氧化锌粉体的制备方法
氧化锌制备

氧化锌制备
氧化锌可以通过不同的方法进行制备,常见的方法有以下几种:
1. 煅烧法:将锌粉或锌矿石在空气中进行高温煅烧,使其氧化生成氧化锌。
这种方法适合大规模工业生产。
2. 水热法:将锌离子与氢氧化钠或氢氧化铵等氢氧化物进行反应,生成氢氧化锌沉淀。
然后将氢氧化锌沉淀在高温和高压的条件下经过一定时间处理,得到氧化锌。
3. 溶胶-凝胶法:通过将适当的锌盐与氨水或其他碱性溶液反
应生成氢氧化锌溶胶,然后经过适当的处理得到氧化锌胶体。
最后将氧化锌胶体进行干燥和煅烧,得到氧化锌粉末。
4. 溶液法:将适当的锌盐溶解在水或其他溶剂中,加入适量的碱性溶液,使得pH值升高。
在适当的条件下,锌盐会与碱性
溶液中的氢氧化物反应生成氢氧化锌沉淀。
然后将氢氧化锌沉淀进行过滤、洗涤、干燥和煅烧,最终得到氧化锌粉末。
需要注意的是,不同的制备方法所得到的氧化锌粉末的颗粒大小、形貌以及性质可能会有所差异。
选取合适的制备方法可以根据具体的需求和应用。
实验7--沉淀法制备纳米氧化锌粉体[资料]
![实验7--沉淀法制备纳米氧化锌粉体[资料]](https://img.taocdn.com/s3/m/e5b57cc685254b35eefdc8d376eeaeaad1f31683.png)
实验七沉淀法制备纳米氧化锌粉体一、实验目的1、了解沉淀法制备纳米粉体的实验原理。
2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。
3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。
二、实验原理氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV。
近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。
氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。
通常的制备方法有蒸发法、液相法。
我们在这里主要讨论沉淀法。
沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH--,CO32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。
均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。
而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。
纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。
这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。
制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌。
常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。
一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。
均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。
反应如下:O H NH CO O H NH CO 23222223)(⋅+→+ (1)OH -的生成:-++→⋅OH NH O H NH 423 (2)CO 32-的生成:O H CO NH CO O H NH 223422322++→+⋅-+ (3)形成前驱物碱式碳酸锌的反应:()↓⋅⋅→+++--+O H OH Zn ZnCO O H OH CO Zn 2232232243 (4)热处理后得产物ZnO :()O H CO ZnO O H OH Zn ZnCO 22223232+↑+→⋅⋅ (5)本实验通过Zn(NO 3)2和NaOH 之间反应得到的Zn(OH)42-进行热分解反应制备了氧化锌纳米晶体。
