E-W, Zhong W-Z, Yin Z-W. J Cryst Growth 1999;203:186–96.Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P. Adv Mater 2001;13:113–6.。

相关文档
最新文档