教案(理论力学C 60学时)第14章 达朗伯原理
《理论力学》第十四章达朗伯原理(动静法)

D d
C
mg FN
货物不滑的条件:F≤ f FN , a ≤ f g 货物不翻的条件:d ≤ b/2 , a ≤ bg/h
为了安全运送货物,应取两者中的小者作为小车的amax。
例 题7
已知:AB杆质量为m ,长为l=2r ,
r O
A
l
B
圆盘半径为r ,角速度为,角加速度为 。 求:A 端的约束反力。
FR
MIC
C
aC
FR maC M C J C
例 题5
已知:m , h , , l。
B
D
h
求:A、D处约束反力。
a
解: 取 AB 杆为研究对象
A
Fx 0 FAx F FN sin 0 Fy 0 FAy mg FN cos 0
C
n FR maC m(aC aC )
O
MIC
FR
M C J C
3、刚体作平面运动
具有质量对称平面的刚体作平面运动,并且运动平面与质量对 称平面互相平行。对于这种情形,先将刚体的空间惯性力系向质 量对称平面内简化,得到这一平面内的平面惯性力系,然后再对 平面惯性力系作进一步简化。
R
O
n FR
MIO
F R
(2)将惯性力系向质心C简化。
FR maC 2mr
n n FR maC 2mr 2
MA
A
FAy
MIC
C B
FAx
M C
1 2 J C mr 3
n FR
mg
FR
n Fx 0 FAx ( FR F ) cos 45 0 R n Fy 0 FAy mg ( FR FR ) cos 45 0 n M A( F ) 0 M A mgr ( FR F ) cos 45 r M C 0 R
理论力学第十四章 达朗贝尔原理与动静法 教学PPT

mO (Fi ) mO (Ni ) mO (Qi ) 0
质点系达朗贝尔原理
Fi Ni Qi 0 mO (Fi ) mO (Ni ) mO (Qi ) 0
上式表明,在任意瞬时,作用于质点系的主动力、约束力和该点 的惯性力所构成力系的主矢等于零,该力系对任一点O的主矩也等于 零。
达朗贝尔原理一方面广泛应用于刚体动力学求解 动约束力;另一方面又普遍应用于弹性杆件求解 动应力。
工程实例
工程实例
爆破时烟囱怎样倒塌
工程实例
爆破时烟囱怎样倒塌
达郎贝尔原理
质点达朗贝尔原理
设质量为m的非自由质点M,在主动 力F和约束力N作用下沿曲线运动,
该质点的动力学基本方程为
N B
ma F N
考虑到式上式中的求和可以对质点系中任何一部分进行,而不限于 对整个质点系,因此,该式并不表示仅有6个平衡方程,而是共有3n个 独立的平衡方程。同时注意,在求和过程中所有内力都将自动消去。
达朗贝尔原理提供了按静力学平衡方程的形式给出质点系动力学 方程的方法,这种方法称为动静法。这些方程也称为动态平衡方程。
这表明,在质点系运动的任一瞬时,作用于每一质 点上的主动力、约束力和该质点的惯性力在形式上构成一 平衡力系。
这就是质点系的达朗贝尔原理。
质点系达朗贝尔原理
Fi Ni Qi 0
对于所讨论的质点系,有n个形式如上式的平衡方程, 即有n个形式上的平衡力系。将其中任何几个平衡力系合在 一起,所构成的任意力系仍然是平衡力系。根据静力学中 空间任意力系的平衡条件,有
Mac Mrc Macn Mrc 2
显然,当质心C在转轴上时,刚 体的惯性力主矢必为零。
z
RQn
理论力学第十四章 达朗伯原理讲解

