Acquiring Configuration Knowledge Bases in the Semantic Web using UML

合集下载

SCS1智能相机传感器说明书

SCS1智能相机传感器说明书

Smart Camera offers visual inspection and identification functionalities,with the simplicity, dimensions and prices of an advanced sensor.Applications including multiple measurements, control of surfaces and object models offer code OCR/OCV for optical character reading and verification, as well as 1D Barcode and 2D DataMatrix reading.The illumination can be integrated or external; a complete range of illuminators is available as accessories, connectable by a standard M8 plug.S t u r d y m e t a l h o u s 4 d i T e a c h -r f o r m a n c e sI n t e g r a t e d o r e e r n a li l l u m f o r nDIMENSIONSNew SCS1-ID version offers standard inspection functionalities together with additional ID tools for Optical Character Recognition (OCR),Optical Character Verification (OCV),BarCode and DataMatrix reading.SCS1standard and SCS1-ID versions satisfy a broad range of applications (manufacturing, packaging,overprinting, food & beverage,cosmetic & pharmaceutical, electronic assembling, automotive, logistics,etc.) for:- Quality inspection and surface control-Object measurement and positioning- Optical Character Recognition and Verification (OCR/OCV)- 1D BarCode reading (Pharmacode-Code 32, Code 39, Code 128, 2/5 Interleaved)- 2D DataMatrix reading (ECC 200)Integrated illuminatorconnectorEthernet portExternal illuminatorM12 8-POLE CONNECTORM8 4-POLE CONNECTORCONNECTIONSOUTPUT 2OUTPUT 1GNDEXTERNAL TRIGGERCONFIGURABLEINPUT+24 VdcRS232 / RS485 (TX)DIGITAL INPUT 1RS232 / RS485 (RX)DIGITAL INPUT 21=brown =+24 Vdc2=white =Not connected 3=blue =GND4=black=Strobe TTL signal1=white =RS232 / RS485 (TX) / Digital input 12=brown =24 Vdc3=green =Configurable input 4=yellow =Output 15=grey =Output 26=pink =RS232 / RS485 (RX) / Digital input 27=blue =GND8=red =External trigger signal inputØ63384545452015.54175552.584.523.64010012.4M3 4-holes 6 mm depthM4 4-holes 6 mm depthCS-mount optics orC-mount optics + 5 mm adapter(12 mm optics)(version with integrated illuminator)INDICATORS AND SETTINGSCONNECTOR LAYOUTA B C D E F 11232Output 1 status LED Output 2 status LED Digital inputs status 4-digit display SET push-button +/- selection push-buttonsM12 8-pole I/O connector M8 4-pole lighting connector RJ45 Ethernet connectorABCDEFF 3GND+24 VdcN.C.StrobeSIL AREA modelM12connectorPower supply:24 Vdc ± 10%Ripple:2 Vpp maxConsumption:120 mA at 24 VdcIntegrated illuminator:ring illuminator, continuous red light Output type: 2 PNP - NO Output current:100 mA max Saturation voltage: 2 VSerial interface:RS232 version, (115200 baud rate)RS485 version, (115200 baud rate)Digital inputs: 2 digital input version (0/24 Vdc)Auxiliary input: trigger signalNetwork interface:Ethernet 10/100 Mbs Image sensor:CMOS 6.61mmx4.97mm640x480 pixel resolution (VGA) 9.9 µm pixel dimensionLenses:focal 12 mm CS-mount or C-mount with ring adapter Electronic shutter:global shutterAcquisition time: 6 ms aprox. (full frame VGA 640x480)Setting:SET push-button + and - push-buttonsauxiliary PC graphic user interface supplied Indicators: 4 digit display 3 green LEDs1 yellow OUTPUT LED Connections:RJ45 Ethernet connection M12 8-pole I/O connectorM8 4-pole external light connector Electronic protection:class 2Mechanical protection:IP40Protection devices:A, B Housing material:aluminum alloyWeight:300 g without illuminator385 g with integrated illuminator Operating temperature:-10...+55°C Storage temperature:-25... +70°C12II3D1Limit values2A - reverse polarity protectionB - overload and short-circuit protectionINSPECTION DIAGRAMSLENS ADJUSTMENT TECHNICAL NOTESOperating distance - inspection area (FOV)(12 mm optics)O p .di s t a n c em m 0100200267333500667100060 x 45120 x 90160 x 120200 x 150300x 225400 x 300600x 450TECHNICAL DATAThe lens presents two adjustments: one for diaphragmregulation (shutter) and the other for focus.Mechanical shutterFocusF OVm mx mmKEYBOARD SETTINGThe inspection time is the time period between the image acquisition and digital output activation, including the exposition,acquisition and elaboration time. The acquisition is approximately 6 ms for images with 640 x 480 pixel resolution, that can be reduced acquiring only a portion of the inspection field. The elaboration time depends on the number and type of tools used and image characteristics.The menu options can be visualised using the + and - push-buttons, while SET is used to select an option and to open the relative submenu.Setup : allows to access the parameters that control sensor functioning and inspection process;Registers : visualises and modifies the numeric values of the tool parameters set using the PC interfacein the 16 sensor registers.Teach-in : self-detection process necessary to detect the target’s reference image used as comparisonduring the successive inspection;Save : allows to memorise inspection and automatically enter in theRun mode;Network: allows to access communication parameters;Display : allows to change text orientation on the display;Start inspection: allows to return to the Run mode , resetting the previous configuration (quit without save);Run inspection : sensor runs inspection.USEasy TM PC GRAPHIC USER INTERFACE SETTINGINSPECTION TIMEMain menuToolboxStatus barOperation listConfiguration software suppliedA vision application is based on the comparison of the current image at the inspection point with a reference template.The SCS1 is based on a CMOS image sensor, with 640x480 pixel resolution, which functions on a 256 level gray scale. The image elaboration tools exploit the information linked to each single pixel in order to verify that the inspection specificatios are respected.The USEasyTM graphic interface configures the smart camera through PC in 4 simple steps which correspond to four operation modes. The SCS1 configuration is easy and intuitive: no specific machine vision knowledge is required. All users are guided graphically and can design directly on the image the tools necessary for the location, inspection, measurement and control of the required features, as well as identification tools.MACHINE VISION TOOLSACCESSORIES1525605645304555R5R22R10R545552540Ø 4.2R3R326030187.523.536.5R10R10R60R45Ø 49.2Ø 3.2Ø 3.275.4Ø 45Ø 4.270°15°5°60°4.2 N°6 holesST-5048 angled adjustable fixing bracketILLUMINATORSILLUMINATION IN MACHINE VISIONIllumination has to be carefully studied to optimise the target object and background contrast in order to capture the image in the best possible way.H ence lighting becomes fundamental as the object must be constantly illuminated to minimise ambient light effects and consequent changes.Physical protections and shields can be used to avoid ambient light interferences on the object target, so that lighting brightness becomes less critical.DATASENSOR offers different types of illuminators, in order to satisfy many different application needs.Top, Back and Ring illuminators are available on request both in continuous and strobe versions.Strobe lighting is a pulsed illumination source which uses LEDs that generate a short burst of high intensity light. It is very useful in presence of high-speed moving target objects as the image sensor exposure time becomes very low. Strobe lighting requires an external control module that is available in the accessory range.SIL ILLUMINATOR SERIESThe SCS1Smart Camera offers a rich range of solid-state illuminators,thanks to the experience of DATASENSOR OPTICS, business unitspecialised in the design, development and manufacturing of optic andlighting systems.The illuminators of the SIL series are fully-integrated devices. Theoptics, electronics and LED driving section are all built-in the sturdyaluminium housing, easing installation and use.Different versions are available:- SIL LINE- SIL AREA- SIL BACK- SIL RING- SIL SPOTDesigned to provide low angle of incidence illumination over a long,wide area, the SIL LINE version produces a very high, non-diffusedillumination.The SIL AREA version present similar featurea and is thusrecommended for large rectangular areas.The SIL RING model represents an axial light source for generalpurpose applications and is available also in a strobed version forrapidly moving objects.The SIL BACK model supplies rectangular backlight diffusedillumination offering a clear contrast of the external contour and highlights all holes.Object details are best underlined by the SIL SPOT version that concentrates high intensity illumination focussed on a limited area.The electrical connection is eased thanks to M8 4-pole connectors.Standard versions with red or white light emission are available, whereas blue, green or infrared versions can be made upon request.Note: please refer to the ‘SIL industrial illuminator series’datasheet for more information relative to the specifications of the SIL illuminators .via Lavino, 265 - 40050 Monte San Pietro, BO - Italy。

