2018年安徽省宿州市埇桥区七年级上学期数学期中试卷带解析答案

合集下载

安徽省宿州市十三校2018-2019学年第一学期期中试卷七年级数学试卷

安徽省宿州市十三校2018-2019学年第一学期期中试卷七年级数学试卷

宿州市十三校2018—2019学年度第一学期期中教学质量检测七年级数学试卷温馨提示:本试卷满分120分,考试时间100分钟,共三大题,23小题。

一、选择题:(计10小题,每小题3分,共30分。

请在每小题给出的四A.+8步B.-8步C.+14步D.-2步 2、图1和图2中所有的正方形都相同,将图1的正方形放在图2中的①、②、③、④某一位置,所组成的图形不能围成正方体的位置是( )A ①B ②C ③D ④3、下列各式成立的是( ) A.-1>0 B.3>-2 C.-2>-5 D.1<-24、 下列各组数中,互为相反数的是 ( ) A.-23 与 (-2)3B.|-4|与-(-4)C. -34 与 (-3)4D. 102 与 2105、下列各图中,所画数轴正确的是( )6、中国倡导的一带一路建设将促进我国与世界各国的互利合作,根据规划,一带一路地区覆盖总人口约为4400000000人,这个数字用科学计数法表示为( )A.44×108B. 4.4×109C. 4.4×108D. 4.4×10107、在|-3|,-|0|,(-2)5 , -|-5|,-(-4)这5个数中,负数共有 ( )A.1个B.2个C.3个D.4个 8、下列说法正确的是( )A.单项式y 的次数是1,系数是0B.多项式( )中,x 2的系数是-C.多项式t-5的项是t 和5D.是二次单项式 9、下列运算中,正确的是( )A.4a+2b=6a bB. 4a 3+3a 2=7a 5C. 3a 2b-3ba 2=0D. 5a 2-4a 2=110、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的长度是( )A.B. C. D.二、填空题(每小题4分,共16分)11、流星划过天空时留下一道明亮的光线,用数学知识解释为 。

12、若x a+2y 3与-3x 3y 2b-1是同类项,则|3a-2b|=13、若|m-2|+(n+3)2=3,则m= ,n= 。

安徽宿州第十一中第一学期期中考试七年级数学试卷附答案

安徽宿州第十一中第一学期期中考试七年级数学试卷附答案

安徽省宿州第十一中 2018~2019 学年度第一学期期中考试七年级数学试卷一、 选择题(本大题共 10 小题,每小题 4 分,共 40 分.每小题只有一个正确选项,请将正确选项的代号填在题后的括号内)1.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的有( )A .24.70 千克B .25.32 千克C .25.51 千克D .24.86 千克2.在我国南海某海域探明可燃冰储量约有 194 亿立方米.194 亿用科学记数法表示为()A .1.94×1010B .0.194×1010C .19.4×109D .1.94×1093.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都 是同一种几何图形,则另一个几何体是()A .长方体B .圆柱体C .球体D .三棱柱4.﹣23 的意义是()A .3 个﹣2 相乘B .3 个﹣2 相加C .﹣2 乘以 3D .3 个 2 相乘的积的相反数5.下列说法中正确的有( )①最小的整数是 0;②有理数中没有最大的数; ③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0 个B .1 个C .2 个D .3 个6.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1 个B .2 个C .3 个D .4 个7.将如图 Rt△ABC 绕直角边 AC 旋转一周,所得几何体的左视图是()A .B .C .D .8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置 上小立方块的个数,则该从正面看该几何体得到的平面图形为()A .B .C .D .9.有若干个数,第一个数记为 a 1,第二个数记为 a 2,…,第 n 个数记为 a n .若 a 1=23,从第二个数起, 每个数都等于“1 与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,利用这个规律可得 a 2018 等于()A .﹣12 B .23C .2D .310.如图,已知一个正方体的六个面上分别写着 6 个连续整数,且相对面上两个数的和相等.图中所 能看到的数是 1,3 和 4,则这 6 个整数的和是()A .15B .9 或 15C .15 或 21D .9,15 或 21二、 填空题(本大题共 4 小题,每小题 5 分,共 20 分)11. 计算(﹣3)﹣(﹣7)= .12. 单项式223x y-的次数是。

安徽省宿州 七年级(上)期中数学试卷

安徽省宿州 七年级(上)期中数学试卷

七年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有( )A. 24.70千克B. 25.32千克C. 25.51千克D. 24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A. 1.94×1010B. 0.194×1010C. 19.4×109D. 1.94×1093.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )A. 长方体B. 圆柱体C. 球体D. 三棱柱4.-23的意义是( )A. 3个−2相乘B. 3个−2相加C. −2乘以3D. 3个2相乘的积的相反数5.下列说法中正确的有( )①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A. 0个B. 1个C. 2个D. 3个6.下列计算:(1)78-23÷70=70÷70=1;(2)12-7×(-4)+8÷(-2)=12+28-4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(-9.42)=3×9.42+3×(-9.42)=0.其中错误的有( )A. 1个B. 2个C. 3个D. 4个7.将如图Rt△ABC绕直角边AC旋转一周,所得几何体的左视图是( )A.B.C.D.8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A. B. C. D.9.有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=23,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,利用这个规律可得a2018等于( )A. −12B. 23C. 2D. 310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是( )A. 9B. 9或15C. 15或21D. 9,15或21二、填空题(本大题共4小题,共20.0分)11.计算(-3)-(-7)=______.12.单项式-2x2y3的次数是______.13.已知x2+3x=2,则多项式3x2+9x-4的值是______.14.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:12+122+123+…+12n=______.三、计算题(本大题共1小题,共8.0分)15.计算15×34-(-15)×12+15×14.四、解答题(本大题共8小题,共82.0分)16.计算:-14-16×[2-(-3)2].17.已知|2m-6|+(n2-1)2=0,求m-2n的值.18.先化简,再求值:2(a2b+3ab2)-3(a2b-1)-2a2b-2,其中a=-2,b=2.19.有理数a、b,c在数轴上的对应点如图,化简|a-b|-|b+c|+|a+c|.20.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):-16,-7,12,-9,6,10,-11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?21.观察下列等式:32-12=4×242-22=4×352-32=4×4…你发现有什么规律请用含有n(n≥1的整数)的等式表示你发现的规律,并写出第12个等式.22.已知如图为一几何体的三种形状图:(1)这个几何体的名称为______;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a=______;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b=______;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=______;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到______个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=______.答案和解析1.【答案】D【解析】解:∵25+0.25=25.25;25-0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25-0.25,进而可得合格面粉的质量范围,进而可得答案.本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【答案】A【解析】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.几何体可分为柱体,锥体,球体三类,按分类比较即可.本题考查几何体的分类和三视图的概念.4.【答案】D【解析】解:-23的意义是3个2相乘的积的相反数,故选:D.根据有理数的乘方,即可解答.本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【答案】C【解析】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【答案】B【解析】解:(1)原式=78-=77,错误;(2)原式=12+28-4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(-9.42)=0,正确,则错误的有2个,故选:B.原式各项计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选:D.应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.【答案】C【解析】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选:C.找到从正面看所得到的图形即可.本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【答案】D【解析】解:当a1=时,,a3=,a4=,∴这列数的周期为3,∵2018÷3=672…2,∴a2018=a2=3,故选:D.根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2018÷3=672…2可知a2018=a2.本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【答案】A【解析】解:∵六个面上分别写着6个连续的整数,∴六个整数可能为1,2,3,4,5,6或0,1,2,3,4,5或-1,0,1,2,3,4;∵相对面上两个数的和相等,∴这6个整数只可能为-1,0,1,2,3,4,其和为9.故选:A.由平面图形的折叠及立体图形的表面展开图的特点解题.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.【答案】4【解析】解:(-3)-(-7)=(-3)+7=7-3=4.根据有理数减法法则计算,减去一个数等于加上这个数的相反数.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.【答案】3【解析】解:单项式-的次数是3,故答案为:3.根据单项式次数的定义来确定单项式-的次数即可.本题考查了单项式次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.13.【答案】2【解析】解:∵x2+3x=2,∴3x2+9x-4=3(x2+3x)-4=3×2-4=2,故答案为:2.先变形,再整体代入,即可求出答案.本题考查了求代数式的值,能够整体代入是解此题的关键.14.【答案】1-12n【解析】解:=1-故答案为:1-.由图可知第一次剩下,截取1-;第二次剩下,共截取1-;…由此得出第n次剩下,共截取1-,得出答案即可.此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.15.【答案】解:15×34-(-15)×12+15×14=15×(34+14+12)=15×32=2212.【解析】根据乘法分配律简便计算即可求解.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.【答案】解:原式=-1-16×(2-9)=-1-16×(-7)=-1+76=16.【解析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.此题要注意正确掌握运算顺序以及符号的处理.17.【答案】解:由题意得,2m-6=0,n2-1=0,解得,m=3,n=2,则m-2n=-1.【解析】根据非负数的性质求出m、n的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.【答案】解:2(a2b+3ab2)-3(a2b-1)-2a2b-2,=2a2b+6ab2-3a2b+3-2a2b-2,=-3a2b+6ab2+1,当a=-2,b=2时,原式=-3×(-2)2×2+6×(-2)×22+1=-71.【解析】根据去括号法则去掉括号,再合并同类项,然后代入数据计算即可.本题主要考查单项式乘多项式的运算法则以及合并同类项的法则,注意运算顺序以及符号的处理.19.【答案】解:由图知:c<a<0<b,|c|>|b|>|a|,所以a-b<0,b+c<0,a+c<0所以|a-b|-|b+c|+|a+c|=b-a-(-b-c)+(-a-c)=b-a+b+c-a-c=2b-2a.【解析】根据图表,先判断绝对值里的数的正负,再根据绝对值的意义化简求值.本题考查了数轴、有理数的加、减法法则及绝对值的化简求值.解决本题的关键是根据数轴上字母的位置判断两数的和差的正负.20.【答案】解(1)-16+(-7)+12+(-9)+6+10+(-11)+9=-16-7+12-9+6+10-11+9=-6(km),∴|-6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|-16|+|-7|+12+|-9|+6+10+|-11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【解析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.21.【答案】解:规律是(n+2)2-n2=4(n+1);第12个等式是142-122=4×13.【解析】第1项:32-12=4×2=4×(1+1)第2项:42-22=4×3=4×(1+2)第3项:52-32=4×4=4×(1+3)…第n项:(n+2)2-n2=4(n+1)然后再根据这个规律进行求解.本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.22.【答案】三棱柱【解析】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:第11页,共11页(3)这个几何体的侧面积为3×10×4=120cm 2.(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【答案】8 9 32 n 3 12(n -2)+(n -2)3【解析】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n 3个小正方体,两面涂色c=12(n-2)个,各面均不涂色(n-2)3个,b+c=12(n-2)+(n-2)3.故答案为:8,9,32,n 3,12(n-2)+(n-2)3.根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。