FT1=FT1
cos m1 m2 g m1l 2
§14-2 质点系的动静法
F1
Fg1
m1
a1
FN1 FNi
mi
Fg2
FN2
Fgi
m2
ai Fi
F2
a2
质点系的主动力系
F1 ,F2 ,,Fi ,,Fn 质点系的约束力系 FN1 , FN2 ,,FNi ,, FNn 质点系的惯性力系
Fg1, Fg2 ,, Fgi ,, Fgn
刚体的惯性力为面积力,组成平面力系。
对于一般问题,刚体的惯性力为体积力, 组成空间一般力系。
§14-3 刚体惯性力系的简化 刚体惯性力系简化结果- 主矢与主矩 惯性力系的主矢
FgR = Fgi= (-mi ai )=-m aC
i
i
惯性力系的主矢等于刚体的质量与刚体质心 加速度的乘积,方向与质心加速度方向相反。 这一简化结果与运动形式无关。
i
i
i
§14-3 刚体惯性力系的简化
刚体惯性力系特点 刚体惯性力系简化结果
—— 主矢与主矩 刚体惯性力系主矢与主矩与动量
和动量矩之间的关系
§14-3 刚体惯性力系的简化 刚体惯性力系特点
刚体惯性力的分布与刚体的质量分布以及 刚体上各点的绝对加速度有关。
Fgi=- 对于平面问题m(或ia者i 可以简化为平面问题),
§14-3 刚体惯性力系的力系的主矩 —— 惯性力系的主矩与刚体的 运动形式有关。
3、平面运动
具有质量对称平面的刚体作平面运动,并且运动平 面与质量对称平面互相平行。对于这种情形,先将刚 体的空间惯性力系向质量对称平面内简化,得到这一 平面内的平面惯性力系,然后再对平面惯性力系作进 一步简化。
理论力学第十四章达朗贝尔原理(动静法)课件

动静法的物理意义
物理背景
实际应用
达朗贝尔原理反映了牛顿第二定律在 静力学中的应用,通过引入惯性力, 将动力学因素考虑到平衡问题中。
在工程实际中,达朗贝尔原理广泛应 用于分析高速旋转的机械、振动系统 以及瞬态动力学问题。
意义阐述
通过动静法,我们可以分析在某一瞬 时,运动系统由于惯性作用而产生的 力,从而更准确地描述系统的平衡条 件。
03
在应用动静法时,要确 保惯性力与主动力相平 衡,避免出现误差。
04
在求解方程时,要注意 解的物理意义和实际情 况是否相符。
04
CATALOGUE
达朗贝尔原理的应用实例
简单实例解析
总结词
通过一个简单的实例,介绍达朗 贝尔原理的基本应用。
详细描述
以一个单摆为例,运用达朗贝尔 原理分析其运动状态,通过对比 理论计算和实验结果,验证达朗 贝尔原理的正确性。
具体推导过程
在受力分析的基础上,列出系统的平 衡方程。
解出未知数,得到系统的运动状态。
将动静法应用于平衡方程,将惯性力 与主动力相平衡。具体来说,就是在 平衡方程中加入惯性力项,使得该力 与主动力相平衡。
推导过程中的注意事项
01
确定研究对象和系统时 要明确,避免出现混淆 。
02
在建立平衡方程时,要 确保所有力的方向和大 小都正确。
理论力学第十四章 达朗贝尔原理(动静 法)课件
contents
目录
• 达朗贝尔原理概述 • 达朗贝尔原理的基本概念 • 达朗贝尔原理的推导过程 • 达朗贝尔原理的应用实例 • 达朗贝尔原理的扩展与深化
01
CATALOGUE
达朗贝尔原理概述
达朗贝尔原理的定义
014第十四章达朗伯原理