液相法制备氧化锌纳米粉体的

液相法制备氧化锌纳米粉体的汇报人:2024-01-01•液相法制备氧化锌纳米粉体的概述•液相法制备氧化锌纳米粉体的实验材料与方法目录•液相法制备氧化锌纳米粉体的实验过程与结果分析•液相法制备氧化锌纳米粉体的研究结论与展望•参考文献目录01液相法制备氧化锌纳米粉体的概述液相法是一种制备纳米粉体的常用方法,通过控制溶液中的化学反应条件,如温度、压力、浓度等,使原料在液相中发生化学反应,生成所需的纳米粉体。
液相法的特点包括:反应条件温和、易于控制、可实现大规模生产、产物纯净等。
液相法的定义与特点液相法制备氧化锌纳米粉体的原理液相法制备氧化锌纳米粉体的原理主要涉及水热法或溶剂热法。
在这些方法中,锌盐和碱溶液在一定温度和压力下发生反应,生成氢氧化锌前驱体。
随后,通过控制反应条件,如温度和pH值,使前驱体发生热分解或氧化反应,最终生成氧化锌纳米粉体。
具体的反应过程可能包括:锌盐的水解、前驱体的形成、前驱体的热分解或氧化、纳米粉体的结晶与生长等步骤。
液相法制备氧化锌纳米粉体的应用前景氧化锌纳米粉体在许多领域具有广泛的应用前景,如光催化、传感器、太阳能电池、荧光材料等。
通过液相法制备得到的氧化锌纳米粉体具有纯度高、粒径小、分散性好等优点,有望在上述领域发挥重要作用。
此外,液相法制备氧化锌纳米粉体还具有工艺简单、成本低廉、可实现大规模生产等优点,有望为工业化生产和应用提供有力支持。
02液相法制备氧化锌纳米粉体的实验材料与方法用于调节溶液pH值。
氢氧化钠作为锌源,提供氧化锌所需的锌元素。
硝酸锌制备溶液的溶剂。
去离子水如十二烷基硫酸钠,用于稳定纳米颗粒,防止团聚。
表面活性剂实验材料磁力搅拌器:用于混合溶液。
离心机:分离和洗涤纳米颗粒。
热恒温鼓风干燥箱:加热反应溶液。
电子天平:称量实验材料。
实验设备将氢氧化钠和硝酸锌溶解在去离子水中,得到硝酸锌和氢氧化钠的混合溶液。
配置溶液将混合溶液加热至一定温度,并保持一定时间,使锌离子发生水解反应,生成氧化锌纳米颗粒。
液相法制备氧化锌纳米粉体的

激光粒度分析
总结词
激光粒度分析是一种快速、准确测定氧化锌纳米粉体粒 度分布的方法。
详细描述
激光粒度分析通过测量颗粒对激光的散射强度来推算其 粒度分布。它可以提供关于粉体颗粒大小的全面信息, 包括平均粒径、粒径分布和粒度分布曲线等。这些数据 有助于评估粉体的分散性和稳定性,以及其在应用中的 性能表现。
03
液相法制备氧化锌纳米粉体的 实验过程
实验材料与设备
材料
硝酸锌、氢氧化钠、聚乙烯吡咯 烷酮(PVP)等。
设备
搅拌器、热恒温槽、离心机、电 子天平等。
实验步骤
2. 搅拌与反应
将硝酸锌溶液和氢氧化钠溶液 混合,快速搅拌,使反应物充 分接触。
4. 离心分离
将热处理后的溶液进行离心分 离,收集上层清液。
透射电子显微镜分析
总结词
透射电子显微镜分析能够提供高分辨率的图像,用于 观察氧化锌纳米粉体的内部结构和晶体生长。
详细描述
透射电子显微镜分析能够观察到氧化锌纳米粉体的晶 格条纹、晶格畸变和晶体取向等信息,有助于深入了 解其晶体生长过程和内部结构。这些数据对于优化制 备工艺和提高粉体性能具有重要意义。
详细描述
溶胶-凝胶法是一种制备氧化锌纳米粉体的常用方法。该方法可以制备出粒径小、分散性好的氧化锌纳米粉体, 同时还可以通过控制溶胶-凝胶过程参数,如溶液浓度、反应温度和时间等,调控粉体的形貌和性能。该方法操 作简便,但生产成本较高。
水热法
总结词
在高温高压条件下,将氧化锌前驱体置于水中进行反应,经过结晶和生长得到氧化锌纳 米粉体。
详细描述
尽管氧化锌本身是一种非磁性材料,但通过液相法制备的氧 化锌纳米粉体在磁学性能方面表现出一定的响应性和损耗能 力。这使得它们在某些特定领域,如磁记录和磁热疗等具有 一定的应用潜力。
实验沉淀法制备纳米氧化锌粉体