2017-2018学年安徽省宿州市十三校七年级(上)期中数学试卷

2017-2018学年安徽省宿州市十三校七年级(上)期中数学试卷

2017-2018学年安徽省宿州市十三校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.(3分)(2017秋•宿州期中)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.3.(3分)(2017秋•宿州期中)下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5tD.一个有理数不是正数,那它一定是负数4.(3分)(2017秋•宿州期中)据统计,2017年“十•一”国庆长假期间,某市共接待国内外游客约517万人次,与2016年同比增长16.43%,数据517万用科学记数法表示为()A.0.517×107B.5.17×105C.5.17×106D.517×1065.(3分)(2017•泰安模拟)若a的倒数是﹣1,则a2017的值是()A.1 B.﹣1 C.2017 D.﹣20176.(3分)(2015•薛城区校级三模)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a7.(3分)(2017秋•宿州期中)如图,是由若干个相同的小立方体搭成的几何体.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或78.(3分)(2014•永康市模拟)化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y9.(3分)(2016•舟山)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7710.(3分)(2017秋•宿州期中)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2D.n(n+2)二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017秋•宿州期中)粉笔在黑板上写字说明;车轮旋转时看起来像个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.12.(3分)(2015秋•高阳县期末)计算:(﹣1)2015+(﹣1)2016=.13.(3分)(2015•苏州)若a﹣2b=3,则9﹣2a+4b的值为.14.(3分)(2017秋•宿州期中)若﹣2a m b5与5a3b n+7是同类项,则m+n=.15.(3分)(2017秋•宿州期中)若|a+5|+(b﹣4)2=0,则(a+b)2017=.16.(3分)(2017秋•宿州期中)李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你算一算,得.17.(3分)(2013•苏州)按照如图所示的操作步骤,若输入x的值为2,则输出的值为.18.(3分)(2015•石城县模拟)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需根火柴棒,…,则第n个图形需根火柴棒.三、解答题(本大题共7小题,共66分)19.(10分)(2017秋•宿州期中)计算:(1)(﹣7)+(+15)﹣(﹣25)(2)﹣24﹣×[5﹣(﹣3)2].20.(6分)(2017秋•宿州期中)化简:﹣3(xy﹣2)+2(1﹣2xy)21.(8分)(2017秋•宿州期中)先化简,后求值:(﹣4x2+2x﹣12)﹣(x ﹣1),其中x=﹣1.22.(10分)(2017秋•宿州期中)如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.23.(10分)(2017秋•宿州期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?24.(10分)(2017秋•宿州期中)若xy|a|与3x|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.25.(12分)(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:(2)依上推测,第n个图形中黑色瓷砖的块数为;黑白两种瓷砖的总块数为(都用含n的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.2017-2018学年安徽省宿州市十三校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)(2017秋•宿州期中)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【分析】根据n棱柱的展开图有n个矩形侧面,上下底面是两个n边形,可得答案.【解答】解:三棱柱的侧面是三个矩形,上下底面是三角形,故选:A.【点评】本题考查了几何体的三视图,n棱柱的展开图有n个矩形侧面,上下底面是两个n边形.3.(3分)(2017秋•宿州期中)下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5tD.一个有理数不是正数,那它一定是负数【分析】根据有理数的定义和分类以及正负数的意义进行判断即可.【解答】解:有理数包括正有理数、负有理数和零,所以一个有理数不是正数,那它可能是0,也可能是负数,D不正确.故选:D.【点评】本题考查了有理数的定义和分类,牢记有关定义是解题的关键,同时考查了正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.4.(3分)(2017秋•宿州期中)据统计,2017年“十•一”国庆长假期间,某市共接待国内外游客约517万人次,与2016年同比增长16.43%,数据517万用科学记数法表示为()A.0.517×107B.5.17×105C.5.17×106D.517×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:517万=517 0000=5.17×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017•泰安模拟)若a的倒数是﹣1,则a2017的值是()A.1 B.﹣1 C.2017 D.﹣2017【分析】根据倒数定义可得a的值,再根据乘方的意义可得答案.【解答】解:由题意得:a=﹣1,则a2017=﹣1,故选:B.【点评】此题主要考查了倒数,以及乘方,关键是掌握乘积是1的两数互为倒数.6.(3分)(2015•薛城区校级三模)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a【分析】根据合并同类项、同底数幂的除法、同底数幂的乘法等运算法则求解,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、a2•a=a3,计算正确,故本选项正确;C、a2÷a=a,原式计算错误,故本选项错误;D、(2a)2=4a2,原式计算错误,故本选项错误.故选:B.【点评】本题考查了合并同类项、同底数幂的除法、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.7.(3分)(2017秋•宿州期中)如图,是由若干个相同的小立方体搭成的几何体.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选:D.【点评】本题考查了由三视图判断几何体,也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个小立方体.8.(3分)(2014•永康市模拟)化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y【分析】原式去括号合并即可得到结果.【解答】解:原式=x﹣y﹣x﹣y=﹣2y.故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.(3分)(2016•舟山)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.77【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.【解答】解:依题意有,刀鞘数为76.故选:C.【点评】考查了有理数的乘方,关键是根据题意正确列出算式,是基础题型.10.(3分)(2017秋•宿州期中)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2D.n(n+2)【分析】第1个图形是3×1﹣3=1×3,第2个图形是4×3﹣4=2×4,第3个图形是4×5﹣5=3×5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是:边数×每条边的点数﹣边数=(n+2)(n+1)﹣(n+2)=n(n+2).【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n(n+2),故选:D.【点评】此题考查图形的变化规律,从简单入手,找出图形蕴含的规律,利用规律解决问题.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017秋•宿州期中)粉笔在黑板上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.【分析】根据点动成线,线动成面,面动成体填空即可.【解答】解:笔尖在纸上写字说明点动成线;车轮旋转时看起来象个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.故答案为:点动成线;线动成面;面动成体.【点评】此题主要考查了点线面体,关键是掌握点动成线,线动成面,面动成体.12.(3分)(2015秋•高阳县期末)计算:(﹣1)2015+(﹣1)2016=0.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.13.(3分)(2015•苏州)若a﹣2b=3,则9﹣2a+4b的值为3.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.(3分)(2017秋•宿州期中)若﹣2a m b5与5a3b n+7是同类项,则m+n=1.【分析】根据同类项定义可得m=3,n+7=5,再解即可.【解答】解:由题意得:m=3,n+7=5,解得:m=3,n=﹣2,m+n=3﹣2=1,故答案为:1.【点评】此题主要考查了同类项定义,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.(3分)(2017秋•宿州期中)若|a+5|+(b﹣4)2=0,则(a+b)2017=﹣1.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+5=0,b﹣4=0,解得a=﹣5,b=4,所以,(a+b)2017=(﹣5+4)2017=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(3分)(2017秋•宿州期中)李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你算一算,得﹣28.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:=2×(﹣5)﹣3×6=﹣28.故答案为:﹣28.【点评】此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.17.(3分)(2013•苏州)按照如图所示的操作步骤,若输入x的值为2,则输出的值为20.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.18.(3分)(2015•石城县模拟)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需9根火柴棒,…,则第n个图形需2n+1根火柴棒.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:9,2n+1.【点评】此题主要考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.三、解答题(本大题共7小题,共66分)19.(10分)(2017秋•宿州期中)计算:(1)(﹣7)+(+15)﹣(﹣25)(2)﹣24﹣×[5﹣(﹣3)2].【分析】(1)在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.(2)有理数混合运算时,先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(+15)﹣(﹣25)=﹣7+15+25=﹣7+40=33(2)﹣24﹣×[5﹣(﹣3)2]=﹣16﹣×(5﹣9)=﹣16﹣×(﹣4)=﹣16+2=﹣14【点评】本题主要考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(6分)(2017秋•宿州期中)化简:﹣3(xy﹣2)+2(1﹣2xy)【分析】首先去括号,然后再合并同类项即可.【解答】解:原式=﹣3xy+6+2﹣4xy=﹣7xy+8.【点评】此题主要考查了整式的加减,关键是去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.21.(8分)(2017秋•宿州期中)先化简,后求值:(﹣4x2+2x﹣12)﹣(x ﹣1),其中x=﹣1.【分析】根据整式的加减的运算顺序,先去括号,再合并同类项,再将x的值代入求值即可.【解答】解:(﹣4x2+2x﹣12)﹣(x﹣1)=﹣x2+x﹣3﹣x+1=﹣x2﹣2当x=﹣1时,原式=﹣1﹣2=﹣3.【点评】本题主要考查整式的加减的化简求值,解决此类问题时,要注意去括号时符号变化.22.(10分)(2017秋•宿州期中)如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.【分析】(1)根据三视图可直接得出这个立体图形是三棱柱;(2)根据直三棱柱的表面积公式进行计算即可.【解答】解:(1)根据三视图可得:这个立体图形是三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【点评】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,同时也考查学生的空间想象能力.23.(10分)(2017秋•宿州期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以10即可得到最后结果.【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则计算,有时可以利用运算律来简化运算.24.(10分)(2017秋•宿州期中)若xy|a|与3x|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.【分析】根据绝对值的性质及倒数的定义,求出a,b的值,再将多项式去括号合并同类项,代入求值即可.【解答】解:根据题意,得:|2b+1|=1,|a|=1,∴b=0或﹣1,a=±1,又∵a,b不为倒数,∴a=﹣1,a=﹣1,∵2(a﹣2b2)﹣(3b2﹣a)=2a﹣2b2﹣b2+=a﹣b2当a=﹣1,b=﹣1时,原式==﹣6.【点评】本题主要考查整式的化简求值及绝对值、倒数、同类项的综合运用,解决此题时,能根据绝对值的性质,判断出a,b的值可能是多少,再根据a,b 倒数,确定a,b的值是关键.25.(12分)(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:(2)依上推测,第n个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5(都用含n的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【分析】(1)第一个图形有黑色瓷砖4块,黑白两种瓷砖的总块数为15;第二个图形有黑色瓷砖7块,黑白两种瓷砖的总块数为25;第三个图形有黑色瓷砖10块,黑白两种瓷砖的总块数为35;由此填表即可;(2)由(1)可知每一个图形的黑色瓷砖块数比前一个图形多3,总块数多10,由此求得答案即可;(3)利用(2)的规律利用“白色瓷砖的块数可能比黑色瓷砖的块数多2015块”联立方程,求得整数解就能,否则不能.【解答】解:(1)填表如下:(2)第n个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5;(3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,解得:n=503答:第503个图形.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.。