人工智能领域中英文专有名词汇总

人工智能领域中英文专有名词汇总

名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。

Drools5规则引擎开发教程

Drools5规则引擎开发教程

Drools5规则引擎规则引擎开发开发教程教程教程高杰上海锐道信息技术有限公司2009-8-201.学习前的准备Drools是一款基于Java的开源规则引擎,所以在使用Drools之前需要在开发机器上安装好JDK环境,Drools5要求的JDK版本要在1.5或以上。

1.1. 开发环境搭建大多数软件学习的第一步就是搭建这个软件的开发环境,Drools也不例外。

本小节的内容就是介绍如何搭建一个Drools5的开发、运行、调试环境。

1.1.1.下载开发工具Drools5提供了一个基于Eclipse3.4的一个IDE开发工具,所以在使用之前需要到网站下载一个 3.4.x版本的Eclipse,下载完成之后,再到/drools/downloads.html网站,下载Drools5的Eclipse插件版IDE及Drools5的开发工具包,如图1-1所示。

图1-1除这两个下载包以外,还可以把Drools5的相关文档、源码和示例的包下载下来参考学习使用。

将下载的开发工具包及IDE包解压到一个非中文目录下,解压完成后就可以在Eclipse3.4上安装Drools5提供的开发工具IDE了。

1.1.2.安装Drools IDE打开Eclipse3.4所在目录下的links目录(如果该目录不存在可以手工在其目录下创建一个links目录),在links目录下创建一个文本文件,并改名为drools5-ide.link,用记事本打开该文件,按照下面的版本输入Drools5 Eclipse Plugin文件所在目录:path=D:\\eclipse\\drools-5.0-eclipse-all这个值表示Drools5 Eclipse Plugin文件位于D盘eclipse目录下的drools-5.0-eclipse-all 下面,这里有一点需要注意,那就是drools-5.0-eclipse-all文件夹下必须再包含一个eclipse 目录,所有的插件文件都应该位于该eclipse目录之下,接下来要在win dos下重启Eclipse 3.4,检验Drools5 IDE是否安装成功。

工业工程专业英语--翻译

工业工程专业英语--翻译

工业工程专业英语--翻译工业工程的真正价值 Real IE ValueIn addition, the IE now has a greater opportunity to concentrate on any one of a broad variety of areas that many companies now recognize as individual departments-including simulation, operations research, ergonomics, material handling and logistics.值得一提的是,工业工程现在有更多的机会去集中于现在许多企业已经视为独立的学科的众多领域中的一个-----包括防真学、运筹学、人因学、物料搬运和物流学。