实验沉淀法制备纳米氧化锌粉体
本实验采用沉淀法制备纳米氧化锌粉体。
沉淀法是一种化学反应沉淀物形成的方法,
通过控制反应条件和物质浓度,可以制备出不同形状和尺寸的纳米材料。
此方法操作简便,且制备出的产物具有较高的纯度和稳定性。
实验步骤如下:
1.将0.5 mol/L的硝酸锌溶液和0.5 mol/L的氨水溶液分别放入两个棕色草酸烧杯中。
注意要保持溶液的相对浓度相同。
2.将氨水溶液滴加到硝酸锌溶液中,同时使用玻璃搅拌棒搅拌,直到反应液变为乳白
色悬浮液。
搅拌时间约为10分钟。
3.将制备好的纳米氧化锌悬浮液通过滤纸过滤,并使用蒸馏水洗涤几次,以去除余留
的氨水和硝酸离子。
4.将过滤后的纳米氧化锌沉淀用乙醇和热水脱水,然后干燥。
此时产生了均匀的纳米
氧化锌粉末。
5.为了控制氧化锌的粒径,可以改变氨水和硝酸锌的浓度,或者改变反应时间和温度
等反应条件。
实验注意事项:
1.实验过程中要避免吸入或接触硝酸锌、氨水等有害化学物质。
2.制备纳米氧化锌粉末时,要保持反应体系的纯度,避免杂质的干扰。
3.沉淀法制备纳米材料时,反应时间、温度和物质浓度等条件应根据具体情况进行控制,以使产物的形状和尺寸满足要求。
4.实验过程中要注意实验室安全,遵守安全操作规程,配备相应的防护措施。
综上所述,通过沉淀法制备纳米氧化锌粉体的实验步骤简单,产物纯度高,可以通过
调节反应条件控制纳米氧化锌的粒径。
这种方法可以应用于制备其他纳米材料,并具有广
泛的应用前景。
氧化锌生产工艺流程

氧化锌生产工艺流程氧化锌生产工艺流程可分为两个主要步骤:氧化锌粉体的制备和氧化锌粉体的烧结。
首先,氧化锌粉体的制备通常使用锌矿石作为原料。
锌矿石经过破碎和磨细的处理,得到合适的粒度。
然后,锌矿石与氧化剂一起进入反应釜进行反应。
氧化剂通常使用氧气或空气,反应釜内必须保持一定的温度和压力,同时搅拌均匀。
在反应过程中,锌矿石发生氧化反应,生成锌氧化物。
反应后,反应物被送入过滤设备进行分离。
分离得到的固体产物即为氧化锌粉体。
为了提高氧化锌的纯度和细度,可以进行洗涤和筛分等后续处理。
接下来,氧化锌粉体需要通过烧结工艺进行进一步的处理。
首先,将氧化锌粉体放入烧结炉中。
烧结炉需要控制炉内的温度、气氛和时间等参数,以确保烧结过程的顺利进行。
在适当的温度下,氧化锌粉体发生烧结反应,颗粒间的结合力增强。
烧结反应完成后,将烧结体从炉中取出,冷却。
冷却后的产物即为成品氧化锌。
成品氧化锌可以通过研磨等后续工艺进一步提高细度和均匀性。
整个氧化锌生产工艺流程中,需要控制各个环节的温度、压力和气氛等参数,以确保产品的质量。
同时,对原料的选择和质量控制也是至关重要的。
需要指出的是,氧化锌的生产工艺流程因厂家和设备的不同而略有差异,上述仅为一种常见的氧化锌生产工艺流程。
不同厂家和设备可能采用不同的工艺和设备,但通常都包含前述的氧化锌粉体制备和烧结两个主要步骤。
氧化锌广泛应用于橡胶、塑料、涂料和陶瓷等工业中,同时也用于医药、化妆品和食品等领域。
高品质的氧化锌产品需要在生产过程中严格控制各个环节,并进行质量检测和控制。
生产工艺的改进和技术的创新将有助于提高氧化锌产品的品质和竞争力。
氧化锌粉体的制备方法

1.纳米氧化锌的性质1.1表面效应表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化,随着粒径减小,表面原子数迅速增加,另外 ,随着粒径的减小,纳米粒子的表面积、表面能及表面结合都迅速增大这主要是由于粒径越小,处于表面的原子数越多表面原子的晶场环境和结合能与内部原子不同表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质 ,易与其它原子相结合而稳定下来,故具有很大的化学活性 ,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加伴随表面能的增加 ,其颗粒的表面原子数增多 ,表面原子数与颗粒的总原子数的比值被增大 ,于是便产生了“表面效应”,即“表面能”与“体积能”的区分就失去了意义 ,使其表面与内部的晶格振动产生了显著变化 ,导致纳米材料具有许多奇特的性能1.2体积效应当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化 ,这就是纳米粒子的体积效应这种体积效应为实用开拓了广阔的新领域。
