沉淀法制备纳米氧化锌粉体讲义
精细化工实验 液相沉淀法制备氧化锌纳米粉

液相沉淀法制备氧化锌纳米粉一. 实验目的1、学习液相沉淀法制备纳米粉的原理;2、掌握液相沉淀法制备氧化锌纳米粉的方法;3、了解氧化锌纳米粉的主要性质及用途。
二. 实验原理1 主要性质和用途氧化锌,又称锌白,分子是为ZnO。
氧化锌纳米粉为白色或微黄色粉末,属六方晶体,晶格常数为a=3.14*10-10m,c=5.19*10-10m,为两性氧化物,溶于酸和碱金属氢氧化物,氨水,碳酸铵和氯化铵溶液,难溶于水和乙醇。
无味,无臭。
在空气中能吸收二氧化碳和水。
熔点约1975℃,密度5.68g/cm3氧化锌纳米粉是一种新型功能无机粉料,其粒径介于1~}100nm之间。
由于颗粒尺寸微细化,使得氧化锌纳米粉产生了其本体块状材料所不具备的表面效应,小尺寸效应,量子效应和宏观量子隧道效应等。
因而使得氧化锌纳米粉在磁,光,电,敏感等方面具有一些特殊的性能。
本品主要用来制造气体传感器,荧光体,紫外线遮蔽材料(在整个200—400nm紫外光区有很强的吸光能力,)变阻器,图像记录材料,压电材料,高效催化剂,磁性材料和塑料薄膜。
也可做天然橡胶,合成橡胶及乳胶的硫化活化剂和补强剂。
还常用做陶瓷工业中的矿化剂。
另外在涂料,医药,油墨,造纸,搪瓷,玻璃,火柴,化工和化妆品等工业行业也有广泛的用途。
2制备原理将氯化锌与草酸反应生成二水草酸锌沉淀,经焙烧后制得氧化锌纳米粉。
所涉及的化学反应为:ZnCl2 + 2H2O + H2C2O4→ ZnC2O4·2H2O↓ + HClZnC2O4·2H2O → 2ZnO + 2H2O↑ + 4CO2↑其工艺流程图见框图去离子水↓滤液去离子水氧气↑↓↓↓草酸水和二氧化碳↑去离子水三. 实验仪器和原料带搅拌的反应釜(500ml)、压滤式膜过滤器(小型)、真空干燥箱、电阻炉、烧杯(250ml,500ml)、坩埚,不锈钢小桶(250ml,500ml)等。
氧化锌(AR)分析纯,质量分数99%,稀盐酸不溶物质量分数小于0.005%,水不溶物质量分数小于0.005%,灼烧残渣(以硫酸根为基准)质量分数小于0.002%,重金属离子(以钙离子为基准)质量分数小于(0.003%)草酸(AR):分析纯,质量分数99.8%水溶液质量小于0.005%,灼烧残渣(以硫酸根为基准)质量分数小于0.002%,重金属离子(以钙离子为基准)质量分数小于(0.003%)去离子水四制备方法⑴在一洁净的不锈钢桶中将氯化锌10g加100ml去离子水,配制成锌盐溶液;在另一洁净的不锈钢桶中将9.52g草酸溶于48ml去离子水中,配成草酸溶液。
实验沉淀法制备纳米氧化锌粉体

实验沉淀法制备纳米氧化锌粉体
本实验采用沉淀法制备纳米氧化锌粉体。
沉淀法是一种化学反应沉淀物形成的方法,
通过控制反应条件和物质浓度,可以制备出不同形状和尺寸的纳米材料。
此方法操作简便,且制备出的产物具有较高的纯度和稳定性。
实验步骤如下:
1.将0.5 mol/L的硝酸锌溶液和0.5 mol/L的氨水溶液分别放入两个棕色草酸烧杯中。
注意要保持溶液的相对浓度相同。
2.将氨水溶液滴加到硝酸锌溶液中,同时使用玻璃搅拌棒搅拌,直到反应液变为乳白
色悬浮液。
搅拌时间约为10分钟。
3.将制备好的纳米氧化锌悬浮液通过滤纸过滤,并使用蒸馏水洗涤几次,以去除余留
的氨水和硝酸离子。
4.将过滤后的纳米氧化锌沉淀用乙醇和热水脱水,然后干燥。
此时产生了均匀的纳米
氧化锌粉末。
5.为了控制氧化锌的粒径,可以改变氨水和硝酸锌的浓度,或者改变反应时间和温度
等反应条件。
实验注意事项:
1.实验过程中要避免吸入或接触硝酸锌、氨水等有害化学物质。
2.制备纳米氧化锌粉末时,要保持反应体系的纯度,避免杂质的干扰。
3.沉淀法制备纳米材料时,反应时间、温度和物质浓度等条件应根据具体情况进行控制,以使产物的形状和尺寸满足要求。
4.实验过程中要注意实验室安全,遵守安全操作规程,配备相应的防护措施。
综上所述,通过沉淀法制备纳米氧化锌粉体的实验步骤简单,产物纯度高,可以通过
调节反应条件控制纳米氧化锌的粒径。
这种方法可以应用于制备其他纳米材料,并具有广
泛的应用前景。
化学学士学位毕业论文——直接沉淀法制备纳米氧化锌