Work-measured Labor Standards 基于作业测量的劳动标准If you are a manufacturer, chances are you have a bill-of-materials (BOM) system to determine standard parts cost. Do you also have an equivalent bill-of-labor system to determine standard labor cost?如果你是一个制造商,你有可能会有一个物料清单系统来确定标准件的成本。

你是否也能得到类似的劳动力清单系统来确定标准的劳动成本,Time study——The most widely used tool to develop standard times is still time study. Time study reflects what is happening in your job or project. It is also easy to learn and use. Now, the PC has made summarization of time study data a matter of seconds instead of hours.时间研究----用来开发标准时间使用最广泛的工具依然是时间研究。

4-Explaining-SLL

4-Explaining-SLL
• However, other linguists with an interest in SLA have discussed this and have not entirely agreed.
The Innatist Perspective (Cont.)
• Is UG available for SLA? • If available, how does it work?
• The natural order hypothesis: Language is learned in a predictable order (based on the morpheme order studies)(see P47)
14
Krashen’s Monitor Model (Cont.)
• L1 influence is not simply a matter of habits but a more complex process.
• Rejection of Contrastive Analysis Hypothesis • Rejection of behaviourism
2. The Innatist Perspective (先天论)
• The comprehensible input hypothesis: If there is a natural order of acquisition, how is it that learners move from one point to another? Answer: by receiving comprehensible input or i + 1.
– Same as for L1? Differently from L1?

Drools Fusion介绍

Drools Fusion介绍

drools fusion(3)2010-12-02 23:07五、事件处理模式(Event Processing Modes)Drools支持2种事件处理模式:云模式(Cloud Mode)和流模式(Stream Mode)1.云模式(Cloud Mode)云(Cloud)处理模式是默认的处理方式。

在云模式下,不会区分事实和事件,都看成是事实。

(1)没有时间的概念。

尽管事件在插入引擎被赋予了时间戳,也不能判断该事件“多大了”,因为没有“现在”的概念。

滑动窗(slid 用。

(2)无序的事件云。

由于事件无序,没有自动的生命周期管理,需要像正常的事实一样显示的删除事件。

云模式虽然是默认的执行模式,我们也可以配置它:KnowledgeBaseConfiguration config = KnowledgeBaseFactory.newKnowledgeBaseConfiguration();config.setOption( EventProcessingOption.CLOUD );等同系统属性配置:drools.eventProcessingMode = cloud2.流模式(Stream Mode)当处理事件流的时候需要选择流处理模式。

在流模式下:(1) 插入到引擎里的事件必须是时间顺序的。

(2) 引擎强制性的和使用的会话时钟session clock同步。

配置流模式:KnowledgeBaseConfiguration config = KnowledgeBaseFactory.newKnowledgeBaseConfiguration();config.setOption( EventProcessingOption.STREAM );等同配置系统属性:drools.eventProcessingMode = stream使用流(STREAM)模式,引擎有时间流和"现在"的概念(通过读取Session Clock的时间戳),提供了以下3种支持:(1) 滑动窗的支持(2) 自动的时间生命周期管理(3) 使用消极模式(Negative Patterns)自动的规则延迟3.会话时钟(Session Clock)在流模式(Stream mode)中的作用在云模式下,会话时钟只有一个作用,就是给插入到working momery 的事件赋予时间戳的值(如果规则没有定义时间戳属性)在流模式下,会话时钟负责维护当前时间戳,基于当前的时间戳,引擎根据事件的年龄计算所有时间运算,从多种源同步流,安排4.流模式(in Stream Mode)中的消极模式(Negative Patterns)消极模式在流模式和云模式意义是不同的。

