圆的方程知识点总结和典型例题
高中 平面解析几何圆的方程 知识点+例题

辅导讲义――圆的方程题型四:与圆有关的轨迹问题[例] 自圆x 2+y 2=4上的点A (2,0)引此圆的弦AB ,求弦AB 的中点轨迹方程.设AB 的中点P (x ,y ),B (x 1,y 1),则有x 12+y 12=4,且x =x 1+22,y =y 1+02. ∴x 1=2x -2,y 1=2y .∴(2x -2)2+(2y )2=4,即(x -1)2+y 2=1.当A ,B 重合时,P 与A 点重合,不合题意,∴所求轨迹方程为(x -1)2+y 2=1(x ≠2).[巩固1]设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹.如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3y 0=y -4. N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285(点P 在直线OM 上的情况). [巩固2] (2014·课标全国Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,求M 的轨迹方程.圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.题型五:圆的对称问题1. 自对称[例]已知点A 是圆C :030422=++++y ax y x 上任意一点,A 关于直线x+2y-1=0的对称点也在圆C 上,则实数a 的值是___-10________.[巩固]若直线y=kx 与圆1)1(22=+-y x 的两个交点关于直线x-y+b=0对称,则k=__-1_____;b=__-1________.2.互对称[例]已知圆C 1:1)1()1(22=-++y x ,圆C 2与圆C 1关于直线x-y-1=0对称,则圆C 2的方程是________________. 1)2()2(22=++-y x[巩固] 022=++++c by ax y x 与圆122=+y x 关于直线y=2x-1对称,则a+b=_______________. 54- 题型六:圆的实际应用[例]如图所示,一座圆形拱桥,当水面在如图所示位置时,拱顶离水面2 m ,水面宽12 m ,当水面下降1 m 后,水面宽多少米?以圆拱顶为坐标原点,以过拱顶点的垂线为y 轴,建立如图所示的直角坐标系,设圆心为C ,水面所在弦的端点为A ,B ,则由已知得A (6,-2).设圆的半径为r ,则C (0,-r ),即圆的方程为x 2+(y +r )2=r 2.①将点A 的坐标(6,-2)代入方程①,解得r =10,∴圆的方程x 2+(y +10)2=100.②当水面下降1 m 后,可设点A ′的坐标为(x 0,-3)(x 0>0),代入方程②,求得x 0=51.即水面下降1 m 后,水面宽为2x 0=251≈14.28 m.[巩固]如图,森林的边界是直线L,兔子和狼分别在L的垂线AC上的点A和点B处(AB=BC=a),现兔子沿线AD 以速度2v准备越过L向森林逃跑,同时狼沿线BM(点M在AD上)以速度v进行追击,若狼比兔子先到或同时到达点M处,狼就会吃掉兔子.求兔子的所有不幸点(即可能被狼吃掉的地方)组成的区域的面积S.1.方程x2+y2-2x+2y+a=0表示圆,则a的取值范围是____________.方程x2+y2-2x+2y+a=0表示一个圆,则(-2)2+22-4a>0,∴a<2,2.点P(2,-1)为圆(x-1)2+y2=25内弦AB的中点,则AB的方程为_______________.由题意可知圆心Q(1,0),故k PQ=-1.∴k AB=1,∴AB的方程为y+1=1×(x-2).即x-y-3=0.3.已知点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积的最小值是________.圆的标准方程为(x-1)2+y2=1.直线AB的方程为x-y+2=0,圆心(1,0)到直线AB的距离d=|1-0+2|2=322.则点C到直线AB的最短距离为322-1.又|AB|=2 2.夯实基础训练∴S △ABC 的最小值为12×22×⎝⎛⎭⎫322-1=3- 2.4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是_______________.设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+42y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4中得(x -2)2+(y +1)2=1.5.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为___________. 由题意知圆心C (2,1)在直线ax +2by -2=0上,∴2a +2b -2=0,整理得a +b =1,∴1a +2b =(1a +2b )(a +b )=3+b a +2a b≥3+2 b a ×2a b=3+22, 当且仅当b a =2a b,即b =2-2,a =2-1时,等号成立. ∴1a +2b的最小值为3+2 2. 6.(2013·江西)若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是__________________.(x -2)2+⎝⎛⎭⎫y +322=254解析 如图,设圆心坐标为(2,y 0),则⎩⎪⎨⎪⎧y 20+4=r 2,|1-y 0|=r , 解得y 0=-32,r =52, ∴圆C 的方程为(x -2)2+⎝⎛⎭⎫y +322=254.7.若方程x 2+y 2-2x +2my +2m 2-6m +9=0表示圆,则m 的取值范围是________;当半径最大时,圆的方程为_______. ∵原方程可化为(x -1)2+(y +m )2=-m 2+6m -8,∴r 2=-m 2+6m -8=-(m -2)(m -4)>0,∴2<m <4.当m =3时,r 最大为1,圆的方程为(x -1)2+(y +3)2=1.8.已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________.∵圆的方程可化为(x +1)2+(y -2)2=5-a ,∴其圆心为(-1,2),且5-a >0,即a <5.答案 π2解析 作出可行域D 及圆x 2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求.易知图中两直线的斜率分别为12、-13,得tan α=12,tan β=-13, tan θ=tan(α-β)=12+131-12×13=1, 得θ=π4,得弧长l =θ·R =π4×2=π2(R 为圆的半径).14.(2013·课标全国Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. (1)设P (x ,y ),圆P 的半径为r .则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴P 点的轨迹方程为y 2-x 2=1.(2)设P 的坐标为(x 0,y 0),则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1得(x 0+1)2-x 20=1. ∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3. ∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3. ∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.15.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点,已知|AB |=2|OA |,且点B 的纵坐标大于0.(1)求AB →的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程.(1)设AB →=(x ,y ),由|AB |=2|OA |,AB →·OA →=0,得⎩⎪⎨⎪⎧ x 2+y 2=100,4x -3y =0,解得⎩⎪⎨⎪⎧ x =6,y =8或⎩⎪⎨⎪⎧x =-6,y =-8.。