学士学位论文题目:直接沉淀法制备纳米氧化锌直接沉淀法制备纳米氧化锌摘要:以硝酸锌和碳酸铵为原料,通过直接沉淀法制备了纳米ZnO.采用DSC、FT-IR、XRD、TEM等对前驱物和纳米ZnO粉体结构和形貌进行了表征,结果表明:前驱物是[Zn5(OH)6(CO3)2];前驱物在550℃焙烧2h得到六方晶系的ZnO粉体;该粉体的形貌为长条形,平均宽度约为50nm, 长度为200nm,分布较均匀、纯度高。
关键词:氧化锌、纳米材料、直接沉淀法、XRDSynthesis of nano-sized ZnO powders by direct precipitation method Abstract Using Zinc nitrate and ammonium carbonate as raw materials, nanocrystalline ZnO was prepared by direct precipitation method. The structure and Morphology of nano-sized ZnO powders and the precursors were characterized by DSC、FT-IR、XRD、TEM. The result showed that the precursor was [Zn5(OH)6(CO3)2]; ZnO crystal powders obtained was six-party crystal when precursor was calcined at550℃ for 2h; The morphology of the powders is a long strip, with an average width of about 50nm, a length of 200nm, a more even distribution, high purity. Keyword ZnO;Nanoparticles; Direct precipitation method; XRD目录1 前言 (1)1.1 纳米氧化锌的制备方法 (1)1.2 纳米氧化锌的表征 (4)1.3 纳米氧化锌应用及前景 (5)2实验部分 (6)2.1 实验药品及仪器 (6)2.2样品的制备 (7)2.3 样品表征 (7)3 实验结果与讨论 (8)3.1 前驱体的热分析 (8)3.2前驱体及样品的XRD分析 (8)3.3前驱体及样品的红外光谱分析 (10)3.4 样品的透射电镜(TEM)分析 (11)4结论 (12)参考文献 (13)1 前言氧化锌是Ⅱ—Ⅵ族具有六方纤锌矿晶体结构的宽禁带直接带隙的半导体,室温禁带宽度约为3.37 eV,激子束缚能为60 meV [1];它具有优良的物性,在声表面波、透明电极、蓝光器件等方面都有较大的应用潜力,目前倍受人们重视[2]。
均匀共沉淀法制取zno

均匀共沉淀法制取zno1. 简介均匀共沉淀法是一种常用的制备纳米氧化锌(ZnO)的方法。
该方法具有操作简单、反应时间短、较高产率和纯度等特点。
因此被广泛应用于氧化锌的制备。
2. 均匀共沉淀法的原理均匀共沉淀法是一种通过均匀混合两种不同用途的盐溶液制备氧化锌纳米粒子的方法。
在该方法中,先将氧化锌前体溶于溶液中,然后加入NH4OH,用于提高pH值,促进Zn2+ 沉淀生成Zn(OH)2,并形成胶体粒子。
接着,将其他金属离子的溶液与Zn(OH)2混合,进一步沉淀形成氧化物混合物。
最后,为了获得氧化锌,还需要将混合物进行煅烧处理。
3. 实验过程在实验过程中,首先需要制备两种不同的盐溶液,一种是氧化锌前体,另一种是含其他金属离子的盐溶液。
然后将两个溶液均匀混合,再利用氨水溶液调节pH值。
当pH值为8左右时,混合物开始沉淀。
接着需要连续搅拌20-30分钟,以保证混合物充分均匀混合。
此时,将混合物加入醇类溶剂中,然后以高温(> 300°C)煅烧,在高温下还原并生成氧化锌样品。
4. 实验优势该方法有许多实验优势,包括:4.1 粒子的尺寸和分散性较好,分布范围窄,对于研究粒子的表面结构和性能具有优势;4.2 操作简单,适用于规模化制备;4.3 可以轻易地通过改变混合液体中含量和浓度,来调控最终得到的纳米ZnO的性质,并优化其光电性能;4.4 纳米氧化锌制备过程中的化学反应具有容易控制的化学反应动力学,可以通过单一反应温度调控合成过程。
5. 结论均匀共沉淀法制备氧化锌是一种非常普遍的方法,适用于制备纳米ZnO。
该方法具有高效、简单、灵活和易于控制反应动力学特性等优点。
在未来,该方法将继续被研究和改进,以提高其效率和应用范围,并促进氧化锌在各种领域中的使用。