专业英语

专业英语

Aaix-synnetric 轴对称axe axial axis axle 轴appears 像是along 沿着approximate 大约/表示为aid 帮助adjoining 临界annealing 退火angle of bite 咬合角arrangement 布局anvil 砧advance 向前移absorb 吸收alignment 对齐axle trunion socket 车桥头against 沿着/对着acquiring 获得afterwards 后来alloy 合金association 协会alcohol 酒精aspect 方面affect 影响acid pickling 酸洗acid 酸adsorb 吸收abrasion 磨损angular clearance 拔模斜度apportioned 成比例active 实际accommodate 适应applied to 施加air rent 出气孔article 物体allowance 余量arc 弧aspect 方面appearing 出现avaliable 找到Bbottom fuller 下砧bending 弯曲brass 黄铜brittle 脆Brinell 布氏backup roll 支承辊blast furnace 冲天炉furnace 熔炉blocking impression 预锻bloom 方坯billet 钢坯blow holes 气孔blacksmith 铁匠by means of 通过blow 冲击blacksmith's hearth 炉膛bolt 螺栓backward反挤压后移bracket 支架bench 拉拔机ball-bearing 球轴by far 迄今basis 基于blanking 下料blades 刀刃burnished 发亮band 带blank 坯料back gauge 后挡burr 毛刺bolster plate 支承板blank holder 防皱压板by virtue of 凭借/由于Ccorresponding relief 相应的浮雕collapsible 可折叠的characteristics 特性compensate 补偿configuration 形状数据curved 曲线counter bored沉孔centre lathe 车床clamping 夹持complexity 复杂度conform 符合comparable to 可与…相比cage 保持架carried out/carried 进行coining 冲制压印concern 关注clean break 完全断开cling 贴close together/close 紧密consumer good 消费品cavities 空腔crystal 晶粒certain 一定的complete 完全copper 青铜coalescence 合并continuously 连续的consequently 因而/同时constant 恒定的cross-section 截面compress 压components 工件channel section 槽型complex 复杂contact 接触cluster 组cropp 切掉 chill 急冷category 类别 configuration 外形crane hook 起重机钩子 closed impression die 闭合模concentrate 集中 consuming 消耗 crank 曲柄crank shaft 曲柄轴 connecting rod 连杆characterized by 有…特征 clean 清晰/完全corresponding punch 冲头 cold shut 冷隔/疤 crack 裂纹confining confined 制约/限制cylinder cylindrical 圆柱体/缸container 容器concentricity 同心的 compounded 复杂 can 易拉罐clearance 间隙/距离 castor 蓖麻commercial 商业的 cladding 覆盖 circular 圆形 conical 锥形 coiled 卷/卷曲 coppering 镀铜 coated 涂 coating 涂层commercially avaliable 市场上能买到的carriage 拖车支架 contour 轮廓Ddescribed earlier 之前说的 described 介绍 deformation 变形 drawing 拉深/拉拔 dense 致密displacement 位移 deform 形成desirable desired 想要的 ductility 塑性decarburization 脱碳dimensional accuracy 尺寸精度designated 定义为 diameter 直径 defect 缺陷drawing out 拉拔 drop forging 模锻 drop hammer 锻锤 draft angle 拔模斜度 deforming 成形 diverse 多样die shift 模具错位 disc 片dummy block 挤压垫 discarded 消失descends over 下降到 ductile 韧性/延展性/塑性 dry 干discrepancy 差异 diagram 图 die shoe 模座die land or cutting land 模口成形面/切割面 distribute 分配 die casting 压铸 disposition 分布 data 量dimples 浅窝decorative 装饰的Eextrusion 挤压 embossing 印花 elong 伸长 etching 腐蚀 entirely 完全 extent 程度 embedded 镶入essentially 本质上/基本上 eliminate 消除 etc 等等exact 精确的edging impression 辊压/粗锻equivalent 等量的 ejection 弹出exterior external 外部 excessive 过多的 extensively 广泛的 ejector pin 顶出杆 estimation 估计empirical relationships 经验公式expression 表达式 ethyl glycol 乙二醇 entrance 入口 elastically 弹性 either 任一edge 刃/棱角/边缘 extension 伸长 enlarged 扩大 enlargement 放大 expand 膨胀excess wrinkling of edge 边缘起皱excessively 过度的else 否则entire 整个engraved 雕刻Fforging 锻造fibre 纤维forming 模压/形成favourable 有利的friction 摩擦function 函数fix 安装/固定finishing stands 精轧机fullering 压槽锤击/砧flattening 压平fullering marks 压槽痕迹fullering impression 拔长flash loss 毛刺fillets 内圆角flash 飞边finishing impression 终锻frame 架fairly 相当flake 剥落fracture 裂纹forward 正挤压/向前fuel rod 燃料棒flexible 易弯的facilitate 利于ferrous hydroxide Fe(OH)3 filler 填充剂film 膜form 形式float 移动friable 脆further 进一步factors 因素formula 公式form block 成型模feasible 可行firmly 仅仅Ggrain 晶粒gear blank 齿轮毛坯grip 夹紧/夹头generation 产生graphite 石墨gap 间隙generated 生成grey cast 灰铁glycerine 甘油ground 压迫guide plate 定位板geometry 形状Hhence 因此handling 操作/装卸handle 取放/装卸hydraulic 液压hexagon 六边形halves 部分/半模housing 壳hold 放horizontal 水平heading 冲击houses 含有hollow 中空的housing pastes,liquids andsimilar articles盛放浆糊液体与类似的物品hole 孔hammering 弄尖hobbing 挤压制模handkerchief 手绢hold against 放在…旁边hydraulic cylinder 液压缸Iincrement 增量induce 引起impractical 不实际impurity 夹杂imparted 给予individual pieces 单件initial 开始ingot 铸锭inturn 反过来instead of 代替interest of 为了intermediate 中间的internal 内部industrial