热电阻测温电路框图和原理图

合集下载

热电阻法测温

热电阻法测温

非接触、便携、快速、直观、可记录存储
响应速度快 灵敏度高 测温范围宽广 适用于多种目标
在机电行业中,红外测温主要用于机械、电气控制 设备的状态监测及故障检查。
(一)红外点温仪 红外点温仪是以黑体辐射定律为理论依据,通过 被测目标红外辐射能量进行测量,经黑体标定后 确定被测目标温度的仪器。
5.性能稳定,重复性好,有利互换;测量电路简单
2.非接触式测量
在工业领域中有许多温度测量问题用接触式测 量方法无法解决,如高压输电线接点处的温度 监测,炼钢高炉以及热轧钢板等运动物体的温 度监测等。
一、辐射测温的基本原理 物体因受热使其内部原子或分子获得能量而从低 能级跃迁到高能级,当它们向下跃迁时,就会发 射出辐射能,这类辐射称为热辐射。
4.1.4温度诊断技术
1接触式测温方法
在机电设备的故障诊断与监测领域,根据测量 时测温传感器是否与被测对象接触可将测温方 式分为接触式测温和非接触式测温两大类。
常用的接触测量法
热电阻法 热电偶法
集成温度传感法
一、热电阻法测温 热电阻法测温使用的仪器是电阻式温度计,它是 根据几乎所有导体的电阻都会随着温度的改变而 变化这一原理制成的。测温时,温度计上感温元 件的电阻随着温度的改变而变化,电阻的这种变 化通过测量回路的转换在显示器上显示出温度值。
红外点温仪通常由光学系统、红外探测器、电信 号处理器、温度指示器及附属的瞄准器、电源、 机械结构等组成。
常用的红外点温仪按其工作原理及其检测波段 的不同,分为以下3类:
1.辐射感温器
2.单色测温仪
3.比色测温仪
ቤተ መጻሕፍቲ ባይዱ
非接触式测量方法就是通过检测被测物体所发射 的辐射能中不同波长的光,来实现温度检测的。

热电阻温度变送器的工作原理【附图】

热电阻温度变送器的工作原理【附图】

热电阻是中低温区常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热是阻的测量度是比较高的,它不广泛应用于工业测温,而且被制成的基准仪。

1、热电阻测温原理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

2、热电阻的类型1)普通型热电阻从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。

2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,小可达φmm。

与普通型热电阻相比,它有下列优点:体积小,内部无空气隙,热惯性上,测量滞后小;机械性能好、耐振,抗冲击;能弯曲,便于安装使用寿命长。

3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。

它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。

扩展资料:温度变送器的工作原理:温度变送器的工作原理是:通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度,一般测量精度较高。

在一定的测温范围内,温度计也可测量物体内部的温度分布。

但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差。

温度变送器一般由测温探头,即热电偶或热电阻传感器和两线制固体电子单元组成。

采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。

温度变送器广泛应用于工业、农业、商业等部门。

随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量-153℃以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计等。

温度变送器的维护:1、通电情况下,严禁打开电子单元盖和端子盖,允许进行外观检查:检查变送器,配管配线的腐蚀、损坏程度以及其它机械结构件的检查。

热电阻测温仪表论文用电路图

热电阻测温仪表论文用电路图

图1-1电源电路热电阻测温电路电源
图1-2 三线制热电阻检测原理连线图
三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称
为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,
是工业过程控制中的最常用的引线电阻。

采用三线制接线的原因:
电阻是基本电参数之一,其阻值 R 可按伏安特性定义,即 R=U/I,其中
U 为电阻两端的电压,I 为流过电阻的电流或者按功率 P 来定义,即 R=P/(I^2)。

可见测量热电阻必须在热电阻两端连接导线,而导线的阻值以及阻值随温
度变化的特性以及引入的其它干扰,必然会影响测量结果。

而要消除这种影响,就必须知道引线的状况,在对热电阻进行测量的同时,从引线的两端对引线进
行监测。

在两根引线参数一致的前提下,要知道其中一根的状况,至少需要增
加一根导线,用来将测量引线中的一根的现场端连接到仪表端。

这就是热电阻
的三线制连接的由来。

热电阻测量电路

热电阻测量电路

1、二线制接法采用两线制得测温电桥如图所示:(a)为接线示意图,(b)为等效原理图。

从图中可以瞧出热电阻两引线电阻RW与热电阻RW一起构成电桥测量臂,这样引线电阻RW因沿线环境温度改变引起得阻值变化量2△RW与因被测温度变化引起热电阻Rt得增量值△Rt一起成为有效信号被转换成测量信号,从而影响温度测量精度。

(a)示意图(b)等效原理图分析两线制由于引线电阻得误差图中,r为引线得电阻,Rt为Pt电阻,其中由欧姆定律可得:当Rr=Rt时(电桥平衡),V0=-I2*2r 。