ZnO纳米粉体材料的制备

实 验 2 ZnO 纳米粉体材料的制备(一)实验类型:综合性(二)实验类别:设计性实验(三)实验学时数:16(四)实验目的(1)掌握沉淀法制备纳米粉体的工作原理。
(2)了解X-射线粉末衍射仪鉴定物相的原理。
(五)实验原理纳米ZnO 是一种新型高功能精细无机材料, 其粒径介于1~ 100 nm 之间,又称为超微细ZnO 。
由于颗粒尺寸的细微化,使得纳米ZnO 产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米ZnO 在磁、光、电、敏感等方面具有一些特殊的性能, 主要用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
合成纳米ZnO 的方法有多种,沉淀法工艺简单,成本低, 便于实现工业化生产。
合成纳米ZnO 的方法有多种,本实验采用化学沉淀法是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。
该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。
X-射线粉末衍射仪是分析材料晶体结构的重要工具。
晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。
由于每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中原子(离子或分子)数目及位置等,而晶体物质的这些特定参数,反映在衍射图上机表现出衍射线条的数目、位置及相对强度各不相同。
因此,每种晶态物质与其X射线衍射图之间有着一一对应的关系。
任何一种晶态物质都有自己独立的X射线衍射图,不会因为他种物质混聚在一起而产生变化。
这就是X射线衍射物相定性分析的方法的依据。
根据粉体X-射线衍射图得到的相关数据,利用谢乐公式(如下),可以计算纳米粒子的晶粒尺寸。
0.89cos D λβθ=(λ为X 射线的波长,β为最强峰的半峰宽,θ 为衍射角)(六)实验内容1. 制备以Zn(NO 3)2·6H 2O 与NH 4HCO 3为原料,聚乙二醇(PEG 600)为模板剂,采用直接沉淀法将制得的沉淀,洗涤后经煅烧制备纳米ZnO 。
简单的制备纳米氧化锌的制备方法

氨水沉淀法制备纳米氧化锌在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH)2和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。
表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。
一、试剂和仪器主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。
仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。
二、试验方法以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。
将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少?)。
取一定体积(一定体积是多少?)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。
控制氨水用量,调节pH值为7.0左右,确定滴定终点。
反应得到的白色沉淀物,经抽滤洗涤后自然风干即为Zn(OH)2纳米粉,Zn(OH)2经干燥(200℃、2h)脱水后,为ZnO纳米粉体。
三、不同乙醇浓度对ZnO粒径的影响样品号 1 2 3 4醇含量/%(体积分数)0 20 60 100粒径范围/nm 286~46 100~31 38~14 17~6这一结果表明,在此混合介质中,乙醇的存在对反应中生成的ZnO晶核的生长有明显的抑制作用,并且含量越高,这种抑制作用也越强。
四、氯化锌和氨水不同浓度下ZnO粒径大小ZnCl2浓度/mol·L-1粒径范围/nm 氨水浓度/%(体积分数)粒径范围/nm0.5 32~12 10 32~141.0 25~15 15 25~152.0 34~10 25 16~7氯化锌的浓度对ZnO的粒径影响不大,规律性不强;氨水的浓度对ZnO的粒径稍有影响,浓度增大,粒径是减小趋势,浓度为15%时,粒径为25~15nm,浓度为25%时,粒径为17~7nm。