2.纳米氧化锌的制备技术制备纳米氧化锌的方法主要是物理法和化学法。
其中,化学法是常用的方法。
2.1物理法物理法包括机械粉碎法和深度塑性变形法。
机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术 ,将普通级别的氧化锌粉碎至超细。
其中张伟等人利用立式振动磨制备纳米粉体 ,得到了α-Al2O3,ZnO、MgSiO3等超微粉 ,最细粒度达到 0. 1μm此法虽然工艺简单 ,但却具有能耗大,产品纯度低 ,粒度分布不均匀 ,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。
最大的不足是该法得不到1—100nm 的粉体 ,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变 ,使材料的尺寸细化到纳米量级。
这种独特的方法最初是由 Islamgaliev 等人于 1994 年初发展起来的。
溶胶-凝胶法制备超细氧化锌粉末

溶胶-凝胶法制备超细氧化锌粉末一、实验目的主要是了解粉末材料的一种制备方法和影响因素。
氧化锌ZnO 俗称锌白,为两性氧化物,密度为 5.68g · cm -3,熔点为1975 ℃,溶于酸和碱金属氢氧化物、氨水、碳酸铵和氧化铵溶液,难溶于水和乙醇,无味,无毒,无臭,在空气中易吸收二氧化碳和水。
纳米氧化锌为白色或微黄色晶体粉末,当其粒子尺寸在 1 ~100nm 之间时,由于颗粒尺寸细微化,纳米氧化锌能产生其本体块状材料所不具有的表面效应、体积效应、量子尺寸效应和宏观量子隧道效应等,纳米氧化锌属六方晶系纤锌矿结构,是一种新型高功能精细无机材料,在磁、光、电、敏感等方面具有一些特殊性能。
主要应用在橡胶、油漆、涂料、印染、玻璃、医药、化妆品和电子等工业,作为抗菌添加剂、防晒剂、光催化剂、气体传感器、图像记录材料、吸波材料、导电材料、压电材料、橡胶添加剂等被广泛的应用。
纳米氧化锌的制备方法有很多,如沉淀法、微乳液法、溶胶- 凝胶法等二、制备原理:溶胶--凝胶法是将金属有机或无机化合物经过溶液水解、溶胶、凝胶而固化,再经热处理而形成氧化物或其他化合物粉体的方法,其过程是:用液体化学试剂或溶胶为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系。
放置一定时间后转变为凝胶,经脱水处理,在溶胶或凝胶状态下成型为制品,再经过烧结固化制备出致密的氧化物材料。
溶胶--凝胶法制得的粉体粒度可控,分布均匀,纯度高,而且设备简单,易于控制。
基本反应原理如下:(1) 溶剂化:能电离的前驱物-金属盐的金属阳离子M z+将吸引水分子形成溶剂单元M(H2O)n z+ (Z 为M 离子的价数),为保持它的配位数而有强烈地释放H+的趋势:M(H 2 O)n z+——M(H2 O) n-1 (OH) (z -1)++ H+(1)这时如有其它离子进入就可能产生聚合反应,但反应式极为复杂;(2)水解反应:非电离式分子前驱物,如金属醇盐M(OR)n(n 为金属M 的原子价) 与水反应:M(OR)n + xH 2 O——M(OH)x(OR)n-x + xROH (2)反应可延续进行,直至生成M(OH)n(3)缩聚反应:缩聚反应可分为失水缩聚:—M—OH+HO—M—→ —M—O—M—+H 2 O (3)和失醇缩聚:—M—OR+HO—M—→ —M—O—M—+ROH (4)反应生成物是各种尺寸和结构的溶胶体粒子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.纳米氧化锌的性质
1.1表面效应