从V0得表达式可以瞧出,引线电阻得影响十分明显,两线制接线法得误差很大。

//由于连接导线得电阻RL1、RL2无法测得而被计入到热电阻得电阻值中,使测量结果产生附加误差。

如在100℃时Pt100热电阻得热电阻率为0、379Ω/℃,这时若导线得电阻值为2Ω,则会引起得测量误差为5、3 ℃。

2、三线制接法三线制接线法构成如图所示测量电桥,可以消除内引线电阻得影响,测量精度高于两线制。

目前三线制在工业检测中应用最广。

而且,在测温范围窄或导线长,导线途中温度易发生变化得场合必须考虑采用三线制热电阻。

(a)示意图(b)等效原理图三线制接线法由图1-13所示,由欧姆定律可得:当Rr=Rt时,电桥平衡,I1=I2,V0=0。

可见三线制接线法可很好得消除引线电阻,提高热电阻得精度。

3、四线制接法如图所示,在热电阻感温元件得两端各连两根引线,此种引线形式称为四线制热电阻。

在高精度测量时,要采用如图所示四线制测温电桥。

此种引线方式不仅可以消除内引线电阻得影响,而且在连接导线阻值相同时,可消除该电阻得影响,还可以通过CPU定时控制继电器得一对触点C与D得通断,改变测量热电阻中得电流方向,消除测量过程中得寄生电势影响。

四线制测量方式不受连接导线得电阻得影响、当测量电阻数值很小时,测试线得电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻得电压降,在电压表输入阻抗足够高得条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上得压降,计算得出电阻值(a)示意图(b)等效原理图在热电阻得根部两端各连接两根导线得方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。

热电阻pt100温度传感器电路图工作原理图解

热电阻pt100温度传感器电路图工作原理图解

热电阻pt100温度传感器电路图⼯作原理图解 PT100是⼀种正温度系数的热敏电阻。

说到什么是正温度系数?就必须要结合负温度系数来讲了。

随着温度的升⾼,电阻的阻值变⼤,就是正温度系数的热敏电阻,相反,如果随着温度的升⾼,电阻的阻值变⼩,就是负温度系数的热敏电阻。

PT100之所以应⽤很⼴泛,不仅是因为它可以测的温度范围宽(零下⼏⼗度到零上⼏百度),还因为它的线性度⾮常好。

“线性度”,说的直⽩⼀点就是温度每变化⼀度,电阻的阻值升⾼的幅度是基本相同的。

这样,就⼤⼤的简化了我们的程序。

不过,PT100也有它的缺点,就是温度每上升⼀度,阻值变化太⼩了,只有0.39欧姆。

这样就需要硬件上提供⾼精度低噪声的转换。

⽹上流传有很多电路,很多电路其实都是不能当作产品⽤的。

下⾯给⼤家提供⼀种⾼精度的电路,就是成本有些⾼,不过品质好。

对于测温电路,其实有很多可以值得研究的地⽅,⼩电路有⼤智慧。

⽐如,你可以⼀眼就看出来这个电路不能测零下的温度吗?你可以计算出来这个电路可以测量的温度范围是从多少度到多少度吗?你可以修改这个电路,让它可以测到你所需要的温度范围吗?如果把反相(-IN)和同相(+IN)两条线调换,后果如何? 看看,你觉得电路简单,那么上⾯的问题都可以回答吗? 电路解释: 越简单的电路,稳定性就越好。

该电路中的四个电阻都需要⽤0.1%精度的。

电路只⽤了⼀个电桥和⼀个差分放⼤器。

R2 R3 R4与PT100组成电桥电路,REF3030为电桥电路提供标准的3.00V电压。

AD623⽤⼀个2K的放⼤反馈电阻精确的把电桥的压差放⼤51倍。

(为什么是51倍,详见AD623的datasheet) PT100接法: 细⼼的⼩伙伴,会研究⼀下PT100的接法。

PT100⼀般有两线和三线的传感器。

因为线本⾝肯定有电阻,⽽上⾯也提到过,每变化⼀度,PT100只变化0.39欧姆,那么如果PT100的线很长的话,电阻就越⼤,线不同,电阻就不同,就肯定会⼤⼤的影响测出来的结果。

热电阻测温线路-热电偶应用

热电阻测温线路-热电偶应用

制。ቤተ መጻሕፍቲ ባይዱ种引线方式不仅可以消除连接电阻的影
怎么这些人都这么奇怪,为什么那么多人想要参加这种廉价的社交,你交了半天
响,而且可以消除测量电路中寄生电动势引起的 误差。这种引线方式主要用于高精度温度侧量
1c07f0cc1 热电偶
的金属网状屏蔽层接大地。
一、三线制 在电阻体的一端连接两根引线,另一端连接
一根引线,此种引线方式称为三线制。当热电阻
怎么这些人都这么奇怪,为什么那么多人想要参加这种廉价的社交,你交了半天
和电桥配合使用时,这种引线方式可以较好地消 除引线电阻的影响,提高测量精度。所以工业热
电阻多半采取这种方法。
二、四线制 在电阻体的两端各连接两根引线称为四线
热电阻测温线路 热电阻传感器的测量转换电路常用类似于
电阻应变片所使用的电桥电路,由于工业用热电
阻安装在生产现场,离控制室较远,因此热电阻 的引线对测量结果有较大影响。为了减小或消除
引线电阻的影响,目前,热电阻两线的连接方式
怎么这些人都这么奇怪,为什么那么多人想要参加这种廉价的社交,你交了半天
经常采用三线制和四线制。同时,为了减小环境 电、磁场的干扰,最好采用屏蔽线,并将屏蔽线