五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备ZnO纳米粉的好方法,值得推广。
沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO摘要:本实验以Zn(NO3)2·6H2O和NH4HCO3为原料,聚乙二醇(PEG600)为模板,采用直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。
关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸1.直接沉淀发制备纳米ZnO的理论基础氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。
纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。
国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。
纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1~100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。
纳米材料的制备方法分类如下表:本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。
该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。
X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。
2.实验2.1实验药品及仪器Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。
液相沉淀法制备氧化锌

液相沉淀法制备氧化锌纳米粉论文摘要:纳米氧化锌由于尺寸小、比表面积大,因此与普通氧化锌微粒相比具有许多特殊的性质,如体积效应、表面效应、量子隧道效应、久保效应,具有非迁移性、荧光性、压电性、光吸收性和散射紫外光能力,在橡胶、陶瓷、涂料、日用化工、催化剂、吸波材料、导电材料、磁性材料等领域有重要的应用价值[lj。
纳米ZnO材料的良好功能性体现的前提是要有粒径小、颗粒分布均匀、分散性好的纳米ZnO粉体。
因此,纳米Zn()粉体的制备工艺成为研究热点。
纳米氧化锌粉体的制备方法可分为液相法、气相法、固相法。
液相法是选择一种或多种合适的可溶性金属盐类,按所制备的材料组成计量配制成溶液,使各元素呈离子或分子态,再选择一种合适的沉淀剂或通过蒸发、升华、水解等操作,使金属离子均匀沉淀或结晶出来,最后将沉淀或结晶脱水或加热分解得到所需的材料粉体。
液相法生产的产品纯度高,化学组成容易准确控制,适于大规模生产。
关键字:液相,沉淀,氧化锌,纳米粉正文:(一)实验目的:①学习液相沉淀法制备氧化锌纳米粉的方法②了解氧化锌纳米粉的用途(二)实验原理:1.主要性质与用途氧化锌,又称锌白,分子式为ZnO。
氧化锌纳米粉(Nanometer zine oxide powder)为白色或微黄色粉末,属六方晶系,晶格常数为a=3.24×10-10m,c=5.19×10-10m,为两性氧化物,溶于酸和碱金属氢氧化物,氨水,碳酸铵和氯化铵溶液,难溶于睡和乙醇。
无味,无臭。
在空气中能吸收为二氧化碳和谁。
熔点约1975摄氏度,密度5.68g·cm-3。
氧化锌纳米粉是一种新型高功能精细无机粉料,其粒径介于1~100nm之间。
由于颗粒尺寸微细化,使得氧化锌纳米粉生产了其本体块材料所不具备的表面效应,小尺寸效应,量子效应和宏观量子隧道效应等,因而使得氧化锌纳米粉在磁,光,电,敏感等方面具有一些特殊的性能。
本品主要用来制造气体传感器,荧光体,紫外线遮蔽材料(在整个200~400nm紫外光区有很强的吸光能力),变阻器,图像记录材料,压电材料,压敏电阻器,高效催化剂,磁性材料和塑料薄膜等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沉淀法制备纳米氧化锌粉体
一、实验目的
1.了解沉淀法制备纳米粉体的实验原理。