高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
圆的方程数学知识点与练习

圆的方程●圆的方程的三种形式 (1)圆的标准方程(x-a)2+(y-b)2=r 2,方程表示圆心为(a,b),半径为r 的圆. (2)圆的一般方程对于方程x 2+y 2+Dx+Ey+F=0①当D 2+E 2-4F >0时,表示圆心为(-D 2,-E 2),半径为12②当D 2+E 2-4F=0时,表示一个点(-D 2,-E2);③当D 2+E 2-4F <0时,它不表示任何图形.(3)圆的参数方程x a rcos ,y b rsin θθ=+⎧⎨=+⎩,圆心(a,b ),半径r >0,θ∈R. ●点与圆的位置关系圆的标准方程(x-a )2+(y-b)2=r 2,圆心A (a,b ),半径r ,若点M (x 0,y 0)在圆上,则(x 0-a)2+(y 0-b)2=r 2; 若点M (x 0,y 0)在圆外,则(x 0-a)2+(y 0-b)2>r 2; 若点M (x 0,y 0)在圆内,则(x 0-a)2+(y 0-b)2<r 2. ●确定圆的方程的方法(1)确定圆的方程的主要方法是待定系数法.如果选择标准方程,一般步骤为: ①根据题意,设所求圆的标准方程为(x-a )2+(y-b)2=r 2; ②根据已知条件,建立关于a 、b 、r 的方程组;③解方程组,并把它们代入所设的方程中,整理后,就得到所求方程. 求圆的标准方程时,尽量利用圆的几何性质,可以大大地减少计算量. (2)如果已知条件中圆心的位置不能确定,可考虑选择圆的一般方程,圆的一般方程也含有三个独立的参数,因此,必须具备三个独立的条件,才能确定圆的一般方程,其方法仍采用待定系数法.设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由三个条件得到关于D 、E 、F 的一个三元一次方程组,解方程组,求出参数D 、E 、F 的值即可.(3)以A (x 1,y 1),B(x 2,y 2)为直径的两端点的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0. (4)在求圆的方程时,常用到圆的以下几个性质: ①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线. ●与圆有关的最值问题(1)求与圆有关的最值问题多采用几何法,就是利用一些代 数式的几何意义进行转化.如①形如m=y bx a--的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by 的最值问题,可转化为直线在y 轴上的截距的最值问题;③形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间的距离平方的最值问题. (2)特别要记住下面两个代数式的几何意义:yx表示点(x,y )与原点(0,0)连线的直线斜率表示点(x,y )与原点的距离. 1.方程x 2+y 2+4mx-2y+5m=0表示圆的充要条件是( )A.14<m<1 B.m>1 C.m<14D.m<14或m>1解析:若方程表示圆,则(4m)2+(-2)2-4×5m>0,解得m<14或m>1.答案:D2.若点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则a的取值范围是( )A.|a|B.|a|<1C.|a|D.|a|≤1解析:点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则(4a-1+1)2+(3a+2-2)2≤25,即|a|≤1. 答案:D3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为( )A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5解析:圆(x+2)2+y2=5的圆心(-2,0)关于y=x对称的点的坐标为(0,-2),所以,所求圆的方程是x2+(y+2)2=5.答案:D4.已知x、y满足x2+y2-4x-6y+12=0,则x2+y2的最小值为__________.解析:点(x,y)在圆(x-2)2+(y-3)2=1上,故点(x,y)到原点距离的平方即x2+y2的最小值为2答案:5.已知圆x2+y2+kx+2y=-k2,当该圆的面积取最大值时,圆心坐标为__________.答案:(0,-1)自我诊断①若圆x2+y2+(a2-1)x+2ay-a=0关于直线x-y+1=0对称,则实数a的值为__________.答案:3自我诊断②以点A(-3,0),B(0,-3),C(157,247)为顶点的三角形与圆x2+y2=R2(R>0)没有公共点,则圆半径R的取值范围是())∪,+∞) B.( ) )∪(3,+∞)D.(,3)2解析:如图,若圆与△ABC没有公共点,需考虑两种情况,①圆在三角形内部;②圆在三角形外部.当圆在三角形内部时,圆与BC;当圆在三角形外部时,圆过点C,所以选A.答案:A题型一圆的方程的求法【例1】根据下列条件求圆的方程:(1)经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上;(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(3)过三点A(1,12),B(7,10),C(-9,2).规律方法:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质而求出圆的基本量;(2)代数法,即设出圆的方程,用待定系数法求解. 创新预测1根据下列条件求圆的方程:(1)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为(2,圆心在直线y=2x上,圆被直线x-y=0截得的弦长为题型二与圆有关的最值问题【例2】已知实数x、y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.规律方法:化x、y满足的关系式为(x-2)2+y2=3,明确yx、y-x、x2+y2的几何意义,数形结合求解.创新预测2已知实数x、y满足方程x2+y2-4x+1=0.(1)求y2x1++的最大值和最小值.(2)求x-2y的最大值和最小值.(3)求点P(x,y)到直线3x+4y+12=0的距离的最大值和最小值.题型三与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.\规律方法:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法,直接根据题目提供的条件列出方程;定义法,根据圆、直线等定义列方程;几何法,利用圆与圆的几何性质列方程;代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.创新预测3 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求PQ中点的轨迹方程.题型四与圆有关的实际应用问题【例4】有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每千米的运费是B地每千米运费的3倍.已知A、B两地距离为10 km,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低.求P地居民选择A地或B地购货总费用相等时,点P所在曲线的形状,并指出曲线上、曲线内、曲线外的居民应如何选择购物地点.规律方法:审清题意,根据题意求轨迹方程.求方程前必须建立平面直角坐标系,否则曲线就不能转化为方程,坐标系选取得当,可使运算过程简单,所得方程也较简单.创新预测4 设有一个半径为3 km的圆形村落,A、B两人同时从村落中心出发,A向东而B向北前进.A出村后不久,改变前进方向,沿着切于村落边界的方向前进,后来恰好与B相遇.设A、B 两人的速度都一定,其比为3∶1,问:两人在何处相遇?精品作业自我测评·技能备考一、选择题:每小题6分,共36分.1.