2018年七年级上学期数学期中检测试卷(含答案和解释)-文档资料

2018年七年级上学期数学期中检测试卷(含答案和解释)-文档资料

2018年七年级上学期数学期中检测试卷(含答案和解释)又到了一年一度的期中考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇2018年七年级上学期数学期中检测试卷,希望可以帮助到大家!一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2018 ,0中,正数有()A. 1个B. 2个C. 3个D. 4个2.下列各式计算正确的是()A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=93.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A. a1B. b1C. a﹣1D. b04.在,,0,﹣0.010010001四个数中,有理数的个数为()A. 1B. 2C. 3D. 45.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A. 2B. ﹣2C. 2D. 46.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是()A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=117.下列关于单项式一的说法中,正确的是()A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是38.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3abD.9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a1 0.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是,的倒数为.12.太阳光的速度是300 000 000米/秒,用科学记数法表示为米/秒.13.比较大小:﹣5 2,﹣﹣ .14.若3a2﹣a﹣2=0,则5+2a﹣6a2=.15.若|a|=8,|b|=5,且a+b0,那么a﹣b=.16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则 + =(直接写出答案).18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为.三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣ + )(﹣48)(3)16(﹣2)3﹣(﹣ )(﹣4)(4)﹣12﹣(﹣10) 2+(﹣4)2.20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有块,当黑砖n=2时,白砖有块,当黑砖n=3时,白砖有块.(2)第n个图案中,白色地砖共块.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC(,),BD(,),C(+1,);(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P的位置.27.将长为1,宽为a的长方形纸片((1)第一次操作后,剩下的矩形两边长分别为;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a=;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2018,0中,正数有()A. 1个B. 2个C. 3个D. 4个考点:正数和负数.分析:根据相反数的定义,绝对值的性质和有理数的乘方化简,再根据正、负数的定义进行判断即可.解答:解:﹣(﹣ )= 是正数,﹣42是负数,﹣|﹣9|=﹣9是负数,是正数,(﹣1)2018=1是正数,0既不是正数也不是负数,2.下列各式计算正确的是()A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=9 考点:有理数的乘方.分析:根据负数的奇数次幂是负数,负数的偶数次幂是正数进行判断.解答:解:因为﹣32=﹣9;(﹣3)2=9;﹣32=﹣9;﹣(﹣3)2=﹣9,所以A、B、D都错误,正确的是C.3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A.a1B. b1C. a﹣1D. b0考点:有理数大小比较;数轴.分析:首先根据数轴上的数左边的数总是小于右边的数,即可确定各个数的大小关系,即可判断.解答:解:根据数轴可以得到:a0A、a1,选项错误;B、b1,选项错误;C、a﹣1,故选项正确;4.在,,0,﹣0.010010001四个数中,有理数的个数为()A. 1B. 2C. 3D. 4考点:实数.分析:先根据整数和分数统称有理数,找出有理数,再计算个数.解答:解:根据题意,﹣,0,是有理数,共2个.5.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A. 2B. ﹣2C. 2D. 4考点:一元一次方程的定义.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值. 解答:解:根据题意,得,6.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是()A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=11考点:一元一次方程的解.专题:计算题.分析:虽然是关于x的方程,但是含有三个未知数,主要把x的值代进去,化出m,n的关系即可.解答:解:把x=1代入方程6n+4x=7x﹣3m中7.下列关于单项式一的说法中,正确的是()A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是3考点:单项式.专题:推理填空题.分析:根据单项式系数及次数的定义进行解答即可.解答:解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣ ;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.8.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3abD.考点:同类项;单项式.专题:探究型.分析:根据同类项的定义对四个选项进行逐一解答即可. 解答:解:A、中,所含字母相同,相同字母的指数不相等,这两个单项式不是同类项,故本选项错误;B、∵0.5a2b与0.5a2c中,所含字母不相同,这两个单项式不是同类项,故本选项错误;C、∵3abc与3ab中,所含字母不相同,这两个单项式不是同类项,故本选项错误;D、∵ 中所含字母相同,相同字母的指数相等,9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a考点:列代数式.分析:用进价乘以加上利润后的百分比,再乘以优惠后的百分比列式即可.10.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是 5 ,的倒数为﹣ .考点:倒数;相反数.分析:根据相反数及倒数的定义,即可得出答案.解答:解:﹣5的相反数是5,﹣的倒数是﹣ .12.太阳光的速度是300 000 000米/秒,用科学记数法表示为 3108 米/秒.考点:科学记数法表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答:解:将300 000 000用科学记数法表示为3108. 13.比较大小:﹣5 2,﹣﹣ .考点:有理数大小比较.分析:根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.解答:解:﹣52,14.若3a2﹣a﹣2=0,则5+2a﹣6a2= 1 .考点:代数式求值.专题:整体思想.分析:先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.解答:解;∵3a2﹣a﹣2=0,3a2﹣a=2,15.若|a|=8,|b|=5,且a+b0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,a=8,b=∵a+b0,a=8,b=5.当a=8,b=5时,a﹣b=3;16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.考点:列代数式;加权平均数.分析:根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则 + = 0 (直接写出答案).考点:有理数的加减混合运算.专题:新定义.分析:根据题中的新定义化简,计算即可得到结果.解答:解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为 1或﹣5 .考点:数轴.分析:根据数轴上到一点距离相等的点有两个,可得答案. 解答:解:|1﹣(﹣2)|=3|﹣5﹣(﹣2)|=3,三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣ + )(﹣48)(3)16(﹣2)3﹣(﹣ )(﹣4)(4)﹣12﹣(﹣10) 2+(﹣4)2.考点:有理数的混合运算.分析: (1)先把减法改为加法,再计算;(2)利用乘法分配律简算;(3)先算乘方和和乘法,再算除法,最后算减法;(4)先算乘方和乘除,再算加减.解答:解:(1)原式=﹣3+9+5=11;(2)原式=1(﹣48)﹣ (﹣48)+ (﹣48)=﹣48+8﹣36=﹣76;(3)原式=16(﹣8)﹣=﹣2﹣=﹣2 ;20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).考点:整式的加减.专题:计算题.分析:各式去括号合并即可得到结果.解答:解:(1)原式=3b+5a﹣2a+4b=3a+7b;21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .考点:解一元一次方程.专题:计算题.分析: (1)方程去括号,移项合并,将x系数化为1 ,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)方程去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4;(2)方程去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有 6 块,当黑砖n=2时,白砖有 10 块,当黑砖n=3时,白砖有 14 块.(2)第n个图案中,白色地砖共 4n+2 块.考点:规律型:图形的变化类.专题:应用题.分析: (1)第1个图里有白色地砖6+4(1﹣1)=6,第2个图里有白色地砖6+4(2﹣1)=10,第3个图里有白色地砖6+4(3﹣1)=14;(2)第n个图里有白色地砖6+4(n﹣1)=4n+2.解答:解:(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:∵每个图形都比其前一个图形多4个白色地砖,可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2块.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油? 考点:整式的加减.专题:计算题.分析: (1)便民超市中午过后一共卖出的食用油=原有的食用油﹣上午卖出的+中午休息时又购进的食用油﹣剩下的5桶,据此列式化简计算即可;(2)把x=5代入(1)化简计算后的整式即可.解答:解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),答:便民超市中午过后一共卖出(6x2﹣18x)桶食用油; (2)当x=5时,6x2﹣18x=652﹣185=150﹣90=60(桶),25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?考点:正数和负数.分析: (1)根据有理数的加法,分别进行相加即可;(2)根据有理数的加法运算,可得每次的距离,再根据有理数的大小比较,可得答案;(3)根据题意先算出航行的距离,再乘以冲锋舟每千米耗油2升,即可得出答案.解答:解:(1)14﹣9+18﹣7+13﹣6+10﹣5=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油822=164升,26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC( +3 , +4 ),BD( +3 ,﹣2 ),C D (+1,﹣2 );(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P的位置.考点:有理数的加减混合运算;正数和负数;坐标确定位置. 分析: (1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.解答:解:(1)AC(+3,+4);BD(+3,﹣2);CD(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:AB表示为:(1,4),BC记为(2,0)CD 记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;27.将长为1,宽为a的长方形纸片((1)第一次操作后,剩下的矩形两边长分别为 a与1﹣a ;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a= ;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.考点:一元一次方程的应用;列代数式;整式的加减.分析: (1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,分两种情况进行讨论:①当1﹣a2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a ﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.解答:解:(1)∵长为1,宽为a的长方形纸片(第一次操作后剩下的矩形的长为a,宽为1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,此时矩形恰好是正方形,1﹣a=2a﹣1,解得a= ;(3)第二次操作后,剩下矩形的两边长分别为:1﹣a与2a﹣1.①当1﹣a2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得: .当时,1﹣a2a﹣1.所以,是所求的一个值;②当1﹣a2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得: .当时,1﹣a2a﹣1.所以,是所求的一个值;这篇2018年七年级上学期数学期中检测试卷的内容,希望会对各位同学带来很大的帮助。

安徽省宿州市埇桥区2017-2018学年七年级上册数学期中考试试卷(解析版)

安徽省宿州市埇桥区2017-2018学年七年级上册数学期中考试试卷(解析版)