practice 工业实践incorporated 需要impression 压痕improper 不合适irregular depression 不规则凹坑intended 想要的identical 相似/类似impact 冲击i.e 也就是insulation 绝缘internal combustion engine内燃机isopentane 异戊烷inserted 镶入iron Feintermittently 间断inside diameter 内径introduced into 引入ironing 减径initiated 形成insufficient 不够increase 增加instantaneously 瞬时的Jjarred 冲击joint 接头jaw 钳口Llead 铅tin 锡lubrication 润滑lateral 侧向literature 文献legs 竖管lime 石灰low-cost 低成本less likely 不太可能likelihood 可能Mmetallurgy 冶金macroscopic scale 宏观尺度manipulation 操控minimum 最小的melting 熔化maintaining 维护mention 指明multiply 相乘mill 机machine 加工maintain 保持manufacture 加工move through 经历misalignment 未对齐molten 熔融motor 发动机mass 大批量mineral 矿物manganese Mgmandrel 芯棒modulus 模量metallic 金属的mechanically 机械magnitudes 大小/量级Nnature 本质negligible 忽略nucleating site 形核点neutral plane 中性面nonreversing 不可逆nonferrous 非铁neutralize 中和notching 冲槽nibbling 分段剪切necessitates 有必要negligible 可忽略的nomenclature 专业术语Ooptimum 最佳的orientation 方向/取向order 量/量级open dies 开口模over the fuller 在砧上opening 开口/腔observed 观察到over 大于/在上面oppose 抗otherwise 否则of the order of 达到…量级Ppermanent 永久polishing 磨光principle 原理passes 道次/工序planetary 行星practice 实践/经验perpendicular 垂直于parallel 平行press forging 压力锻pocket 凹槽preform 预成形parting plane 分型面post 柱子piece 工件present on 存在pickling 酸plate 板plunger 柱塞prevalent 普通particularly 特别profile 形状prepares a directly 直接制出presence 存在pull 拉phosphating 磷酸盐防锈处理liming 浸灰plate 盘pierced 穿plug mill 芯棒轧管机press tool 压力机possibly could not haveeven thought 很难不想到piercing 冲孔principal 主要plastically 塑性的parent strip 母带材penetration 贯穿padlock 挂锁provision 规定penetration of punch as a fraction 冲头深入量provision 准备/限制previous 以前Rre-entrant 凹角rupture 断裂right angle 90°relating to 相关于raised figure 凸起图形rigidity 固定religious 宗教rolling 轧rod 棒rate 速率recrystallization 再结晶rise to 引起reduce 减少reform 重组rotating 转roll roller 辊roughness 粗糙度reduction 压下量rough 粗rigidity 刚度reversing 可逆/转速reverse 反转remelting shop 熔炼车间rail 轨道radial 放射状ram 撞锤radii 半径register 得以refer 指remedial 补救rapid 快ratio 比relative 相对reactor 反应堆rotary swaging 旋锻rust 锈层runs 批量reference 参考repeatedly 反复地requisite 要求的radially 径向retainer 止动装置roll piercing 穿轧round 圆形release 释放relieve 释放/离开rather than 而不是resorted 求助于rounding 圆角return stroke 回程rigid 刚性rectangle 方形restraining 限制roller-type 滚筒式Sstock 块料/架severe 苛刻的/严重smith forging 自由锻swaging 模锻/挤锻/型锻shearing 剪切slug 小块spining旋压slip 滑移state 状态specimen 试样strain-free 无应变severest 最严重的schematically 图示scaling 起皮strain 形变since 由于shape 形状subsequently 随后set 一套shop floor 车间stand 机架serration 锯刺状物slab 厚板shrinkage cavities 缩孔slag 夹杂segregat 聚集semi-hard 中等硬度squeezing 挤压sledge 楔形succession 过程spread 延展somewhat 有些shaft 轴spindle 万向节壳shank 顶signifying 表明stationary gripper 静夹紧sequence 顺序scale pits 起皮坑spider die 异性模stationary 静止shock-absorber 减震器set-up 装置side wall 侧壁stroke 打击spark plug 火花塞stage 阶段solid ram 实心压头stub mandrel 芯子simulating 像separated 分开scale 氧化皮sulling 磺化sufficient 足够的subsequent 下一个successive 连续的sinking 减径拔管shaping 成型spindle 转轴seamless 无缝seam 缝scrap 边角料shaving 缺口/修剪stretch forming 拉延成形sizing 整形/精整spring back 回弹/翘边subjected 受strip 带stripper 脱模装置sharpening 修模square 方specified 特别/指定stripped 脱开shallow 浅spring-loaded 弹簧载荷spread flat展平subsequently 因而spring 弹性sufficiently 足够的Ttube 管twining 孪生term 定义thermal expansion 热胀till 直到table-tilting 倾斜tanden 一前一后tungsten carbide 碳化物trial-production 试制tolerance 公差tong hold 夹头tractor 牵引车toothpaste 牙膏tubular 管型termed 命名thicker 厚thin ribs 薄筋tungsten carbide WCtandem 串式table 工作台taper 斜度锥度thickness 厚度tapering slightly 逐渐变细tonnage 吨位toy 玩具trimming 修边tension 拉力theoretically 理论上trial-and-error 反复试验take into account 考虑tumbler 平底玻璃杯thinning 变薄tail 尾top layer 表层Uutilize 利用uniform 均匀upsetting 镦粗upset 顶锻uneconomical 不经济Vvoids 孔洞visible 可见的variables 变量velocity 速度vertically 垂直variation variants 变体valid 有效vehicle 剂vessels 容器Wwire drawing 拉丝worked 加工wrought 压力加工wastage 浪费work pieces 工件wagon 货车whereas 然而withdrawal 脱模wrench 扳手weak 脆弱weld 焊接withstand 承受wrinkle 皱wiping 插(出滑式)Yyield strength 屈服强度Zznic Zn。