(2009·许昌模拟)P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线008=0的倾斜角的最大值为( )A.45°B.60°C.90°D.135°答案:A2.(2009·天津汉沽模拟)已知两点A(-2,0),B(0,2),点C 是圆x 2+y 2-2x=0上任意一点,则△ABC 面积的最小值是( )C.3-2D.32 答案:A3.(2009·山东临沂模拟)若直线ax+2by-2=0(a >0,b >0)始终平分圆x 2+y 2-4x-2y-8=0的周长,则1a +2b的最小值为( )A.1B.5 答案:D4.(2008·山东)已知圆的方程为x 2+y 2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )答案:B5.(2009·湖北沙市模拟)直线l:4x-3y-12=0与x、y轴的交点分别为A、B,O为坐标原点,则△AOB内切圆的方程为( )A.(x-1)2+(y+1)2=1B.(x-1)2+(y-1)2=1C.(x-1)2+(y+1)2D.(x-1)2+(y+1)2=2 答案:A解析:A(3,0),B(0,-4),O(0,0),∴内切圆的半径r=OA OB AB2+-=1,由图象知,圆心为(1,-1),∴方程为(x-1)2+(y+1)2=1,故选A.6.(2009·西南师大附中模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为( )A.3B.2C.22D.2 答案:D二、填空题:每小题6分,共18分.7.(2009·江苏江宁高级中学3月模拟)直线ax+by=1过点A(b,a),则以坐标原点O为圆心,OA 长为半径的圆的面积的最小值是______.答案:π解析:直线过点A(b,a),∴ab=12,圆面积S=πr2=π(a2+b2)≥2πab=π.8.(2009·广东华南师大附属中学测试)从圆(x-1)2+(y-1)2=1外一点P(2,3)向这个圆引切线,则切线长为____________.答案:2解析:圆心(1,1),则|PC|2=5,∴切线长9.(2009·浙江金华模拟)已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是_____________.答案:a≤1解析:易知OP的垂直平分线即为单位圆的切线,当a≤0时,平面区域即坐标平面,显然满足题意;当a>0时,由图象易知0<a≤1,综上,a≤1.三、解答题:10、11题每题15分,12题16分,共46分.10.(2009·江苏通州调研)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值.(2)设点P在⊙E上,使△PCD的面积等于12的点P有且只有三个,试问:这样的⊙E是否存在?若存在,求出⊙E的标准方程;若不存,说明理由.11.(2009·江苏盐城模拟)已知以点C(t,2t)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与圆C交于点M、N,若OM=ON,求圆C的方程.\12.设O 为坐标原点,曲线x 2+y 2+2x-6y+1=0上有两点P 、Q ,满足关于直线x+my+4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程.。
圆的方程 知识点+例题+练习

教学过程1.确定一个圆的方程,需要三个独立条件.“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数,同时注意利用几何法求圆的方程时,要充分利用圆的性质.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.3.求圆的方程时,一般考虑待定系数法,但如果能借助圆的一些几何性质进行解题,不仅能使解题思路简化,而且还能减少计算量.如弦长问题,可借助垂径定理构造直角三角形,利用勾股定理解题.课堂巩固一、填空题1.(2014·南京模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是________.2.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过第________象限.3.(2014·银川模拟)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是________.4.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是________.5.(2014·东营模拟)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________.6.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.7.(2014·南京调研)已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为______.8.若圆x2+(y-1)2=1上任意一点(x,y)都使不等式x+y+m≥0恒成立,则实数m的取值范围是________.教学效果分析。
圆的方程 知识点总结及典例

4.1圆的方程基础知识梳理1.圆的标准方程:222)()(r b y a x =-+-,圆心:),(b a ,半径:r ;2.圆的一般方程:)04(,02222>-+=++++F E D F Ey Dx y x .习题巩固一、选择题1.点(sin θ,cos θ)与圆x 2+y 2=12的位置关系是( ) A .在圆上 B .在圆内C .在圆外D .不能确定2.已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.圆(x -3)2+(y +4)2=1关于直线y =x 对称的圆的方程是( )A .(x +3)2+(y +4)2=1B .(x +4)2+(y -3)2=1C .(x -4)2+(y -3)2=1D .(x -3)2+(y -4)2=15.方程y =9-x 2表示的曲线是( )A .一条射线B .一个圆C .两条射线D .半个圆6.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x 轴和y 轴上.则此圆的方程是( )A .(x -2)2+(y +3)2=13B .(x +2)2+(y -3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=527.圆2x 2+2y 2+6x -4y -3=0的圆心坐标和半径分别为( )A .⎝⎛⎭⎫-32,1和194B .(3,2)和192C .⎝⎛⎭⎫-32,1和192D .⎝⎛⎭⎫32,-1和1928.方程x 2+y 2+4x -2y +5m =0表示圆的条件是( )A .14<m <1 B .m >1 C .m <14D .m <1 9.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=010.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( )A .2B .22C .1D .2 11.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在( )A .圆内B .圆外C .圆上D .圆上或圆外12.若圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( )A .x -y =0B .x +y =0C .x 2+y 2=0D .x 2-y 2=0二、填空题13.已知圆的内接正方形相对的两个顶点的坐标分别是(5,6),(3,-4),则这个圆的方程是_____________________________.14.圆O的方程为(x-3)2+(y-4)2=25,点(2,3)到圆上的最大距离为________.15.如果直线l将圆(x-1)2+(y-2)2=5平分且不通过第四象限,那么l的斜率的取值范围是________.16.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为________.17.已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=________.18.已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为________.三、解答题19.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.20.已知一个圆与y轴相切,圆心在直线x-3y=0上,且该圆经过点A(6,1),求这个圆的方程.21.平面直角坐标系中有A(-1,5),B(5,5),C(6,-2),D(-2,-1)四个点能否在同一个圆上?22.如果方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆.(1)求t的取值范围;(2)求该圆半径r的取值范围.。