温度测量、控制、补偿用NTC热敏电阻器原理图及应用

温度测量、控制、补偿用NTC热敏电阻器原理图及应用

温度测量、控制用NTC热敏电阻器
外形结构
环氧封装系列NTC热敏电阻
玻璃封装系列NTC热敏电阻
应用电路原理图
温度测量(惠斯登电桥电路)
温度控制
应用设计
•电子温度计、电子万年历、电子钟温度显示、电子礼品;
•冷暖设备、加热恒温电器;
•汽车电子温度测控电路;
•温度传感器、温度仪表;
•医疗电子设备、电子盥洗设备;
•手机电池及充电电器。

温度补偿用NTC热敏电阻器
产品概述
许多半导体和ICs有温度系数而且要求温度补偿,以在较大的温度范围中达到稳定性能的作用,由于NTC热敏电阻器有较高的温度系数,所以广泛应用于温度补偿。

主要参数
额定零功率电阻值R25 (Ω)
R25允许偏差(%)
B值(25/50 ℃)/(K)
时间常数≤30S
耗散系数≥6mW/ ℃
测量功率≤0.1mW
额定功率≤0.5W
使用温度范围 -55 ℃ ~+125 ℃
降功耗曲线:
应用原理及实例。

热敏电阻测温电路

热敏电阻测温电路

热敏电阻测温电路概述热敏电阻(thermistor)是一种将温度变化转化为电阻变化的传感器。

热敏电阻测温电路是一种常见的温度测量方法,通过读取热敏电阻的电阻值来确定温度。

本文将介绍热敏电阻测温电路的工作原理、电路设计以及使用注意事项。

工作原理热敏电阻的电阻值与温度呈负相关关系,温度升高时电阻值减小,温度降低时电阻值增加。

这是因为热敏电阻的电阻值受其内部材料温度相关性的影响。

常见的热敏电阻有两种类型:PTC(正温度系数)和NTC (负温度系数)。

PTC热敏电阻的电阻值随温度升高而增加,而NTC热敏电阻的电阻值随温度升高而减小。

热敏电阻测温电路利用了热敏电阻温度-电阻特性的这一特点,通过测量电阻值来间接确定温度。

电路设计热敏电阻测温电路一般由以下几部分组成:1.热敏电阻:选择适当的热敏电阻类型和参数,根据测量范围和精度要求进行选择。

2.偏置电阻:为了减小热敏电阻的电阻变化对测量结果的影响,一般需要在热敏电阻和测量电路之间加入一个偏置电阻。

3.电桥:为了提高测量精度,常常使用电桥电路来测量热敏电阻的电阻值。

电桥电路一般由热敏电阻、偏置电阻和参考电阻组成。

4.读取电路:读取电桥电路的输出电压,通过将输出电压与参考电压进行比较,可以得到热敏电阻的电阻值,从而确定温度。

使用注意事项在设计和使用热敏电阻测温电路时,需要注意以下几点:1.热敏电阻的特性:了解选用的热敏电阻的温度-电阻特性,以及其额定工作范围和精度。

2.偏置电阻的选择:根据热敏电阻的特性和设计要求,选择适当的偏置电阻,以使热敏电阻的电阻变化对测量结果的影响最小化。

3.电桥电路的设计:根据热敏电阻的特性和设计要求,设计适当的电桥电路,以提高测量精度。

4.温度补偿:热敏电阻的温度-电阻特性可能受到环境温度的影响,在一些应用中,可能需要进行温度补偿以提高测量精度。

5.输出接口:根据实际需求,选择合适的输出接口(如模拟电压输出或数字信号输出),以便接入其他设备或系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电阻测温电路框图和原理图
大家都曾年轻过,我曾在研一的时候做过一个热电阻测量电路,这里我先把所有的系统框图和电路图贴出来,把当初的设计思路整理出来,在后面我会把所有的设计失误提出来,不合理的地方和误差计算都整理出来,也算是对我告别仪器工程的一个标志吧。

这个电路设计思路是在0~650℃的温度范围内完成PT100热电阻的测量,用的场合在军舰的锅炉房,大概-20~55甚至65degC都是可以达到的,主要完成从电阻到电压的过程。

大致分两个方案
1。

电桥激励的方法(不补偿非线性)
2。

通过运放电路调节电阻的激励电流补偿非线性
系统框图如下
具体电路图如图:
第二种方法系统框图如下
原理图如下:。

相关文档
最新文档