isilon使用文档

isilon使用文档

EMC Isilon集群安装和使用文档EMC Isilon 集群安装和使用文档2012年4月11日目录1. Isilon 集群系统硬件安装方案 (5)1.1. Isilon 集群系统的硬件安装 (5)1.1.1.前面板和铰链的安装 (5)1.1.2.滑轨的安装 (7)1.2. Isilon 集群网络规划(4台X200存储节点) (9)1.3. Isilon 集群网络查看-预览每个节点IP (9)1.4.Isilon 文件共享规划 (10)2. Isilon集群的初始化安装 (12)2.1. Isilon 集群系统初始配置 (12)2.1.1. 创建一个Cluster (12)2.1.2. 查看和更改网络配置 (27)2.2. 软件license的安装与显示 (30)3. Isilon 集群管理 (32)3.1. 集群登陆 (32)3.2. 查看群集状态 (32)3.3. 保护级别的设置 (33)3.3.1. Disk pool保护级别 (33)3.3.2. 共享目录的保护级别 (34)3.4. DNS的设置 (35)3.4.1. Windows客户端 (37)3.4.2. Linux客户端 (38)3.5. 设置共享目录 (38)3.5.1. 新建共享目录 (38)3.5.2. SMB目录共享 (40)3.5.3. NFS目录共享 (41)3.6. 共享目录使用 (43)3.6.1. Windows用户使用范例 (43)3.6.2. Linux用户使用范例 (45)3.7. 添加新用户 (45)3.8. 添加新用户组 (49)3.9. 添加新节点 (49)4. 性能指标 (51)4.1. 客户连接的均衡性 (51)5. Isilon日常维护 (51)5.1. 更改Isilon的用户密码 (52)5.2. 查看集群和节点的状态 (52)5.3. 关闭存储设备 (52)5.3.1. 存储集群的关闭 (52)5.3.2. 存储节点的关闭 (53)5.4. 启动存储设备 (53)5.4.1. 存储集群开机 (53)5.4.2. 单个节点开机 (53)5.5. 磁盘的替换 (54)5.6. 替换电源 (57)5.7. 替换电池 (57)5.8. 长期断电电池电量不足的处理方法 (58)1. Isilon 集群系统硬件安装方案1.1. Isilon 集群系统的硬件安装1.1.1.前面板和铰链的安装安装左,右铰链支架到机器上将前面板和左右铰链支架用螺丝固定连接显示线缆和前面板的PC板安装硬盘1.1.2.滑轨的安装抽出滑轨最内侧的轨道将内侧滑轨安装到Isilon IQ节点上将导轨固定在机柜上安装Isilon IQ节点到滑轨上给Isilon IQ节点加电1.2. Isilon 集群网络规划(4台X200存储节点)1.3. Isilon 集群网络查看-预览每个节点IP系统网络配置完毕后,可通过WebUI来查看每个节点所拥有的IP地址。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Acquiring Configuration Knowledge Bases in theSemantic Web using UMLAlexander Felfernig,Gerhard Friedrich,Dietmar Jannach,Markus Stumptner,and Markus ZankerInstitut für Wirtschaftsinformatik und Anwendungssysteme,Produktionsinformatik,Universitätsstrasse65-67,A-9020Klagenfurt,Austria,email:{felfernig,friedrich,jannach,zanker}@ifit.uni-klu.ac.at.University of South Australia,Advanced Computing Research Centre,5095Mawson Lakes(Adelaide),SA,Australiaemail:mst@.au.Abstract.The Semantic Web will provide the conceptual infrastructure to al-low new forms of business application integration.This paper outlines our ap-proach for integrating Web-based sales systems for highly complex customizableproducts and services(configuration systems)making use of descriptive repre-sentation formalisms of the Semantic Web.The evolving trend towards highlyspecialized solution providers cooperatively offering configurable products andservices to their customers requires the extension of current(standalone)config-uration technology with capabilities of knowledge sharing and distributed config-uration problem solving.On the one hand,a standardized representation languageis needed in order to tackle the challenges imposed by heterogeneous represen-tation formalisms of state-of-the-art configuration environments(e.g.descriptionlogic or predicate logic based configurators),on the other hand it is importantto integrate the development and maintenance of configuration systems into in-dustrial software development processes.We show how to support both goalsby demonstrating the applicability of the Unified Modeling Language(UML)for configuration knowledge acquisition and by providing a set of rules for trans-forming UML models into configuration knowledge bases specified by languagessuch as OIL or DAML+OIL which represent the foundation for potential futuredescription standards for Web services.1IntroductionThere is an increasing demand for applications providing solutions for configuration tasks in various domains(e.g.telecommunications industry,automotive industry,or financial services)resulting in a set of corresponding configurator implementations(e.g. [2,11,13,22]).Informally,configuration can be seen as a special kind of design activity [16],where the configured product is built from a predefined set of component types and attributes,which are composed conforming to a set of corresponding constraints.Triggered by the trend towards highly specialized solution providers cooperatively offering configurable products and services,joint configuration by a set of business partners is becoming a key application of knowledge-based configuration systems.The configuration of virtual private networks(VPNs)[9]or the configuration of enterprisenetwork solutions are application examples for distributed configuration processes.In the EC-funded research project CAWICOMS1the paradigm of Web services is adopted to accomplish this form of business application integration[8].In order to realize a dynamic matchmaking between service requestors and service providers,configura-tion services are represented as Web services describing the capabilities of potentially cooperating configuration systems.Currently developed declarative languages(e.g., DAML-S2)for semantically describing the capabilities of a Web-service are based on DAML+OIL,that is why we show how the concepts needed for describing configura-tion knowledge can be represented using semantic markup languages such as OIL[10] or DAML+OIL[20].The Unified Modeling Language(UML)[15]is a widely adopted modeling language in industrial software development.Based on our experience in building configuration knowledge bases using UML[5],we show how to effectively support the construc-tion of Semantic Web configuration knowledge bases using UML as a knowledge ac-quisition frontend.The approach presented in this paper enhances the application of Software Engineering techniques to knowledge-based systems by providing a UML-based knowledge acquisition frontend for configuration systems.Vice versa,reasoning support for Semantic Web ontology languages can be exploited for checking the consis-tency of UML configuration models.The resulting configuration knowledge bases en-able knowledge interchange between heterogenous configuration environments as well as distributed configuration problem solving in different supply chain settings.The paper is organized as follows.In Section2we discuss the representative concepts for configuration knowledge bases and in Section3we give a description logic based definition of a configuration task as basis for the translation of UML configuration mod-els into a corresponding OIL-based representation.2Configuration knowledge representationKnowledge-based configuration systems build on a configuration model,that represents the generic product structure.The representations concepts for modeling generic prod-uct structures are defined in the de facto standard configuration ontologies[5,18]that are based on Ontolingua[12]and represent a synthesis of resource-based[13],function-based,connection-based[14],and structure-based[19]configuration approaches:–Component ponent types represent the basic building blocks afinal product can be built of.They are characterized by attributes.