初中数学圆的方程知识点

初中数学圆的方程知识点
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的'标准方程是(xa)^2+(yb)^2=r^2。
特殊地,以原点为圆心,半径为r(r0)的圆的标准方程为x^2+y^2=r^2。
2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^24F)/4.故有:
(1)、当D^2+E^24F0时,方程表示以(D/2,E/2)为圆心,以(√D^2+E^24F)/2为半径的圆;
(2)、当D^2+E^24F=0时,方程表示一个点(D/2,E/2);
(3)、当D^2+E^24F0时,方程不表示任何图形。
3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数) 圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB 为直径的圆的方程为 (xa1)(xa2)+(yb1)(yb2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0*x+b0*y=r^2
在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2 圆的方程学问在学校数学逇学习中涉及到的并不是许多,同学们把握基础就好。
第1页。
数学人教版必修二圆的方程知识点

数学人教版必修二圆的方程知识点
数学人教版必修二中关于圆的方程的内容主要涉及以下几个知识点:
1. 圆的标准方程:圆的标准方程为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为圆的半径。
2. 圆的一般方程:圆的一般方程为:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
一般方程推导出标准方程的方法是完成平方并合并同类项。
3. 圆的参数方程:若圆的圆心为(a, b),半径为r,则圆的参数方程为x = a + rcosθ,y = b + rsinθ,其中θ为参数。
4. 圆的切线方程:过圆上的一点M(x₁, y₁)的切线方程为xx₁ + yy₁ = r²,其中r为圆的半径。
5. 过圆心的直线方程:过圆心的直线方程为x/a + y/b = 1,其中a和b分别为圆心的横纵坐标。
6. 圆与直线的位置关系:可以利用圆的一般方程和直线的方程,通过解方程组来判断
圆与直线的位置关系。
以上是数学人教版必修二中有关圆的方程的主要知识点。
希望对你有所帮助!。
圆的方程知识点及题型归纳总结

圆的方程知识点及题型归纳总结知识点精讲一、基本概念 平面内到定点的距离等于定长的点的集合(轨迹)叫圆. 二、基本性质、定理与公式 1.圆的四种方程(1)圆的标准方程:222)()(r b y a x =-+-,圆心坐标为(a ,b ),半径为)0(>r r (2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x ,圆心坐标为⎪⎭⎫⎝⎛--2,2E D ,半径2422FE D r -+=(3)圆的直径式方程:若),(),,(2211y x B y x A ,则以线段AB 为直径的圆的方程是0))(())((2121=--+--y y y y x x x x(4)圆的参数方程:①)0(222>=+r r y x 的参数方程为⎩⎨⎧==θθsin cos r y r x (θ为参数);②)0()()(222>=-+-r r b y a x 的参数方程为⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数).注 对于圆的最值问题,往往可以利用圆的参数方程将动点的坐标设为)sin ,cos (θθr b r a ++(θ为参数,(a,b )为圆心,r 为半径),以减少变量的个数,建立三角函数式,从而把代数问题转化为三角问题,然后利用正弦型或余弦型函数的有界性求解最值.2.点与圆的位置关系判断(1)点),(00y x P 与圆222)()(r b y a x =-+-的位置关系: ①⇔>-+-222)()(r b y a x 点P 在圆外; ②⇔=-+-222)()(r b y a x 点P 在圆上; ③⇔<-+-222)()(r b y a x 点P 在圆内.(2)点),(00y x P 与圆022=++++F Ey Dx y x 的位置关系:①⇔>++++0002020F Ey Dx y x 点P 在圆外; ②⇔=++++0002020F Ey Dx y x 点P 在圆上; ③⇔<++++0002020F Ey Dx y x 点P 在圆内.题型归纳及思路提示题型1 求圆的方程 思路提示(1)求圆的方程必须具备三个独立的条件,从圆的标准方程上来讲,关键在于求出圆心坐标(a,b )和半径r ;从圆的一般方程来讲,必须知道圆上的三个点.因此,待定系数法是求圆的方程常用的方法.(2)用几何法来求圆的方程,要充分运用圆的几何性质,如圆心在圆的任一条弦的垂直平分线上,半径、弦心距、弦长的一半构成直角三角形等. 例9.17 根据下列条件求圆的方程:(1)ABC ∆的三个顶点分别为A (-1,5),B (-2,-2),C (5,5),求其外接圆的方程; (2)经过点A (6,5),B (0,1),且圆心在直线3x +10y +9=0上; (3)经过点P (-2,4),Q (3,-1),且在x 轴上截得的弦长等于6. 分析 根据待定系数法求出相应的量即可.解析 (1)解法一:设所求圆的方程为022=++++F Ey Dx y x ,则由题意有,⎪⎩⎪⎨⎧=+++=++--=+++-0505508220265F E D F E D F E D 解得⎪⎩⎪⎨⎧-=-=-=2024F E D 故所求圆的方程为0202422=---+y x y x解法二:由题意可求得AC 的中垂线方程为x =2,BC 的中垂线方程为x +y -3=0,所以圆心是两条中垂线的交点P (2,1),且半径5)51()12(||22=-++==AP r所以所求圆的方程为25)1()2(22=-+-y x 即0202422=---+y x y x(2)AB 的中垂线与AB 垂直,则斜率231-=-=ABk kAB 的中点(3,3),则由点斜式可得)3(233--=-x y , 即线段AB 的中垂线方程为3x+2y-15=0由⎩⎨⎧=++=-+0910301523y x y x ,解得⎩⎨⎧-==37y x ,所以圆心为C(7,-3),又65||=BC故所求的圆的方程为65)3()7(22=++-y x(3)设圆的方程为022=++++F Ey Dx y x ,将点P ,Q 的坐标分别代入,得⎩⎨⎧-=+-=--1032042F E D F E D ,又令y =0,得02=++F Dx x .设21,x x 是方程的两根,则由韦达定理有F x x D x x =-=+2121,,由6||21=-x x有364)(21221=-+x x x x ,即3642=-F D解得⎪⎩⎪⎨⎧-=-=-=842F E D 或⎪⎩⎪⎨⎧=-=-=086F E D故所求圆的方程为084222=---+y x y x 或08622=--+y x y x评注 圆的方程有两种形式:标准方程和一般方程.