第14章 达朗伯原理(动静法)§14-1 达朗伯原理例 1. 质量10kg m =的物块A 沿与铅垂面夹角060θ=的悬臂梁下滑,如图所示。
不计梁的自重,并忽略物块的尺寸,试求当物块下滑至距固定端O 的距离0.6m l =,加速度22m/s a =时固定端O 的约束反力。
解:取物块和悬臂梁一起为研究对象,受有主动力W ,固定端O 处的反力Ox F 、Oy F 及O M 。
施加惯性力g F 如图所示,g F ma =,方向与a图14-3相反,加在物块上。
根据达朗伯原理,列形式上的平衡方程0 sin 00 cos 0()0 sin 0Ox g Oy g O iO X F F Y F W F m F M Wl θθθ⎧=-=⎪=-+=⎨⎪=-=⎩∑∑∑可解得sin 17.32N Ox g F F θ== cos 88N Oy g F W F θ=-= sin 50.92N m O M Wl θ==⋅从本例可见,应用质点达朗伯原理求解时,在受力图上惯性力的方向要与加速度方向相反,惯性力的大小为g F ma =,不带负号。
例1.如图所示,物块A 、B 的重量均为W ,系在绳子的两端,滑轮的半径为R ,不计绳重及滑轮重,斜面光滑,斜面的倾角为θ,试求物块A 下降的加速度及轴承O 处的约束反力。
图14-4解:先取物块B 为研究对象,所受的外力为绳索的拉力T 、重力W、光滑斜面的约束反力B N ,虚加的惯性力为gB F ,如图所示。
取图所示坐标系,根据质点达朗伯原理,可列出平衡方程为 0Y '=∑ cos 0BNW θ-=可得c o s B N W θ=再取物块A 、B 及滑轮和绳索所组成的系统为研究对象。
质点系的外力有两个物块的重力W ,轴承O 的约束反力O X 和O Y ,及光滑斜面的约束反力B N 。
虚加上惯性力gA F 和gB F ,如图所示。
惯性力的大小为gA gB WF F a g==。
理论力学经典课件达朗伯原理

该原理最初是为了解释物体运动 中的惯性力和主动力之间的关系 ,后来被广泛应用于理论力学和 工程学领域。
达朗伯原理的基本概念
达朗伯原理指出,在一个动力学系统 中,对于任何一个质点,其受到的合 外力等于零,即惯性力与主动力之和 为零。
这意味着在考虑物体运动时,只需要 考虑主动力,而惯性力则会自动平衡 掉。
02
达朗伯原理的数学表达
动力学方程的建立
牛顿第二定律
在经典力学中,物体的加速度与 作用力成正比,与物体的质量成 反比。
动力学方程
根据牛顿第二定律,可以建立物 体运动的动力学方程,描述物体 的速度、加速度和作用力之间的 关系。
惯性力和非惯性力的关系
惯性力
在非惯性参考系中,为了保持牛顿运 动定律的形式不变,引入了惯性力的 概念。
详细描述
达朗伯原理指出,在考虑重力、空气阻力和其他外力的情况 下,单摆的运动方程可以由牛顿第二定律和达朗伯原理推导 出来。通过分析,可以得出单摆的周期和振幅与外力之间的 关系。
刚体的平面运动分析
总结词
利用达朗伯原理,可以对刚体在平面内的运动进行动力学分析。
详细描述
在刚体平面运动的分析中,达朗伯原理可以帮助我们建立刚体的运动方程。通过 分析,可以得出刚体的速度、加速度以及作用在刚体上的力和力矩之间的关系。
达朗伯原理的应用范围
达朗伯原理在理论力学中有着广泛的应用,特别是在分析动力学系统和 振动问题时。
它可以帮助我们理解和分析物体的运动规律,例如在研究行星运动、机 械振动、弹性力学等领域中都有重要应用。
此外,达朗伯原理还可以应用于工程学领域,例如在结构设计、机械振 动控制等方面。通过应用达朗伯原理,我们可以更好地理解和预测物体 的运动行为,从而优化设计、提高系统的稳定性和可靠性。
理论力学第十四章达朗伯原理new

这表明,在质点系运动的任一瞬时,作用于每一质点 上的主动力、约束力和该质点的惯性力在形式上构成一平 衡力系。
这就是质点系的达朗贝尔原理。
理论力学第十四章达朗伯 原理new
质点系达朗伯原理
Fi FNi Fgi 0 i 1,2,,n
对于所讨论的质点系,有n个形式如上式的平衡方程, 即有n个形式上的平衡力系。将其中任何几个平衡力系合在 一起,所构成的任意力系仍然是平衡力系。根据静力学中 空间任意力系的平衡条件,有
考虑到上式中的求和可以对质点系中任何一部分进行,而不限于 对整个质点系,因此,该式并不表示仅有6个平衡方程,而是共有3n个 独立的平衡方程。同时注意,在求和过程中所有内力都将自动消去。
达朗贝尔原理提供了按静力学平衡方程的形式给出质点系动力学 方程的方法,这种方法称为动静法。这些方程也称为动态平衡方程。
理论力学第十四章达朗伯 原理new
质点达朗伯原理
F FN Fg 0 质点达朗贝尔原理的投影形式
Fx FNx Fgx 0 Fy FNy Fgy 0 Fz FNz Fgz 0
理论力学第十四章达朗伯 原理new
二、质点系达朗伯原理
上述质点的达朗贝尔原理可以直接推广到质点系。将 达朗贝尔原理应用于每个质点,得到n个矢量平衡方程。
0 π
F2
D2 4
A 2 sin
π 2
sin
0
D2 4
A 2
Av2
2
Fy 0 : dFg sin F1 0
0
F1
D2 4
A2
cos
π 2
cos 0
D2 4
A 2
Av2
理论力学第十四章达朗伯
14达朗伯原理