–Generalization ponent types with a similar structure are arranged in generalization hierarchies.–Part-whole relationships.Part-whole relationships between component types state the range of subparts an aggregate consists of.–Compatibilities and requirements.Some types of components must not be used together within the same configuration,i.e.they are incompatible.In other cases, 1CAWICOMS is the acronym for Customer-Adaptive Web Interface for the Configuration of products and services with Multiple Suppliers(EC-funded project IST-1999-10688).2See /services for reference.the existence of one component of a specific type requires the existence of another specific component within the configuration.–Resource constraints.Parts of a configuration task can be seen as a resource bal-ancing task,where some of the component types produce some resources and others are consumers.–Port connections.In some cases the product topology-i.e.,exactly how the com-ponents are interconnected-is of interest in thefinal configuration.The concept ofa port is used for this purpose.–Constraints.The basic structure of the product is modeled using the aforemen-tioned modeling concepts.In addition,constraints which are related to technical restrictions and economic factors can be expressed on the product model.In the Knowledge Acquisition Workbench of the CAWICOMS Project graphical repre-sentation concepts of the Unified Modeling Language(UML)[15]are used to allow the domain expert acquiring and maintaining the configuration models.In order to allow the refinement of the basic meta-model with domain-specific modeling concepts,UML provides the concept of profiles-the configuration domain specific modeling concepts are the constituting elements of a UML configuration profile which can be used for building configuration models.UML profiles can be compared with ontologies discussed in the AI literature.UML stereotypes are used to further classify UML meta-model elements(e.g.classes,as-sociations,dependencies).Stereotypes are the basic means to define domain-specific modeling concepts for profiles(e.g.for the configuration profile).3Translation of UML configuration models into OILIn the following we give a description logic based definition of a configuration task[6] and present some example rules to automatically translate UML configuration models into a corresponding OIL representation.The definition is based on a schema S=(, ,)of disjoint sets of names for concepts,roles,and individuals[3],whereis a disjunctive union of roles and features.Definition1(Configuration task):In general we assume a configuration task is de-scribed by a triple(,,).represents the domain description of the configurable product and specifies the particular system requirements defin-ing an individual configuration task prises a set of concepts and a set of roles which serve as a configuration lan-guage for the description of actual configurations.A configuration knowledge base=is constituted of sentences in a description language.In addition we require that roles in are defined over the domains given in ,i.e.=and=must hold for each role ,where.We impose this restriction in order to assure that a configuration result only contains individuals and relations with corre-sponding definitions in and.Based on this definition,a corresponding configuration result(solution)is defined as follows[6],where the semantics of description terms are given using an interpretation ,where is a domain of values and is a mapping from concept descriptions to subsets of and from role descriptions to sets of2-tuples over.Definition2(Valid configuration):Let be a model of a config-uration knowledge base,a configuration lan-guage,and a description of a configuration.is a set of tuples for every,whereis the set of individuals of concept.These individuals identify components in an actual configuration.is a set of tuples for every where is the set of tuples of role defining the relation of components in an actual configuration. The automatic derivation of an OIL-based configuration knowledge base requires a clear definition of the semantics of the used UML modeling concepts.The semantics of UML configuration models are given by a set of corresponding translation rules.The resulting knowledge base restricts the set of possible configurations,i.e.enumerates the possible instance models which strictly correspond to the UML class diagram defining the product structure.For obvious space restrictions only the translation rule for part-whole relationships is shown:Part-whole relationships are important model properties in the configuration domain. In[1,17,18]it is pointed out that part-whole relationships have quite variable semantics depending on the regarded application domain.In most configuration environments,a part-whole relationship is described by the two basic roles partof and haspart.In the following these two basic roles are introduced.Multiplicities used to describe a part-whole relationship denote how many parts the aggregate can consist of and between how many aggregates a part can be shared if the aggregation is non-composite.Rule(Part-whole relationships):Let and be component types in a graphical UML representation,where is a part of and is the upper bound,the lower bound of the multiplicity of the part,and is the upper bound,the lower bound of the multiplicity of the whole.Furthermore