求圆的方程问题一般采用待定系数法,并有两种不同的选择,一般地,已知圆 上的三点时用一般方程;已知圆心或半径关系时用标准方程.即首先设出圆的方程(标准方程或一般方程),然后根据题意列出关于圆的方程中参数的方程(组),解方程或方程组即可求得圆的方程.一般地,确定一个圆需要三个独立的条件.变式1 求过点A(6,0),B(1,5),且圆心在直线0872:=+-y x l 上的圆的方程. 变式2 在平面直角坐标系xOy 中,曲线与坐标轴的交点都在圆C 上,求圆C 的方程例9.18 已知圆的半径为10,圆心在直线y =2x 上,圆被直线y=x 截得的弦长为24,求此圆的方程. 分析 求圆的标准方程,就是求222)()(r b y a x =-+-中的a,b,r ,可优先考虑待定系数法. 解析 解法一:设圆的方程为10)()(22=-+-b y a x .由圆心在直线y=2x 上,得b=2a (①) 由圆在直线y=x 上截得的弦长为24,将y=x 代入10)()(22=-+-b y a x ,整理得010)(22222=-+++-b a x b a x 由弦长公式,得24||221=-x x即24)10(2)(2222=-+-+b a b a ,化简得2±=-b a (②) 由式①②可得⎩⎨⎧==42b a 或⎩⎨⎧-=-=42b a故所求圆的方程为10)4()2(22=-+-y x 或10)4()2(22=+++y x解法二:据几何性质,半径、弦长的一半、弦心距构成直角三角形,可得弦心距2)22(22=-=r d ,又弦心距等于圆心(a,b )到直线x-y =0的距离,即22||=-=b a d ,又已知b =2a ,解得⎩⎨⎧==42b a 或⎩⎨⎧-=-=42b a 故所求圆的方程为10)4()2(22=-+-y x 或10)4()2(22=+++y x 评注 注意灵活运用垂径定理来简化圆中弦长的求解过程.变式1 求与x 轴相切,圆心在直线3x-y =0上,且被直线x-y =0截得的弦长为72的圆的方程例9.19 圆01222=--+x y x 关于直线2x -y +3=0对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y xC.2)2()3(22=-++y x D.2)2()3(22=++-y x解析 解法一:(推演法)将圆的方程01222=--+x y x 化为标准方程2)1(22=+-y x ,得圆心为(1,0),半径为2,设对称圆的圆心坐标为(a,b),则⎪⎪⎩⎪⎪⎨⎧-=--=+-+⨯2110032212a b b a ,得⎩⎨⎧=-=23b a . 故对称圆的方程是2)2()3(22=-++y x 解法二:(排除法)将圆的方程01222=--+x y x 化为标准方程2)2(22=+-y x ,得2=r ,则对称圆的半径也应为2,故排除选项A,B ,在选项C 中,圆心为(-3,2),验证两圆圆心所在的直线的斜率为211302-=---,与直线032=+-y x 垂直.故选C评注 根据圆的性质求圆关于直线的对称圆的方程问题,一般转化为求圆心关于直线对称点的问题,半径保持不变.变式1 若不同两点P ,Q 的坐标分别为,)3,3(),,(a b b a --,则线段PQ 的垂直平分线l 的斜率为________,圆1)3()2(22=-+-y x 关于直线l 对称的圆的方程为______题型2 直线系方程和圆系方程 思路提示求过两直线交点(两圆交点或直线与圆交点)的直线方程(圆系方程)一般不需求其交点,而是利用它们的直线系方程(圆系方程).(1)直线系方程:若直线0:1111=++C y B x A l 与直线0:2222=++C y B x A l 相交于点P ,则过点P 的直线系方程为:0)()(22221111=+++++C y B x A C y B x A λλ)0(2221≠+λλ简记为:)0(022212211≠+=+λλλλl l 当01≠λ时,简记为:021=+l l λ(不含2l )(2)圆系方程:若圆0:111221=++++F y E x D y x C 与圆0:222222=++++F y E x D y x C 相交于A,B两点,则过A,B两点的圆系方程为:)1(0)(2222211122-≠=+++++++++λλF y E x D y x F y E x D y x简记为:)1(021-≠=+λλC C ,不含2C当1-=λ时,该圆系退化为公共弦所在直线(根轴)0)()(:212121=-+-+-F F y E E x D D l 注 与圆C 共根轴l 的圆系0:=+l C C λλ例9.20 (1)设直线01:1=+-y x l 与直线022:2=++y x l 相交于点P,求过点P 且与直线0132:3=--y x l 平行的直线4l 的方程.(2)求圆心在直线0143=-+y x 上且过两圆0222=-+-+y x y x 与522=+y x 的交点的圆的方程.分析 把两条直线(圆)的方程联立,解得直线(圆)的交点坐标的方法看似平常,实则复杂难解,而利用直线系(圆系)方程的概念,则较易求得答案.解析 (1)解法一:由⎩⎨⎧=++=+-02201y x y x ,得交点)0,1(-P .因为34//l l ,故设032:4=+-C y x l ,又4l 过点)0,1(-P ,故0)1(2=+-C ,得2=C即0232:4=+-y x l解法二:设0)1(22:4=+-+++y x y x l λ,即02)1()2(:4=++-++λλλy x l 因为34//l l ,所以)()(λλ-=+-1223,得8-=λ,故0232:4=+-y x l (2)设所求圆为)1(0)5(222-≠=-++-+-+λλy x y x y x 化为一般式0152111122=++-+++-+λλλλy x y x 所以)1(212,)1(212λλ+-=-+=-E D ,故圆心为⎪⎭⎫ ⎝⎛++)(,)(λλ121-121代入直线0143=-+y x 中,得01)1(24)1(23=-+-+λλ解得23-=λ,把23-=λ代入所设的方程中,得0112222=--++y x y x 故所求圆的方程为0112222=--++y x y x评注 直线系或圆系是具有共同性质的直线或圆的集合,在解题过程中适当利用直线系或圆系方程,往往能够简化运算,快速得出结论.变式1 过直线042=++y x 和圆014222=+-++y x y x 的交点且面积最小的圆的方程是_________ 变式2 (1)设直线0:1=-y x l 与直线04:2=-+y x l 相交于点P ,求过点P 且与直线0543:3=++y x l 垂直的直线4l 的方程.(2)已知圆042:22=---+m y x y x C ,若直线02:=-+y x l 与圆C 相交于A,B 两点,且OB OA ⊥(O 为坐标原点),求m 的值和以AB 为直径的圆的方程.题型3 与圆有关的轨迹问题 思路提示要深刻理解求动点的轨迹方程就是探求动点的横纵坐标x,y 的等量关系,根据题目条件,直接找到或转化得到与动点有关的数量关系,是解决此类问题的关键所在.例9.21(2012北京丰台高三期末理18)在平面直角坐标系xOy 中,O 为坐标原点,动点P 与两个定点)0,4(),0,1(N M 的距离之比为21.(1)求动点P 的轨迹W 的方程;(2)若直线3:+=kx y l 与曲线W 交于A,B 两点,在曲线W 上是否存在 一点Q ,使得OB OA OQ +=,若存在,求出此时直线l 的斜率;若不存在,说明理由. 解析 (1)设点P 的坐标为),(y x P ,由题意知21||||=PN PM ,即2222)4()1(2y x y x +-=+- 即4:22=+y x W(2)因为直线3:+=kx y l 与曲线W 相交于A,B 两点,所以213),(2<+=kl O d即25>k 或25-<k ① 假设曲线W 上存在点Q ,使得2||,=+=OQ OB OA OQ 因为A,B 在圆上,所以||||OB OA =,且OB OA OQ +=由向量加法的平行四边形法则可知四边形OAQB 为菱形,所以OQ 与AB 互相垂直平分. 故1||21),(==OQ l O d ,即1132=+k,解得22±=k ,符合式①所以存在点Q ,使得OB OA OQ +=评注 在平面上到两定点的距离之比不为1的正数的动点轨迹为圆. 