安徽省宿州市埇桥区2017-2018学年七年级上册数学期中考试试卷(解析版)一.选择题1.化简﹣2+3的结果是()A. ﹣1B. 1C. ﹣5D. 52.下面几何体截面一定是圆的是()A. 圆柱B. 圆锥C. 球D. 圆台3.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A. 24.70千克B. 25.30千克C. 24.80千克D. 25.51千克4.在数轴上表示4与﹣3的两个点之间的距离是()A. ﹣1B. 1C. ﹣7D. 75.下列图形中,不是三棱柱的表面展开图是()A. B. C. D.6. 下列说法正确的是()A. 两个有理数的和一定大于每一个加数B. 互为相反数的两个数的和等于零C. 若两个数的和为正,则这两个数都是正数D. 若|a|=|b|,则a=b7.绝对值小于3的所有整数的和是()A. 3B. 0C. 6D. ﹣68.一个几何体从上面看是圆,从左面和正面看都是长方形,则该几何体是()A. 正方体B. 圆锥C. 圆柱D. 球9.若有理数x、y满足|x|=1,|y|=2,且x+y为正数,则x+y等于()A. 1B. 2C. 3D. 1或310.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.二.填空题11.﹣1的相反数是________.12.小志家冰箱的冷冻室的温度为﹣6℃,调高4℃后的温度为________.13.由两个长方体组合而成的一个立体图形,从两个不同的方向看得到的形状图如图所示,根据图中所标尺寸(单位:mm)可知这两个长方体的体积之和是________ mm3.14.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有________块.三.计算题15.计算:﹣|﹣1|+| ﹣|+(﹣2).16.计算:﹣0.5﹣(﹣3 )+2.75﹣7.5.四.综合题17.如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,试写出A,B,C分别表示的数.18.画数轴表示下列有理数,并用“<”连接各数.﹣2.5;0;4;﹣1;0.4.19.实数a,b,c在数轴上的位置如图所示.(1)比较大小:|a|与|b|.(2)化简:|c|﹣|a|+|﹣b|+|﹣a|.20.如图所示的是一个正方体骰子的表面展开图,将其折叠成正方体骰子,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果3点在下面,几点在上面?21.如图所示的是某几何体的三种形状图.(1)说出这个几何体的名称;(2)若从正面看到的形状图长为15cm,宽为4cm的长方形,从左面看到的形状图是宽为3cm的长方形,从上面看到的形状图的最长的边长为5cm,求这个几何体的侧面积(不包括上下底面).22.某水果店销售香蕉,前一天未卖完的香蕉会有部分由于不新鲜而损耗,未损耗的水果第二天继续销售,当天结束时,若库存较前一天减少.则记为负数,若库存较前一天增多,则记为正数.10月1日至10月5日的经营情况如下表:(1)10月3日卖出香蕉________千克.(2)问卖出香蕉最多的一天是哪一天?(3)这五天经营结束后,库存是增加了还是减少了?变化了多少?23.如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr,本题中π的取值为3.14)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是________;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,﹣5,+4,+3,﹣2①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?答案解析部分一.<b >选择题</b>1.【答案】B【考点】有理数的加法【解析】【解答】解:原式=+(3﹣2)=+1,故答案为:B.【分析】根据有理数的加法法则,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大加数的符号,并用较大加数的绝对值减去较小加数的绝对值;计算即可.2.【答案】C【考点】截一个几何体【解析】【解答】解:由题意得,圆柱的截面有可能为矩形,圆锥的截面有可能为三角形,圆台的截面有可能为梯形,球的截面一定是圆.故答案为:C.【分析】球的截面一定是圆.3.【答案】C【考点】正数和负数【解析】【解答】解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,故只有24.80千克合格.故答案为:C.【分析】根据25±0.25千克表示合格范围在25上下0.25的范围内的是合格品,得到25+0.25和25-0.25之间的值合格;判断即可.4.【答案】D【考点】数轴【解析】【解答】解:4﹣(﹣3)=4+3=7,故答案为:D.【分析】根据在数轴上表示两个点之间的距离是这两个数的差的绝对值;计算即可.5.【答案】D【考点】几何体的展开图【解析】【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故答案为:D.【分析】因为A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,均能围成三棱柱,所以判断即可.6.【答案】B【考点】相反数,绝对值,有理数的加法【解析】【解答】解:A.如(﹣1)+2=1,1<2,故A错误;B.互为相反数的两个数的和等于零,故B正确;C.如(﹣1)+2=1,﹣1<0,故C错误;D.若|a|=|b|,则a=±b,故D错误.故答案为:B.【分析】根据同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大加数的符号,并用较大加数的绝对值减去较小加数的绝对值;正数、零的绝对值是它的本身,负数的绝对值是它的相反的数;只有符号不同的两个数互为相反数(0的相反数是0),互为相反数的两个数的和等于零;计算即可.7.【答案】B【考点】有理数大小比较,有理数的加法【解析】【解答】解:绝对值小于3的整数有±2,±1,0,所以绝对值小于3的所有整数的和=﹣2+2+(﹣1)+1+0=0.故答案为:B.【分析】绝对值小于3的整数有±2,±1,0,由互为相反数的两个数的和等于零,得到绝对值小于3的所有整数的和是0.8.【答案】C【考点】由三视图判断几何体【解析】【解答】解:根据圆柱的特征可知:此几何体是圆柱.故答案为:C.【分析】主视图是从物体的正面观察得到的,俯视图是从物体的上面观察得到的,左视图是从物体的左方得到的;判断即可.9.【答案】D【考点】绝对值,有理数的加法【解析】【解答】解:∵|x|=1,|y|=2,∴x=±1,y=±2,∵x+y为正数,∴①x=1,y=2,x+y=3,②x=﹣1,y=2,x+y=1,故答案为:D.【分析】根据正数、零的绝对值是它的本身,负数的绝对值是它的相反的数;得到x=±1,y=±2,由x+y为正数,求出x+y的结果即可.10.【答案】D【考点】点、线、面、体【解析】【解答】解:A、圆柱是由一长方形绕其一边长旋转而成的;B、圆锥是由一直角三角形绕其直角边旋转而成的;C、该几何体是由直角梯形绕其下底旋转而成的;D、该几何体是由直角三角形绕其斜边旋转而成的.故答案为:D.【分析】根据旋转的性质,将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体是图形D.二.<b >填空题</b>11.【答案】1【考点】相反数【解析】【解答】解:根据相反数的定义,得﹣1的相反数是1.【分析】根据只有符号不同的两个数互为相反数(0的相反数是0),互为相反数的两个数的和等于零. 12.【答案】﹣2℃【考点】有理数的加法【解析】【解答】解:由题意,﹣6℃+4℃=﹣2℃故答案为:﹣2℃【分析】根据异号两数相加,取绝对值较大加数的符号,并用较大加数的绝对值减去较小加数的绝对值;计算即可.13.【答案】128【考点】由三视图判断几何体【解析】【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),故答案为:128【分析】根据主视图是从物体的正面观察得到的,俯视图是从物体的上面观察得到的,左视图是从物体的左方得到的;计算出立体图形的体积即可.14.【答案】4或5【考点】由三视图判断几何体【解析】【解答】解:将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有4或5块,故答案为:4或5【分析】根据主视图是从物体的正面观察得到的,俯视图是从物体的上面观察得到的,左视图是从物体的左方得到的;得到这堆小方块共有的数值.三.<b >计算题</b>15.【答案】解:原式=﹣1+ ﹣﹣2=﹣【考点】绝对值,有理数的加减混合运算【解析】【分析】根据正数、零的绝对值是它的本身,负数的绝对值是它的相反的数;计算即可.16.【答案】解:原式=(﹣0.5﹣7.5)+(3 +2.75)=﹣8+6=﹣2【考点】有理数的加减混合运算【解析】【分析】根据有理数的运算法则计算即可,先算平方,再算乘除,再算加减,如果有括号先算括号里面的;计算即可.四.<b >综合题</b>17.【答案】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“5”是相对面,“B”与“π”是相对面,“C”与“﹣”是相对面,∵相对面上的两数互为相反数,∴A、B、C表示的数依次是﹣5,﹣π,【考点】几何体的展开图【解析】【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,得到“A”与“5”是相对面,“B”与“π”是相对面,“C”与“﹣ 3 2 ”是相对面;根据只有符号不同的两个数互为相反数(0的相反数是0),互为相反数的两个数的和等于零;得到A,B,C分别表示的数.18.【答案】解:如图所示:,﹣2.5<﹣1<0<0.4<4【考点】数轴,有理数大小比较【解析】【分析】在数轴上画出各数,根据右边的数总比左边的数大,用“<”连接各数即可.19.【答案】(1)解:|a|<|b|(2)解:|c|﹣|a|+|﹣b|+|﹣a|=﹣c﹣a﹣b+a=﹣b﹣c【考点】实数与数轴,实数大小比较【解析】【分析】根据数轴上的位置,得到b<c<0<a,根据绝对值的定义是一个数在数轴上的对应点到原点的距离,得到|a|<|b|;(2)根据正数、零的绝对值是它的本身,负数的绝对值是它的相反的数;化简|c|﹣|a|+|﹣b|+|﹣a|即可.20.【答案】(1)解:这是一个正方体的平面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,2点在前面(2)解:如果5点在下面,那么4点在上面【考点】几何体的展开图【解析】【分析】根据正方体的平面展开图中,相对面间相隔一个正方形,得到面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,判断即可.21.【答案】(1)解:由三视图可知,这个几何体是三棱柱(2)解:侧面积:3×15+4×15+5×15=180(cm2)【考点】几何体的表面积,由三视图判断几何体【解析】【分析】(1)根据主视图是从物体的正面观察得到的,俯视图是从物体的上面观察得到的,左视图是从物体的左方得到的;由三视图可知,这个几何体是三棱柱;(2)根据三视图计算出这个几何体的侧面积即可.22.【答案】(1)46(2)解:10月1日卖出的香蕉55﹣4﹣1=50(千克),10月2日卖出的香蕉45﹣(﹣2)﹣4=43(千克),10月3日卖出的香蕉50﹣(﹣8)﹣2=46(千克),10月4日卖出的香蕉50﹣2﹣2=46(千克),10月5日卖出的香蕉5﹣(﹣3)﹣1=52(千克),∴卖出香蕉最多的一天是10月5日(3)解:4+(﹣2)+(﹣8)+2+(﹣3)=﹣7,答:库存减少了,减少了7千克【考点】正数和负数【解析】【解答】解:(1)50﹣(﹣8)﹣12=46(千克),故答案为46.【分析】根据列表求出10月1日到10月5日每天卖出的香蕉数;得到10月3日卖出香蕉数;根据库存列表,求出这五天经营结束后,库存的变化情况.23.【答案】(1)6.28(2)解:①∵+2﹣1﹣5+4=0,∴第4次滚动后,Q点距离原点最近;∵(+2)+(﹣1)+(﹣5)=﹣4,∴第3次滚动后,Q点距离原点最远;②∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,∴17×2π×1=106.76,∴当圆片结束运动时,Q点运动的路程共有106.76,∵2﹣1﹣5+4+3﹣2=1,∴1×2π×1=6.28,∴此时点Q所表示的数是6.28【考点】正数和负数,数轴【解析】【解答】解:(1)∵2πr=2×3.14×1=6.28,∴点A表示的数是6.28,故答案为:6.28;【分析】(1)根据圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置正好是圆的周长2πr,求出周长值即可;(2)根据运动情况记录下的值,得到第4次滚动后,Q点距离原点最近;根据Q点运动的路程是各数值的绝对值(正数、零的绝对值是它的本身,负数的绝对值是它的相反的数);求出各数值的绝对值的和,再乘以周长2πr,得到圆片结束运动时,Q点运动的总路程;根据运动情况记录下的值,求出圆片结束运动时,点Q所表示的数.。