2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。
3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。
4.了解沉淀剂、实验条件对产物粒径分布的影响。
二、实验原理
氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。
近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。
纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。
纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。
本实验采用沉淀法制备纳米氧化锌粉体。
沉淀法包括直接沉淀法和均匀沉淀法。
直接沉淀法是制备纳米氧化锌广泛采用的一种方法。
其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。
其中选用不同的沉淀剂,可得到不同的沉淀产物。
均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。
纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。
这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。
制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。
常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。
一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。
均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。
反应如下:
OH-的生成:
CO32-的生成:
形成前驱物碱式碳酸锌的反应:
热处理后得产物ZnO:
用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下:
该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。
三、实验仪器与试剂
仪器:恒温水浴锅1台、温度计1支、烧杯(100mL)1只、烧杯(250mL)1只、台秤1台、量筒(100mL)1支、漏斗1只、铁架台(带铁圈)1只、坩埚2个、激光纳米粒度仪1台。
试剂:硝酸锌Zn(NO3)2·6H2O(A. R)、尿素(A. R)、NaOH(A. R)、乙醇(A. R)、蒸馏水。
四、实验步骤
(一)用尿素作沉淀剂
1.在室温下,在烧杯中称取6.0gZn(NO3)2·6H2O(0.002mol),然后加入80mL蒸馏水,搅拌配成无色澄清的溶液。
2.称取
3.6g尿素于烧杯中,加入蒸馏水配制成80mL溶液,使尿素于硝酸锌的摩尔比为3:1,并将尿素溶液倒入硝酸锌溶液中,混合均匀。
3.将混合后的溶液在90~100℃加热反应3h,观察现象,记录时间。
4.将反应所得沉淀过滤并用蒸馏水进行洗涤。
5.将洗涤后的滤饼放入80℃的烘箱内干燥,得前驱物碱式碳酸锌,呈白色粉末状。
6.将前驱物放入马弗炉内450℃煅烧2h,即得纳米氧化锌粉体。
7.用纳米粒度分析仪表征纳米氧化锌粉体的粒度。
(二)用NaOH作沉淀剂
1.在室温下,在烧杯中称取1.5g Zn(NO3)2·6H2O(0.005mol),然后加入40mL蒸馏水,搅拌配成无色澄清的溶液。
2.在室温下,在烧杯中称取0.8gNaOH(0.02mol),然后加入40mL蒸馏水,搅拌配成无色澄清的溶液。
3.在室温下,将Zn(NO3)2溶液快速滴加到NaOH的溶液中,搅拌得到白色的悬浊溶液。
4.将悬浊溶液在80℃的水浴中反应2h,观察实验现象,记录时间。
5.将白色沉淀物过滤,分别用水和酒精洗涤3次,放在烘箱中80℃下干燥10h后得到粉体。
(Zn2+/OH-的摩尔比为1:4)
(三)用激光粒度仪测定粉体的粒径。
五、数据记录处理
1.记录时间、实验现象。
2.记录氧化锌粉体的粒径分布。
六、思考题
1.尿素与锌盐的浓度比及反应时间、反应温度对产物有何影响?
2.沉淀法制备纳米氧化锌粉体的沉淀剂还有哪些?。