变式1 在ABC ∆中,若BC AC AB 2,2==,则ABC S ∆的最大值为__________变式2 (2012北京石景山一模理8)如图9-10所示,已知平面B A l ,,=βα 是l 上的两个点,C,D 在平面β内,且αα⊥⊥CB DA ,,AD =4,AB =6,BC =8,在平面α上有一个动点P ,使得BPC APD ∠=∠,则P-ABCD 体积的最大值是( )A.324B.16C.48D.144例9.22 如图9-11所示,已知P (4,0)是圆3622=+y x 内的一点,A,B 是圆上两动点,且满足︒=∠90APB ,求矩形APBQ 的顶点Q 的轨迹方程解析 解法一:设AB 的中点为R ,点Q 的坐标为(x,y ),则在ABP Rt ∆中||||PR AR =,又因为R 是弦AB 的中点,由垂径定理,在ORA Rt ∆中36||||22=+OR AR ,又2222|)|2(|)|2()|||(|2PR OR OP OQ +=+(*), 得72362)|||(|2||||2222=⨯-+=+PR OR OP OQ , 故56||72||22=--OP OQ则矩形APBQ 的顶点Q 的轨迹方程是5622=+y x 解法二:设AB 的中点为R ,Q 的坐标为(x,y),则⎪⎭⎫⎝⎛+2,24y x R ,在矩形APBQ 中有||21||||PQ AR PR ==在ORA Rt ∆中,36||||||222==+OA RA OR则()[]364412242222=+-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y x y x ,即5622=+y x 评注 式(*)的依据是,平行四边形对角线的平方和等于四条边的平方和.在矩形APBQ 中,O 为矩形APBQ 外一点,有2222OB OA OQ OP +=+变式1 已知圆422=+y x 上一定点A (2,0),B (1,1)为圆内的一定点,P ,Q 为圆上的动点.(1)求线段AP 中点M 的轨迹方程;(2)若︒=∠90PBQ ,求线段PQ 中点N 的轨迹.变式2 已知点P (0,5)及圆024124:22=+-++y x y x C(1)直线l 过P 且被圆C 截得的线段长34||=AB ,求l 的方程; (2)求过点P 的圆C 的动弦的中点M 的轨迹方程.题型4 用二元二次方程表示圆的一般方程的充要条件 思路提示方程022=++++F Ey Dx y x 表示圆的充要条件是0422>-+F E D ,故在解决圆的一般式方程的有关问题时,必须注意这一隐含条件.在圆的一般方程中,圆心为⎪⎭⎫⎝⎛--2,2E D ,半径F E D r 42122-+=例9.23方程0122222=-+++++a a ay ax y x 表示圆,则a 的取值范围是( )A.()2,-∞-B.⎪⎭⎫⎝⎛-0,32 C.()0,2-D.⎪⎭⎫ ⎝⎛-32,2解析 由0122222=-+++++a a ay ax y x可得0143)(2222>+--=++⎪⎭⎫ ⎝⎛+a a a y a x即04432<-+a a ,得322<<-a .故选D 评注 对于用二元二次方程表示圆的方程的充要条件的不等式不需要记忆,只需通过配方,然后让右边大于零即可变式1 方程042422=+-++m y mx y x 表示圆的方程的充要条件是( )A.⎪⎭⎫ ⎝⎛∈1,41mB.()+∞∈,1mC.⎪⎭⎫ ⎝⎛∞-∈41,mD. ),1(41,+∞⎪⎭⎫ ⎝⎛∞-∈ m变式2 若圆02)1(222=-+-++a ay x a y x 关于直线01=+-y x 对称,则实数a 的值为______ 题型5 点与圆的位置关系判断 思路提示在处理点与圆的位置关系问题时,应注意圆的不同方程形式对应的不同判断方法,另外还应注意其他约束条件,如圆的一般方程的隐含条件对参数的制约.例9.24 若点A (1,1)在圆4)()(22=++-a y a x 的内部,则实数a 的取值范围是( )A.)1,1(-B.)1,0(C.),1()1,.(+∞-∞-D.{}1,1-解析 点A (1,1)在圆内部,满足4)()(22<++-a y a x ,即4)1()1(22<++-a a ,解得11<<-a 故选A评注 判断点与圆的位置关系的代数方法为若点),(00y x P 在圆上,则22020)()(r b y a x =-+-; 若点),(00y x P 在圆外,则22020)()(r b y a x >-+-; 若点),(00y x P 在圆内,则22020)()(r b y a x <-+-.反之也成立.变式1 点A (1,0)在圆0332222=-++-+a a ax y x 上,则a 的值为_______变式2 过占P (1,2)可以向圆024222=-+-++k y x y x 引两条切线,则k 的范围是( )A.)7,(-∞B.)7,0(C.)7,3(D.),5(+∞题型6 与圆有关的最值问题 思路提示解决此类问题,应综合运用方程消元法、几何意义法、参数方程法等各种思想和方法求解,才能做到灵活、高效.例9.25 已知实数x,y 满足方程01422=+-+x y x(1)求xy的最大值和最小值; (2)求x y -的最大值和最小值;(3)求22y x +的最大值和最小值分析 方程01422=+-+x y x 表示圆心为(2,0),半径为3的圆.--=x y x y 的几何意义是圆上一点M(x,y)与原点连线的斜率;设y-x=b ,可看作直线y=x+b 在y 轴上的截距;22y x +是圆上一点与原点距离的平方,可借助于平面几何知识,利用数形结合的方法求解.解析 (1)原方程可化为3)2(22=+-y x ,表示以点(2,0)为圆心,以3为半径的圆.设k xy=,即kx y =.当直线kx y =与圆相切时,斜率最大值和最小值,此时31|02|2=+-k k ,解得3±=k故xy的最大值为3,最小值为3- (2)设y-x =b ,即y =x +b ,当y =x +b 与圆相切时,纵截距b 取得最大值和最小值,此时32|02|=+-b ,即62±-=b ,故y-x 的最大值为62+-,最小值为62--(3)解法一:(几何法)22y x +表示圆上点与原点距离的平方,由平面几何知识知它在原点与圆心连线与圆的两个交点处取得最大值和最小值,又圆心到原点的距离为2,故()347)32(2max22+=+=+y x,()347)32(2min22-=-=+y x解法二:(参数方程法)把圆的方程化为标准方程3)2(22=+-y x设⎪⎩⎪⎨⎧=+=θθsin 3cos 32y x (θ为参数,)2,0[πθ∈) 则()θθθcos 347)sin 3(cos 322222+=++=+y x故当1cos -=θ时,()347)32(2min22-=-=+y x当1cos =θ时,()347)32(2max22+=+=+y x解法三:(方程消元法)由圆的标准方程为3)2(22=+-y x ,可得222(3)--=x y且[]32,32+-∈x故14)2(32222-=--+=+x x x y x 由[]32,32+-∈x故[]347,3471422+-∈-=+x yx故所求最大值为347+,最小值为347-评注 涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地:(1)形如ax b y --=μ的最值问题,可转化为动直线斜率的最值问题. (2)形如by ax t +=的最值问题,可转化为动直线截距的最值问题.(3)形如22)()(b y a x m -+-=的最值问题,可转化为曲线上的点到点(a,b)的距离平方的最值问题 变式 1 若圆1)1(22=-+y x 上任意一点(x,y )都使不等式0≥-+m y x 恒成立,则实数m 的取值范围是( ) A.]21,(--∞B.),21[+∞-C.]12,(---∞D.]12,(+-∞ 变式2 若圆1)1(22=-+y x 上任意一点(x,y )都使不等式0)2(22≥-+-m y x 恒成立,则实数m 的取值范围是( ) A.]21,(--∞ B.),51[+∞- C.]15,(--∞ D.]15,(+-∞题型7 数形结合思想的应用思路提示研究曲线的交点个数问题常用数形结合法,即需要作出两种曲线的图像.在此过程中,尤其要注意需对代数式进行等价变形,以防出现错误.例9.26 方程225x y --=表示的曲线是( )A.一条射线B.一个圆C.两条射线D.