安徽省宿州市埇桥区七年级(上)期中数学试卷

安徽省宿州市埇桥区七年级(上)期中数学试卷

七、(本题满分 12 分) 22.(12 分)某水果店销售香蕉,前一天未卖完的香蕉会有部分由于不新鲜而损耗,未损耗
的水果第二天继续销售,当天结束时,若库存较前一天减少.则记为负数,若库存较前 一天增多,则记为正数.10 月 1 日至 10 月 5 日的经营情况如下表:
日期
10 月 1 日 10 月 2 日 10 月 3 日 10 月 4 日 10 月 5 日
16.(8 分)计算:﹣0.5﹣(﹣3 )+2.75﹣7.5. 四、(本大题共 2 小题,每小题 8 分,共 16 分) 17.(8 分)如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上
的两数互为相反数,试写出 A、B、C 分别表示的数.
18.(8 分)画数轴表示下列有理数,并用“<”连接各数.
第5页(共5页)
长 C=2πr,本题中 π 的取值为 3.14)
(1)把圆片沿数轴向右滚动 1 周,点 Q 到达数轴上点 A 的位置,点 A 表示的数是

(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依
次运动情况记录如下:+2,﹣1,﹣5,+4,+3,﹣2
①第几次滚动后,Q 点距离原点最近?第几次滚动后,Q 点距离原点最远?
第2页(共5页)
﹣2.5;0;4;﹣1;0.4. 五、(本大题共 2 小题,每小题 10 分,共 20 分) 19.(10 分)实数 a,b,c 在数轴上的位置如图所示. (1)比较大小:|a|与|b|. (2)化简:|c|﹣|a|+|﹣b|+|﹣a|.
20.(10 分)如图所示的是一个正方体骰子的表面展开图,将其折叠成正方体骰子,请根据 要求回答问题:

【精品】七年级数学上册试卷:安徽省宿州市十三校七年级(上)期中数学试卷

【精品】七年级数学上册试卷:安徽省宿州市十三校七年级(上)期中数学试卷

2017-2018学年安徽省宿州市十三校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元C.支出80元D.收入80元2.(3分)(2017秋•宿州期中)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.3.(3分)(2017秋•宿州期中)下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5tD.一个有理数不是正数,那它一定是负数4.(3分)(2017秋•宿州期中)据统计,2017年“十•一”国庆长假期间,某市共接待国内外游客约517万人次,与2016年同比增长16.43%,数据517万用科学记数法表示为()A.0.517×107B.5.17×105C.5.17×106D.517×1065.(3分)(2017•泰安模拟)若a的倒数是﹣1,则a2017的值是()A.1 B.﹣1 C.2017 D.﹣20176.(3分)(2015•薛城区校级三模)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a7.(3分)(2017秋•宿州期中)如图,是由若干个相同的小立方体搭成的几何体.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或78.(3分)(2014•永康市模拟)化简﹣y﹣(+y)的最后结果是()A.0 B.2 C.﹣2y D.2﹣2y9.(3分)(2016•舟山)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7710.(3分)(2017秋•宿州期中)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2D.n(n+2)二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017秋•宿州期中)粉笔在黑板上写字说明;车轮旋转时看起像个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.12.(3分)(2015秋•高阳县期末)计算:(﹣1)2015+(﹣1)2016= .13.(3分)(2015•苏州)若a﹣2b=3,则9﹣2a+4b的值为.14.(3分)(2017秋•宿州期中)若﹣2a m b5与5a3b n+7是同类项,则m+n= .15.(3分)(2017秋•宿州期中)若|a+5|+(b﹣4)2=0,则(a+b)2017= .16.(3分)(2017秋•宿州期中)李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你算一算,得.17.(3分)(2013•苏州)按照如图所示的操作步骤,若输入的值为2,则输出的值为.18.(3分)(2015•石城县模拟)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需根火柴棒,…,则第n个图形需根火柴棒.三、解答题(本大题共7小题,共66分)19.(10分)(2017秋•宿州期中)计算:(1)(﹣7)+(+15)﹣(﹣25)(2)﹣24﹣×[5﹣(﹣3)2].20.(6分)(2017秋•宿州期中)化简:﹣3(y﹣2)+2(1﹣2y)21.(8分)(2017秋•宿州期中)先化简,后求值:(﹣42+2﹣12)﹣(﹣1),其中=﹣1.22.(10分)(2017秋•宿州期中)如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.23.(10分)(2017秋•宿州期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?24.(10分)(2017秋•宿州期中)若y|a|与3|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.25.(12分)(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:个图形中黑色瓷砖的块数为;块数为(都用含n的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.2017-2018学年安徽省宿州市十三校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)(2017秋•宿州期中)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【分析】根据n棱柱的展开图有n个矩形侧面,上下底面是两个n边形,可得答案.【解答】解:三棱柱的侧面是三个矩形,上下底面是三角形,故选:A.【点评】本题考查了几何体的三视图,n棱柱的展开图有n个矩形侧面,上下底面是两个n边形.3.(3分)(2017秋•宿州期中)下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5tD.一个有理数不是正数,那它一定是负数【分析】根据有理数的定义和分类以及正负数的意义进行判断即可.【解答】解:有理数包括正有理数、负有理数和零,所以一个有理数不是正数,那它可能是0,也可能是负数,D不正确.故选:D.【点评】本题考查了有理数的定义和分类,牢记有关定义是解题的关键,同时考查了正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.4.(3分)(2017秋•宿州期中)据统计,2017年“十•一”国庆长假期间,某市共接待国内外游客约517万人次,与2016年同比增长16.43%,数据517万用科学记数法表示为()A.0.517×107B.5.17×105C.5.17×106D.517×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:517万=517 0000=5.17×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017•泰安模拟)若a的倒数是﹣1,则a2017的值是()A.1 B.﹣1 C.2017 D.﹣2017【分析】根据倒数定义可得a的值,再根据乘方的意义可得答案.【解答】解:由题意得:a=﹣1,则a2017=﹣1,故选:B.【点评】此题主要考查了倒数,以及乘方,关键是掌握乘积是1的两数互为倒数.6.(3分)(2015•薛城区校级三模)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a【分析】根据合并同类项、同底数幂的除法、同底数幂的乘法等运算法则求解,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、a2•a=a3,计算正确,故本选项正确;C、a2÷a=a,原式计算错误,故本选项错误;D、(2a)2=4a2,原式计算错误,故本选项错误.故选:B.【点评】本题考查了合并同类项、同底数幂的除法、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.7.(3分)(2017秋•宿州期中)如图,是由若干个相同的小立方体搭成的几何体.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选:D.【点评】本题考查了由三视图判断几何体,也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个小立方体.8.(3分)(2014•永康市模拟)化简﹣y﹣(+y)的最后结果是()A.0 B.2 C.﹣2y D.2﹣2y【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣y﹣﹣y=﹣2y.故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.(3分)(2016•舟山)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.77【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.【解答】解:依题意有,刀鞘数为76.故选:C.【点评】考查了有理数的乘方,关键是根据题意正确列出算式,是基础题型.10.(3分)(2017秋•宿州期中)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2D.n(n+2)【分析】第1个图形是3×1﹣3=1×3,第2个图形是4×3﹣4=2×4,第3个图形是4×5﹣5=3×5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是:边数×每条边的点数﹣边数=(n+2)(n+1)﹣(n+2)=n(n+2).【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n(n+2),故选:D.【点评】此题考查图形的变化规律,从简单入手,找出图形蕴含的规律,利用规律解决问题.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017秋•宿州期中)粉笔在黑板上写字说明点动成线;车轮旋转时看起像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.【分析】根据点动成线,线动成面,面动成体填空即可.