let w-of-p and p-of-w denote the names of the roles of the part-whole relationship between and,where w-of-p denotes the role connecting the part with the whole and p-of-w denotes the role connecting the whole with the part,i.e.,p-of-w,w-of-p,where.The roles and are as-sumed to be disjoint,where and.is extended withclass-def.class-def.slot-def w-of-p subslot-of inverse p-of-w domain rangeslot-def p-of-w subslot-of haspart inverse w-of-p domain range:slot-constraint w-of-p min-cardinality.:slot-constraint w-of-p max-cardinality.:slot-constraint p-of-w min-cardinality.:slot-constraint p-of-w max-cardinality.Remark:The semantics of shared part-whole relationships() are defined by simply restricting the upper bound and the lower bound of the corre-sponding roles.In addition the following restriction must hold for each concept using partof relationships:(((slot-constraint cardinality1top)and(slot-constraint cardinality0top))or(slot-constraint cardinality0top)).This restriction denotes the fact that a component which is connected to a whole via composite relationship must not be connected to any other component.For further details,an example and the complete set of translation rules see the long version of this paper[7].4ConclusionsThe application of the modeling concepts presented in this paper has its limits when building configuration knowledge bases-in some domains there exist complex con-straints that do not have an intuitive graphical representation.Happily,(with some mi-nor restrictions discussed in[6])we are able to represent such constraints using lan-guages such as OIL or DAML+OIL.UML itself has an integrated constraint language (Object Constraint Language-OCL[21])which allows the formulation of constraints on object structures.The translation of OCL constraints into representations of Seman-tic Web ontology languages is the subject of future work,a translation into a predicate logic based representation of a configuration problem has already been discussed in[4]. The current version of our prototype workbench supports the generation of OIL-based configuration knowledge bases from UML models which are built using the modeling concepts presented in this paper,i.e.concepts for designing the product structure and concepts for defining basic constraints(e.g.requires)on the product structure.References1. A.Artale,E.Franconi,N.Guarino,and L.Pazzi.Part-Whole Relations in Object-CenteredSystems:An Overview.Data&Knowledge Engineering,20(3):347–383,1996.2.V.E.Barker,D.E.O’Connor,J.D.Bachant,and E.Soloway.Expert systems for configurationat Digital:XCON and munications of the ACM,32(3):298–318,1989.3. A.Borgida.On the relative expressive power of description logics and predicate calculus.Artificial Intelligence,82:353–367,1996.4. A.Felfernig,G.Friedrich,and D.Jannach.Generating product configuration knowledgebases from precise domain extended UML models.In Proceedings of the International Conference on Software Engineering and Knowledge Engineering(SEKE’2000),pages284–293,Chicago,USA,2000.5. A.Felfernig,G.Friedrich,and D.Jannach.UML as domain specific language for the con-struction of knowledge-based configuration systems.International Journal of Software En-gineering and Knowledge Engineering(IJSEKE),10(4):449–469,2000.6. A.Felfernig,G.Friedrich,D.Jannach,M.Stumptner,and M.Zanker.A Joint Foundationfor Configuration in the Semantic Web.Proceedings of the Workshop on Configuration (ECAI’2002),2001.7. A.Felfernig,G.Friedrich,D.Jannach,M.Stumptner,and M.Zanker.Transforming UMLdomain descriptions into Configuration Knowledge Bases for the Semantic Web.Lyon, France,2002.8. A.Felfernig,G.Friedrich,D.Jannach,and M.Zanker.Semantic Configuration Web Servicesin the CAWICOMS Project.Sardinia,Italy,2002.9. A.Felfernig,G.Friedrich,D.Jannach,and M.Zanker.Web-based Configuration of Vir-tual Private Networks with Multiple Suppliers.Cambridge,UK,2002.Kluwer Academic Publisher.10. D.Fensel,F.vanHarmelen,I.Horrocks,D.McGuinness,and P.F.Patel-Schneider.OIL:AnOntology Infrastructure for the Semantic Web.IEEE Intelligent Systems,16(2):38–45,2001.11.G.Fleischanderl,G.Friedrich,A.Haselböck,H.Schreiner,and M.Stumptner.Config-uring Large Systems Using Generative Constraint Satisfaction.IEEE Intelligent Systems, 13(4):59–68,1998.12.T.Gruber.Ontolingua:A mechanism to support portable ontologies.Technical Report KSL91-66,1992.13. E.W.Jüngst M.Heinrich.A resource-based paradigm for the configuring of technical sys-tems from modular components.In Proceedings of the IEEE Conference on AI applcia-tions(CAIA),pages257–264,Miami,FL,USA,1991.14.S.Mittal and F.Frayman.Towards a Generic Model of Configuration Tasks.In ProceedingsInternational Joint Conf.on Artificial Intelligence,pages1395–1401,Detroit,MI,1989.15.J.Rumbaugh,I.Jacobson,and G.Booch.The Unified Modeling Language Reference Man-ual.Addison-Wesley,1998.16. D.Sabin and R.Weigel.Product Configuration Frameworks-A Survey.In B.Faltings andE.Freuder,editors,IEEE Intelligent Systems,Special Issue on Configuration,volume13,pages50–58.IEEE,1998.17.U.Sattler.Description Logics for the Representation of Aggregated Objects.In Proceedingsof the European Conference on Artificial Intelligence(ECAI2000),pages239–243, Berlin,Germany,2000.18.T.Soininen,J.Tiihonen,T.Männistö,and R.Sulonen.Towards a General Ontology ofConfiguration.AI Engineering Design Analysis and Manufacturing Journal,Special Issue: Configuration Design,12(4):357–372,1998.19.M.Stumptner.An overview of knowledge-based configuration.AI Communications,10(2),June,1997.20. F.vanHarmelen,P.F.Patel-Schneider,and I.Horrocks.A Model-Theoretic Semantics forDAML+,March2001.21.J.Warmer and A.Kleppe.The Object Constraint Language-Precise Modeling with UML.Addison Wesley Object Technology Series,1999.22.J.R.Wright,E.Weixelbaum,G.T.Vesonder,K.E.Brown,S.R.Palmer,J.I.Berman,and H.H.Moore.A Knowledge-Based Configurator that supports Sales,Engineering,and Manufac-turing at AT&T Network Systems.AI Magazine,14(3):69–80,1993.。

相关文档
最新文档