半个圆分析 对于方程的变形要注意等价性,即在变形前,先制约变量的取值范围解析 由题可知0,55≤≤≤-y x ,且2522=+y x ,故原方程表示圆心在(0,0),半径为5的下半圆.故选D变式1 方程21y x -=表示的曲线是( )A.一条射线B.一个圆C.两条射线D.半个圆 例9.27 直线b x y +=与曲线21y x -=有且仅有一个公共点,则b 的取值范围是( ) A.{}2,2- B.{}211|-=≤<-b b b 或 C.{}11|≤≤-b b D.{}2|≥b b 分析 利用数形结合法求解解析 将曲线方程21y x -=变形为)0(122≥=+x y x ,当直线b x y +=与曲线122=+y x 相切时,满足12|00|=--b ,整理可得2||=b ,即2±=b .如图9-12所示,可得当2-=b 或11≤<-b 时,直线b x y +=与曲线21y x -=有且仅有一个公共点.故选B变式1 当曲线241x y -+=与直线4)2(+-=x k y 有两个相异交点时,实数k 的取值范围是( ) A.⎪⎭⎫ ⎝⎛+∞,125 B.⎥⎦⎤ ⎝⎛43,125 C.⎪⎭⎫ ⎝⎛125,0 D.⎥⎦⎤ ⎝⎛43,31 变式2 若直线b x y +=与曲线243x x y --=有公共点,则b 的取值范围是( ) A.[]221,1+- B.[]221,221+- C.[]3,221- D.[]3,21- 变式3 设集合⎭⎬⎫⎩⎨⎧∈≤+-≤=R y x m y x m y x A ,,)2(2),(222, {}R y x m y x m y x B ∈+≤+≤=,,122),(,若A B ≠∅,则实数m 的取值范围是_______有效训练题1.若直线y =kx 与圆03422=+-+x y x 的两个交点关于直线x +y +b =0对称,则( )A.k=1,b=-2B.k=1,b=2C.k=-1,b=2D.k=-1,b=-2 2.若点(4a -1,3a +2)不在圆25)2()1(22=-++y x 的外部,则a 的取值范围是( ) A.⎪⎪⎭⎫ ⎝⎛-55,55 B.)1,1(- C.⎥⎦⎤⎢⎣⎡-55,55 D.]1,1[- 3.设椭圆)0(12222>>=+b a b y a x 的离心率为21=e ,右焦点为)0,(c F ,方程02=-+c bx ax 的两个实根分别为1x 和2x ,则点),(21x x P ( )A.必在圆222=+y x 内B.必在圆222=+y x 上C.必在圆222=+y x 外D.以上三种情形都有可能 4.已知圆422=+y x ,过点A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是( ) A.⎪⎭⎫ ⎝⎛<≤-=+-2114)1(22x y x B. ()104)1(22<≤=+-x y xC. ⎪⎭⎫ ⎝⎛<≤-=+-2114)2(22x y x D. ()104)2(22<≤=+-x y x 5.已知两点A (-1,0),B (0,2),点P 是圆1)1(22=+-y x 上任意一点,则PAB ∆面积的最大值与最小值分别是( ) A.)54(21,2- B.)54(21),54(21-+ C.54,5- D. )25(21),25(21-+ 6.已知圆C 的方程为012222=+-++y x y x ,当圆心C 到直线04=++y kx 的距离最大时,k 的值为( ) A.31 B.51 C.31- D.51- 7.定义在),0(+∞上的函数f (x )的导函数0)('<x f 恒成立,且1)4(=f ,若1)(22≤+y x f ,则y x y x 2222+++的最小值是______8.已知圆C 经过()()5,1,1,3A B 两点,圆心在x 轴上,则圆C 的方程为______9.已知直线R m m x y l ∈+=,:.若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,该圆的方程为_______10.根据下列条件求圆的方程.(1)经过点(1,1)P 和坐标原点,并且圆心在直线2310x y ++=上;(2)圆心在直线4y x =-上,且与直线:10l x y +-=相切于点(3,2)P -;(3)过三点(1,12),(7,10),(9,2)A B C -(4)已知一圆过(4,2),(1,3)P Q --两点,且在y 轴上截得的线段长为.11.设定点(3,4)M -,动点N 在圆224x y +=上运动,以,OM ON 为两边做平行四边形MONP ,求点P 的轨迹方程.12.集合22(,)|((1)4A x y x y ⎧⎫⎪⎪=++≤⎨⎬⎪⎪⎩⎭, 集合{}22()(,)|22,B m x y y x mx m m m R ==-++∈,设集合B 是所有()B m 的并集,求A B ⋂的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的方程知识点总结和经典例题(1)求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.(2)对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一条件.2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.3.直线与圆的位置关系(1)直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.2.代数法:根据直线方程与圆的方程组成的方程组解的个数来判断.3.直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系.(2)过一点的圆的切线方程的求法1.当点在圆上时,圆心与该点的连线与切线垂直,从而求得切线的斜率,用直线的点斜式方程可求得圆的切线方程.2.若点在圆外时,过这点的切线有两条,但在用设斜率来解题时可能求出的切线只有一条,这是因为有一条过这点的切线的斜率不存在.(3)求弦长常用的三种方法1.利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系r 2=d 2+⎝ ⎛⎭⎪⎫l 22解题.2.利用交点坐标若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长.3.利用弦长公式设直线l :y =kx +b ,与圆的两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l =1+k 2| x 1-x 2 =(1+k 2)[(x 1+x 2)2-4x 1x 2].4. 圆与圆的位置关系(1)圆与圆位置关系的判断方法设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 222两圆相切问题易忽视分两圆内切与外切两种情形.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d ;(3)通过d ,r 1+r 2, r 1-r 2 的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.(2)两圆相交有关问题1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆的方程可设为:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1),然后再由其他条件求出λ,即可得圆的方程.2.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.3.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.5. 对称问题(1)点关于点成中心对称通常利用中点坐标公式点|P (x ,y )关于Q (a ,b )的对称点为P'(2a -x ,2b -y ).||(2)点关于直线成轴对称(3)曲线关于点、曲线关于直线成中心对称或轴对称6. 与圆有关的最值问题的常见解法(1)形如μ=y -b x -a形式的最值问题,可转化为动直线斜率的最值问题. (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题. |7. 典型例题1. 