【解答】解:笔尖在纸上写字说明点动成线;车轮旋转时看起象个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.故答案为:点动成线;线动成面;面动成体.【点评】此题主要考查了点线面体,关键是掌握点动成线,线动成面,面动成体.12.(3分)(2015秋•高阳县期末)计算:(﹣1)2015+(﹣1)2016= 0 .【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.13.(3分)(2015•苏州)若a﹣2b=3,则9﹣2a+4b的值为 3 .【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.(3分)(2017秋•宿州期中)若﹣2a m b5与5a3b n+7是同类项,则m+n= 1 .【分析】根据同类项定义可得m=3,n+7=5,再解即可.【解答】解:由题意得:m=3,n+7=5,解得:m=3,n=﹣2,m+n=3﹣2=1,故答案为:1.【点评】此题主要考查了同类项定义,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.(3分)(2017秋•宿州期中)若|a+5|+(b﹣4)2=0,则(a+b)2017= ﹣1 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+5=0,b﹣4=0,解得a=﹣5,b=4,所以,(a+b)2017=(﹣5+4)2017=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(3分)(2017秋•宿州期中)李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你算一算,得﹣28 .【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:=2×(﹣5)﹣3×6=﹣28.故答案为:﹣28.【点评】此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.17.(3分)(2013•苏州)按照如图所示的操作步骤,若输入的值为2,则输出的值为20 .【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(+3)2﹣5,当=2时,(+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.18.(3分)(2015•石城县模拟)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需9 根火柴棒,…,则第n个图形需2n+1 根火柴棒.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:9,2n+1.【点评】此题主要考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.三、解答题(本大题共7小题,共66分)19.(10分)(2017秋•宿州期中)计算:(1)(﹣7)+(+15)﹣(﹣25)(2)﹣24﹣×[5﹣(﹣3)2].【分析】(1)在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.(2)有理数混合运算时,先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(+15)﹣(﹣25)=﹣7+15+25=﹣7+40=33(2)﹣24﹣×[5﹣(﹣3)2]=﹣16﹣×(5﹣9)=﹣16﹣×(﹣4)=﹣16+2=﹣14【点评】本题主要考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(6分)(2017秋•宿州期中)化简:﹣3(y﹣2)+2(1﹣2y)【分析】首先去括号,然后再合并同类项即可.【解答】解:原式=﹣3y+6+2﹣4y=﹣7y+8.【点评】此题主要考查了整式的加减,关键是去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.21.(8分)(2017秋•宿州期中)先化简,后求值:(﹣42+2﹣12)﹣(﹣1),其中=﹣1.【分析】根据整式的加减的运算顺序,先去括号,再合并同类项,再将的值代入求值即可.【解答】解:(﹣42+2﹣12)﹣(﹣1)=﹣2+﹣3﹣+1=﹣2﹣2当=﹣1时,原式=﹣1﹣2=﹣3.【点评】本题主要考查整式的加减的化简求值,解决此类问题时,要注意去括号时符号变化.22.(10分)(2017秋•宿州期中)如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.【分析】(1)根据三视图可直接得出这个立体图形是三棱柱;(2)根据直三棱柱的表面积公式进行计算即可.【解答】解:(1)根据三视图可得:这个立体图形是三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【点评】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,同时也考查学生的空间想象能力.23.(10分)(2017秋•宿州期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以10即可得到最后结果.【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则计算,有时可以利用运算律简化运算.24.(10分)(2017秋•宿州期中)若y|a|与3|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.【分析】根据绝对值的性质及倒数的定义,求出a,b的值,再将多项式去括号合并同类项,代入求值即可.【解答】解:根据题意,得:|2b+1|=1,|a|=1,∴b=0或﹣1,a=±1,又∵a,b不为倒数,∴a=﹣1,a=﹣1,∵2(a﹣2b2)﹣(3b2﹣a)=2a﹣2b2﹣b2+=a﹣b2当a=﹣1,b=﹣1时,原式==﹣6.【点评】本题主要考查整式的化简求值及绝对值、倒数、同类项的综合运用,解决此题时,能根据绝对值的性质,判断出a,b的值可能是多少,再根据a,b倒数,确定a,b的值是关键.25.(12分)(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:个图形中黑色瓷砖的块数为 3n+1 ;黑白两种瓷砖的总块数为 10n+5 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【分析】(1)第一个图形有黑色瓷砖4块,黑白两种瓷砖的总块数为15;第二个图形有黑色瓷砖7块,黑白两种瓷砖的总块数为25;第三个图形有黑色瓷砖10块,黑白两种瓷砖的总块数为35;由此填表即可;(2)由(1)可知每一个图形的黑色瓷砖块数比前一个图形多3,总块数多10,由此求得答案即可;(3)利用(2)的规律利用“白色瓷砖的块数可能比黑色瓷砖的块数多2015块”联立方程,求得整数解就能,否则不能. 【解答】解:(1)填表如下:;(3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,解得:n=503答:第503个图形.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年安徽省宿州市埇桥区七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)化简﹣2+3的结果是()A.﹣1 B.1 C.﹣5 D.52.(4分)下面几何体截面一定是圆的是()A.圆柱B.圆锥C.球D.圆台3.(4分)一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克4.(4分)在数轴上表示4与﹣3的两个点之间的距离是()A.﹣1 B.1 C.﹣7 D.75.(4分)下列图形中,不是三棱柱的表面展开图是()A.B.C.D.6.(4分)下列说法正确的是()A.两个有理数的和一定大于每一个加数B.互为相反数的两个数的和等于零C.若两个数的和为正,则这两个数都是正数D.若|a|=|b|,则a=b7.(4分)绝对值小于3的所有整数的和是()A.3 B.0 C.6 D.﹣68.(4分)一个几何体从上面看是圆,从左面和正面看都是长方形,则该几何体是()A.正方体B.圆锥C.圆柱D.球9.(4分)若有理数x、y满足|x|=1,|y|=2,且x+y为正数,则x+y等于()A.1 B.2 C.3 D.1或310.(4分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)﹣1的相反数是.12.(5分)小志家冰箱的冷冻室的温度为﹣6℃,调高4℃后的温度为.13.(5分)由两个长方体组合而成的一个立体图形,从两个不同的方向看得到的形状图如图所示,根据图中所标尺寸(单位:mm)可知这两个长方体的体积之和是mm3.14.(5分)将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有块.三、(本大题共2小题,每小题8分,共16分)15.(8分)计算:﹣|﹣1|+|﹣|+(﹣2).16.(8分)计算:﹣0.5﹣(﹣3)+2.75﹣7.5.四、(本大题共2小题,每小题8分,共16分)17.(8分)如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,试写出A、B、C分别表示的数.18.(8分)画数轴表示下列有理数,并用“<”连接各数.﹣2.5;0;4;﹣1;0.4.五、(本大题共2小题,每小题10分,共20分)19.(10分)实数a,b,c在数轴上的位置如图所示.