表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化,随着粒径减小,表面原子数迅速增加,另外 ,随着粒径的减小,纳米粒子的表面积、表面能及表面结合都迅速增大这主要是由于粒径越小,处于表面的原子数越多表面原子的晶场环境和结合能与内部原子不同表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质 ,易与其它原子相结合而稳定下来,故具有很大的化学活性 ,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加伴随表面能的增加 ,其颗粒的表面原子数增多 ,表面原子数与颗粒的总原子数的比值被增大 ,于是便产生了“表面效应”,即“表面能”与“体积能”的区分就失去了意义 ,使其表面与内部的晶格振动产生了显著变化 ,导致纳米材料具有许多奇特的性能
1.2体积效应
当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化 ,这就是纳米粒子的体积效应这种体积效应为实用开拓了广阔的新领域。
2.纳米氧化锌的制备技术
制备纳米氧化锌的方法主要是物理法和化学法。
其中,化学法是常用的方法。
2.1物理法
物理法包括机械粉碎法和深度塑性变形法。
机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术 ,将普通级别的氧化锌粉碎至超细。
其中张伟等人利用立
式振动磨制备纳米粉体 ,得到了α-Al
2O
3
,ZnO、MgSiO
3
等超微粉 ,最细粒度达
到 0. 1μm此法虽然工艺简单 ,但却具有能耗大,产品纯度低 ,粒度分布不均匀 ,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。
最大的不足是该法得不到1—100nm 的粉体 ,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变 ,使材料的尺寸细化到纳米量级。
这种独特的方法最初是由 Islamgaliev 等人于 1994 年初发展起来的。
该法制得的氧化锌粉体纯度高,粒度可控,但对生产设备的要求却很高。
总的说来 ,物理法制备纳米氧化锌存在着耗能大 ,产品粒度不均匀,甚至达不到纳米级,产品纯度不高等缺点,工业上不常采用,发展前景也不大。
2.2化学法
化学法具有成本低 ,设备简单 ,易放大进行工业化生产等特点。
主要分为溶胶-凝胶法、醇盐水解法、直接沉淀法、均匀沉淀法等。
2.2.1溶胶-凝胶法
溶胶-凝胶法制备纳米粉体的工作开始于 20 世纪60年代。
近年来,用此法制备纳米微粒、纳米薄膜、纳米复合材料等的报道很多。
它是以金属醇盐Zn(OR)
2为原料 ,在有机介质中对其进行水解、缩聚反应 ,使溶液经溶胶化得到凝胶 ,凝胶再经干燥、煅烧成粉体的方法。
此法生产的产品粒度小、纯度高、反应温度低(可以比传统方法低 400 —500 ℃) ,过程易控制;颗粒分布均匀、团聚少、介电性能较好。
但成本昂贵 ,排放物对环境有污染 ,有待改善。
水解反应: Zn(OR)2 + 2H 2O →Zn(OH)2 +2ROH
缩聚反应:Zn(OH)2 →ZnO + H 2 O
2.2.2醇盐水解法
醇盐水解法是利用金属醇盐在水中快速水解,形成氢氧化物沉淀 ,沉淀再经水洗、干燥、煅烧而得到纳米粉体的方法 。
该法突出的优点是反应条件温和,操作简单。
缺点是反应中易形成不均匀成核 ,且原料成本高。
例如以 Zn(OC2 H5 )2 为原料 ,发生以下反应:
Zn(OC 2 H 5 )2 +2H 2 O →Zn(OH)2 +2C 2 H 5 OH
Zn(OH)2 →ZnO + H 2 O
2.2.3直接沉淀法
直接沉淀法是制备纳米氧化锌广泛采用的一种方法。
其原理是在包含一种或多种离子的可溶性盐溶液中加人沉淀剂,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去 ,沉淀经热分解最终制得纳米氧化锌。