直线3x +4y -5=0与圆x 2+y 2=1的位置关系是( )A .相交B .相切C .相离D .无法判断【解析】 圆心(0,0)到直线3x +4y -5=0的距离d = -5 32+42=1,又圆x 2+y 2=1的半径r =1,∴d =r ,故直线与圆相切.2. 直线3x +4y +12=0与圆(x -1)2+(y +1)2=9的位置关系是( )A .过圆心B .相切C .相离D .相交但不过圆心【解析】 圆心(1,-1)到直线3x +4y +12=0的距离d =3×1+4×(-1)+1232+42=115<r.【答案】D3.求过点(1,-7)且与圆x2+y2=25相切的直线方程.【解析】由题意知切线斜率存在,设切线的斜率为k,则切线方程为y+7=k(x-1),即kx-y-k-7=0.∴-k-7k2+1=5,解得k=43或k=-34.∴所求切线方程为y+7=43(x-1)或y+7=-34(x-1),即4x-3y-25=0或3x+4y+25=0.4.过点A(4,-3)作圆C:(x-3)2+(y-1)2=1的切线,求此切线的方程.|【解析】因为(4-3)2+(-3-1)2=17>1,所以点A在圆外.(1)若所求切线的斜率存在,设切线斜率为k,则切线方程为y+3=k(x-4).因为圆心C(3,1)到切线的距离等于半径,半径为1,所以 3k-1-3-4kk2+1=1,即k+4 =k2+1,所以k2+8k+16=k2+1,解得k=-15 8.所以切线方程为y+3=-158(x-4),即15x+8y-36=0.(2)若直线斜率不存在,圆心C(3,1)到直线x=4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x=4.综上,所求切线方程为15x+8y-36=0或x=4.5.求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.【解析】圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标为(0,1),半径r= 5.点(0,1)到直线l的距离为d= 3×0+1-632+12=102,l=2r2-d2=10,所以截得的弦长为10.6.直线x+2y-5+5=0被圆x2+y2-2x-4y=0截得的弦长为()A.1B.2C.4D.46【解析】 圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C (1,2),半径r = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d = CP = 1+4-5+ 5 12+22=1.在Rt △ACP 中, AP =r 2-d 2=2,故直线被圆截得的弦长 AB =4.7. 两圆x 2+y 2=9和x 2+y 2-8x +6y +9=0的位置关系是( )A .外离B .相交C .内切D .外切【解析】 两圆x 2+y 2=9和x 2+y 2-8x +6y +9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d =42+(-3)2=5.又4-3<5<3+4,故两圆相交.8. 圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切【解析】 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2),半径长r 2=2;1=r 2-r 1< O 1O 2 =5<r 1+r 2=3,即两圆相交.9. 求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.【解析】 联立两圆的方程得方程组⎩⎨⎧ x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0或⎩⎨⎧x =0,y =2.所以 AB =(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d = 1-2×(-5)+4 1+(-2)2=3 5.设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.10. 求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长. 【精彩点拨】 联立圆C 1、C 2的方程――→作差得公共弦所在的直线―→圆心C 3到公共弦的距离d ―→圆的半径r ―→弦长=2r 2-d 2【解析】设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组⎩⎨⎧x 2+y 2=1,x 2+y 2-2x -2y +1=0的解,两式相减得x +y -1=0. 因为A ,B 两点的坐标满足|x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =12,由条件知r 2-d 2=254-12=234,所以直线AB 被圆C 3截得弦长为2×232=23.11. 已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( )A .(x +1)2+y 2=1B .x 2+y 2=1C .x 2+(y +1)2=1D .x 2+(y -1)2=1【解析】 由已知圆(x -1)2+y 2=1得圆心C 1(1,0),半径长r 1=1.设圆心C 1(1,0关于直线y =-x 对称的点为(a ,b ),则⎩⎪⎨⎪⎧ b a -1·(-1)=-1,-a +12=b 2,解得⎩⎨⎧a =0,b =-1.所以圆C 的方程为x 2+(y +1)2=1. 12. 当动点P 在圆x 2+y 2=2上运动时,它与定点A (3,1)连线中点Q 的轨迹方程为________.【解析】 设Q (x ,y ),P (a ,b ),由中点坐标公式得⎩⎪⎨⎪⎧ x =a +32,y =b +12,所以⎩⎨⎧a =2x -3,b =2y -1. 点P (2x -3,2y -1)满足圆x 2+y 2=2的方程,所以(2x -3)2+(2y -1)2=2,化简得⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=12,即为点Q 的轨迹方程. 13. (1)△ABC 的顶点坐标分别是A (5,1),B (7,﹣3),C (2,﹣8),求它的外接圆的方程;(2)△ABC 的顶点坐标分别是A (0,0),B (5,0),C (0,12),求它的内切圆的方程.【解答】解:(1)设所求圆的方程为(x ﹣a )2+(y ﹣b )2=r 2,①因为A (5,1),B (7,﹣3),C (2,﹣8)都在圆上,所以它们的坐标都满足方程①,于是,可解得a=2,b=﹣3,r=25,所以△ABC 的外接圆的方程是(x ﹣2)2+(y +3)2=25.(2)∵△ABC 三个顶点坐标分别为A (0,0),B (5,0),C (0,12), ∴AB ⊥AC ,AB=5,AC=12,BC=13,∴△ABC 内切圆的半径r==2,圆心(2,2),∴△ABC 内切圆的方程为(x ﹣2)2+(y ﹣2)2=4.14. 已知圆C :x 2+(y +1)2=5,直线l :mx ﹣y +1=0(m ∈R )(1)判断直线l 与圆C 的位置关系;(2)设直线l 与圆C 交于A 、B 两点,若直线l 的倾斜角为120°,求弦AB 的长.【解答】解:(1)由于直线l的方程是mx﹣y+1=0,即y﹣1=mx,经过定点H(0,1),而点H到圆心C(0,﹣1)的距离为2,小于半径,故点H在圆的内部,故直线l与圆C相交,故直线和圆恒有两个交点.(2)直线l的倾斜角为120°,直线l:﹣x﹣y+1=0,圆心到直线的距离d==1,∴|AB|=2=4.15.过点(-1,-2)的直线l被圆x2+y2-2x-2y+1=0截得的弦长为2,求直线l的方程.【解】由题意,直线与圆要相交,斜率必须存在,设为k.设直线l的方程为y+2=k(x+1).又圆的方程为(x-1)2+(y-1)2=1,圆心为(1,1),半径为1,所以圆心到直线的距离d= 2k-1-21+k2=12-⎝⎛⎭⎪⎫222=22.解得k=1或177.所以直线l的方程为y+2=x+1或y+2=177(x+1),即x-y-1=0或17x-7y+3=0.。