v2 T man m l
v R O FT
M an
M 绳
FT'
图14.2 小球作圆周运动
14.4
第14章 达朗伯原理
14.1 惯性力的概念
同时,小球对绳子必作用有一反作用力,这个力就是小球的惯性力,它 是由于小球的惯性运动遭到破坏而表现出其惯性的力,若没有绳子拉住小球, 它将沿切线方向作匀速直线运动。显然,小球的惯性力 。 FT man 综上所述,可将惯性力概括如下:质点惯性力的大小等于质点的质量与 加速度的乘积,方向与加速度的方向相反,它不作用于运动质点本身,而是 质点作用于周围施力物体上的力。用统一符号FⅠ来表示惯性力,即惯性力
ma F FN
或 令 则有
(14.1) (14.2) (14.3)
FI M F a FN FR
F + FN ma 0
FI ma
F FN FI 0
上式在形式上是力系的平衡方程。实际上质 点并没有受到惯性力FⅠ的作用,它也不处于平 衡状态,即“平衡力系”并不存在,但当质点上 假想地加上惯性力后,则作用于质点的主动力F、 约束反力FN和惯性力FⅠ就构成一个假想的平衡 力系。
F ma
F' F
a
图14.1 用手推车
14.3
第14章 达朗伯原理
14.1 惯性力的概念
同时,车对工人的手作用一反作用力F‘,根据作用力与反作用力的关 系有
F F ma
这个反作用力F' 就是小车的惯性力。 再如图14.2所示,用绳的一端系住质量为m的小球,另一端固结于光滑 水平平台的O点,让小球在平台上作圆周运动。设绳长为l,在绳子拉力FT 的作用下,小球以速度v在水平面内作匀速圆周运动,则有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§14-3刚体惯性力系的简化
1.刚体作平动
2.刚体定轴转动
3.刚体作平面运动
§14-4绕定轴转动刚体的轴承动反力
说明:带*的章节为扩充内容,可选讲,要求学生了解。
教学
重点
与
难点
重点:惯性力的概念及计算,刚体惯性力系的简化,达朗伯原理的应用,*动反力的计算
难点:刚体惯性力系的简化,达朗伯原理的应用
讨论练习作业
惯性力的计算、刚体惯性力系的简化及达朗波原理的应用
作业:14-1、3、5、6、8、10、12;16
教学手段
教师讲授主要知识点;通过课堂提问使学生对重点内容和难点进行积极主动思考;并通过讲解例题的方式,让学生掌握重点内容和知识点及其应用。课后布置相关习题让学生温习课堂所学内容。
参考资料
1、理论力学胡文绩编华中科技大学出版社
2、理论力学(第六版)哈工大编高等教育出版社
3、理论力学(第二版)南京工学院、西安交通大学编高等教育出版社
4、理论力学(第四版)清华大学理论力学教研组高等教育出版社
具体
内容
§14-1惯性力·质点的达朗贝尔原理
1.质点惯性力系的概念和计算
2.质点达朗贝尔原理
西华大学教案
章节
名称
第十四章达朗伯原理
教学时数
4学时
授课
方式
教师讲授、课堂讨论、习题讲解相结合,黑板与多媒体相结合。
教学目的及
要求
通过引入虚加惯性力之后,用静力学中研究平衡问题的方法来研究动力学问题
要求熟练掌握质点及质点系的惯性力概念及计算、刚体惯性力系的简化以及达朗伯原理的应用,掌握绕定轴转动刚体的轴承动反力。