其中选用不同的沉淀剂,可得到不同的沉淀产物。
就资料报道看 ,常见的沉淀剂为氨水 、碳酸氢铵、尿素等。
以 NH 3 ·H 2 O 作沉淀剂 :
Zn 2+ +2NH 3 ·H 2 O →Zn(OH)2 +2NH 4
Zn(OH)2 →ZnO + H 2 O
以碳酸氢铵作沉淀剂:
2Zn 2+ + 2NH 4 HCO 3 →Zn 2 (OH)2 CO 3 +2NH 4+
Zn 2 (OH)2 CO 3 →2ZnO + CO 2 + H 2 O
以尿素作沉淀剂:
CO(NH 2 )2 +2H 2 O →CO 2 +2NH 3 ·H 2 O
3Zn 2+ + CO 32- +4OH - + H 2 O →ZnCO 3 ·2Zn(OH)2H 2 O
ZnCO 3 ·2Zn(OH)2 H 2 O →ZnO + CO 2 + H 2 O
直接沉淀法操作简单易行 ,对设备技术要求不高 ,产物纯度高 ,不易引人其它杂质 ,成本较低。
但是 ,此方法的缺点是洗涤沉淀中的阴离子较困难 ,且生成的产品粒子粒径分布较宽。
因此工业上不常用。
2.2.4均匀沉淀法
均匀沉淀法是利用某一化学反应使溶液中的构晶微粒从溶液中缓慢地、均匀地释放出来。
所加入的沉淀剂并不直接与被沉淀组分发生反应 ,而是通过化学反应使其在整个溶液中均匀缓慢地析出。
常用的均匀沉淀剂有尿素(CO(NH 2 )2 )和六亚甲基四胺(C 6 H 12 N 3 ) 。
所得粉末粒径一般为8—60nm 。
其中卫志贤等人以尿素
和硝酸锌为原料制备氧化锌。
他们得出的结论是:温度是影响产品粒径的最敏感因素。
温度低,尿素水解慢,溶液中氢氧化锌的过饱和比低,粒径大;温度过高,尿素产生缩合反应生成缩二脲等,氢氧化锌过饱和比低,溶液粘稠,不易干燥 ,最终产品颗粒较大。
另外 ,反应物的浓度及尿素与硝酸锌的配比也影响溶液中氢氧化锌的过饱和比。
浓度越高 ,在相同的温度下 ,氢氧化锌的过饱和比越大。
但是过高的浓度和尿素与硝酸锌的比值 ,使产品的洗涤、干燥变得困难 ,反应时间过长,也将造成后期溶液过饱和比降低 ,粒径变大。
因此他们得到的最佳工艺条件为:反应温度< 130 ℃、反应时间150min 、尿素与硝酸锌的配比2.5 —4.0∶1(摩尔比) 。
由此可看出,均匀沉淀法得到的微粒粒径分布较窄 ,分散性好 ,工业化前景佳 ,是制备纳米氧化锌的理想方法。
2.2.5 水热法
水热法最初是用来研究地球矿物成因的一种手段,它是通过高压釜中适合水热条件下的化学反应实现从原子、分子级的微粒构筑和晶体生长。
该法是将双水醋酸锌溶解在二乙烯乙二醇中 ,加热并不断搅拌以此得到氧化锌 ,再经过在室温下冷却 ,用离心机将水分离最终得到氧化锌粉末。
此法制备的粉体晶粒发育完整,粒径小且分布均匀,团聚程度小,在烧结过程中活性高。
但缺点是设备要求耐高压,能量消耗也很大,因此不利于工业化生产。
3.纳米氧化锌的应用
纳米氧化锌与普通氧化锌相比 ,除了具有普通化锌的性质外 ,还有很多优异性能。
目前主要的应用领域有橡胶制品、高档油漆、油墨和涂料、防晒化妆品和防紫外线织物、污水处理等。
3.1橡胶工业
纳米氧化锌是橡胶工业最有效的无忌活性剂和硫化促进剂。
纳米氧化锌具有颗粒微小,比表面积大,分散性好,疏松多孔,流动性好等物理化学特性,因此,与橡胶的亲和性好,熔炼时易分散,胶料生热低,扯断变形小,弹性好,改善材料工艺性能和物理性能,用于制造高速耐磨的橡胶制品,如飞机轮胎,高级轿车用的子午线轮胎,具有防止老化,抗摩擦着火,使用寿命长等优点,大幅度提高了橡胶制品的光洁度,机械强度,耐温和耐老化性能,特别是耐磨性能。
另外,氧化锌作为橡胶制品中的硫化体系的毕用助剂,其填充量较高,一般为5份左右,由于氧化锌比重大,填充量大,对其胶料密度的影响非常大,对制品使用寿命和能源消耗都不利,而使用纳米氧化锌后,其用量仅为等级氧化锌用量的30%-50%,降低了企业的生产成本,而在强伸性能,生热,老化等方面都远优于普通氧化锌。