(1)比较大小:|a|与|b|.(2)化简:|c|﹣|a|+|﹣b|+|﹣a|.20.(10分)如图所示的是一个正方体骰子的表面展开图,将其折叠成正方体骰子,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果3点在下面,几点在上面?六、(本题满分12分)21.(12分)如图所示的是某几何体的三种形状图.(1)说出这个几何体的名称;(2)若从正面看到的形状图长为15cm,宽为4cm的长方形,从左面看到的形状图是宽为3cm的长方形,从上面看到的形状图的最长的边长为5cm,求这个几何体的侧面积(不包括上下底面).七、(本题满分12分)22.(12分)某水果店销售香蕉,前一天未卖完的香蕉会有部分由于不新鲜而损耗,未损耗的水果第二天继续销售,当天结束时,若库存较前一天减少.则记为负数,若库存较前一天增多,则记为正数.10月1日至10月5日的经营情况如下表:(1)10月3日卖出香蕉千克.(2)问卖出香蕉最多的一天是哪一天?(3)这五天经营结束后,库存是增加了还是减少了?变化了多少?八、(本题满分14分)23.(14分)如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr,本题中π的取值为3.14)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,﹣5,+4,+3,﹣2①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?2017-2018学年安徽省宿州市埇桥区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)化简﹣2+3的结果是()A.﹣1 B.1 C.﹣5 D.5【解答】解:原式=+(3﹣2)=+1,故选:B.2.(4分)下面几何体截面一定是圆的是()A.圆柱B.圆锥C.球D.圆台【解答】解:由题意得,圆柱的截面有可能为矩形,圆锥的截面有可能为三角形,圆台的截面有可能为梯形,球的截面一定是圆.故选:C.3.(4分)一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克【解答】解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,故只有24.80千克合格.故选:C.4.(4分)在数轴上表示4与﹣3的两个点之间的距离是()A.﹣1 B.1 C.﹣7 D.7【解答】解:4﹣(﹣3)=4+3=7,故选:D.5.(4分)下列图形中,不是三棱柱的表面展开图是()A.B.C.D.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选:D.6.(4分)下列说法正确的是()A.两个有理数的和一定大于每一个加数B.互为相反数的两个数的和等于零C.若两个数的和为正,则这两个数都是正数D.若|a|=|b|,则a=b【解答】解:A.如(﹣1)+2=1,1<2,故A错误;B.互为相反数的两个数的和等于零,故B正确;C.如(﹣1)+2=1,﹣1<0,故C错误;D.若|a|=|b|,则a=±b,故D错误.故选:B.7.(4分)绝对值小于3的所有整数的和是()A.3 B.0 C.6 D.﹣6【解答】解:绝对值小于3的整数有±2,±1,0,所以绝对值小于3的所有整数的和=﹣2+2+(﹣1)+1+0=0.故选:B.8.(4分)一个几何体从上面看是圆,从左面和正面看都是长方形,则该几何体是()A.正方体B.圆锥C.圆柱D.球【解答】解:根据圆柱的特征可知:此几何体是圆柱.故选:C.9.(4分)若有理数x、y满足|x|=1,|y|=2,且x+y为正数,则x+y等于()A.1 B.2 C.3 D.1或3【解答】解:∵|x|=1,|y|=2,∴x=±1,y=±2,∵x+y为正数,∴①x=1,y=2,x+y=3,②x=﹣1,y=2,x+y=1,故选:D.10.(4分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.【解答】解:A、圆柱是由一长方形绕其一边长旋转而成的;B、圆锥是由一直角三角形绕其直角边旋转而成的;C、该几何体是由直角梯形绕其下底旋转而成的;D、该几何体是由直角三角形绕其斜边旋转而成的.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)﹣1的相反数是1.【解答】解:根据相反数的定义,得﹣1的相反数是1.12.(5分)小志家冰箱的冷冻室的温度为﹣6℃,调高4℃后的温度为﹣2℃.【解答】解:由题意,﹣6℃+4℃=﹣2℃故答案为:﹣2℃13.(5分)由两个长方体组合而成的一个立体图形,从两个不同的方向看得到的形状图如图所示,根据图中所标尺寸(单位:mm)可知这两个长方体的体积之和是128mm3.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),故答案为:12814.(5分)将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有4或5块.【解答】解:将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有4或5块,故答案为:4或5三、(本大题共2小题,每小题8分,共16分)15.(8分)计算:﹣|﹣1|+|﹣|+(﹣2).【解答】解:原式=﹣1+﹣﹣2=﹣.16.(8分)计算:﹣0.5﹣(﹣3)+2.75﹣7.5.【解答】解:原式=(﹣0.5﹣7.5)+(3+2.75)=﹣8+6=﹣2.四、(本大题共2小题,每小题8分,共16分)17.(8分)如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,试写出A、B、C分别表示的数.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“5”是相对面,“B”与“π”是相对面,“C”与“﹣”是相对面,∵相对面上的两数互为相反数,∴A、B、C表示的数依次是﹣5,﹣π,.18.(8分)画数轴表示下列有理数,并用“<”连接各数.﹣2.5;0;4;﹣1;0.4.【解答】解:如图所示:,﹣2.5<﹣1<0<0.4<4.五、(本大题共2小题,每小题10分,共20分)19.(10分)实数a,b,c在数轴上的位置如图所示.(1)比较大小:|a|与|b|.(2)化简:|c|﹣|a|+|﹣b|+|﹣a|.【解答】解:(1)|a|<|b|.(2)|c|﹣|a|+|﹣b|+|﹣a|=﹣c﹣a﹣b+a=﹣b﹣c.20.(10分)如图所示的是一个正方体骰子的表面展开图,将其折叠成正方体骰子,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果3点在下面,几点在上面?【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,(1)如果1点在上面,3点在左面,可知5点在后面,2点在前面;(2)如果3点在下面,那么4点在上面.六、(本题满分12分)21.(12分)如图所示的是某几何体的三种形状图.(1)说出这个几何体的名称;(2)若从正面看到的形状图长为15cm,宽为4cm的长方形,从左面看到的形状图是宽为3cm的长方形,从上面看到的形状图的最长的边长为5cm,求这个几何体的侧面积(不包括上下底面).【解答】解:(1)由三视图可知,这个几何体是三棱柱;(2)侧面积:3×15+4×15+5×15=180(cm2).七、(本题满分12分)22.(12分)某水果店销售香蕉,前一天未卖完的香蕉会有部分由于不新鲜而损耗,未损耗的水果第二天继续销售,当天结束时,若库存较前一天减少.则记为负数,若库存较前一天增多,则记为正数.10月1日至10月5日的经营情况如下表:(1)10月3日卖出香蕉46千克.(2)问卖出香蕉最多的一天是哪一天?(3)这五天经营结束后,库存是增加了还是减少了?变化了多少?【解答】解:(1)50﹣(﹣8)﹣12=46(千克),故答案为46.(2)10月1日卖出的香蕉55﹣4﹣1=50(千克),10月2日卖出的香蕉45﹣(﹣2)﹣4=43(千克),10月3日卖出的香蕉50﹣(﹣8)﹣2=46(千克),10月4日卖出的香蕉50﹣2﹣2=46(千克),10月5日卖出的香蕉5﹣(﹣3)﹣1=52(千克),∴卖出香蕉最多的一天是10月5日;(3)4+(﹣2)+(﹣8)+2+(﹣3)=﹣7,答:库存减少了,减少了7千克;八、(本题满分14分)23.(14分)如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr,本题中π的取值为3.14)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是 6.28;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,﹣5,+4,+3,﹣2①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?【解答】解:(1)∵2πr=2×3.14×1=6.28,∴点A表示的数是6.28,故答案为:6.28;(2)①∵+2﹣1﹣5+4=0,∴第4次滚动后,Q点距离原点最近;∵(+2)+(﹣1)+(﹣5)=﹣4,∴第3次滚动后,Q点距离原点最远;②∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,∴17×2π×1=106.76,∴当圆片结束运动时,Q点运动的路程共有106.76,∵2﹣1﹣5+4+3﹣2=1,∴1×2π×1=6.28,∴此时点Q所表示的数是6.28.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档