苏科版七年级(下)动点问题专项复习

合集下载

(完整word版)七年级动点问题大全,推荐文档

(完整word版)七年级动点问题大全,推荐文档

七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

七年级动点问题大全

七年级动点问题大全

七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b 满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A 点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表 - 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

七年级下册数学动点问题及压轴题(带答案)

七年级下册数学动点问题及压轴题(带答案)

七年级下册动点问题及压轴题1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.3.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,(1)参照图②,求a、b及图②中的c值;(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.4.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.5.(本题12分)已知:在平面直角坐标系中,直线AB 分别与x 轴负半轴、y 轴正半轴交于点B (b ,0)、点A (0,a ),且a 、b 满足0|32|34=++++--b a b a ,点D (h ,m )是直线AB 上且不与A 、B 两点重合的动点(1) 求△AOB 的面积;(2) 如图1,点P 、点T 分别是线段OA 、x 轴正半轴上的动点,过T 作TE ∥AB ,连接TP .若∠ABO =n °,请探究∠APT 与∠PTE 之间的数量关系?(注:可用含n 的式子表达并说明理由)(3) 若32S △BOD ≥S △AOD ,求出m 的取值范围.。

七年级下册数学动点问题及压轴题(带答案)

七年级下册数学动点问题及压轴题(带答案)

七年级下册动点问题及压轴题1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.3.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,(1)参照图②,求a、b及图②中的c值;(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.4.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.5.(本题12分)已知:在平面直角坐标系中,直线AB 分别与x 轴负半轴、y 轴正半轴交于点B (b ,0)、点A (0,a ),且a 、b 满足0|32|34=++++--b a b a ,点D (h ,m )是直线AB 上且不与A 、B 两点重合的动点(1) 求△AOB 的面积;(2) 如图1,点P 、点T 分别是线段OA 、x 轴正半轴上的动点,过T 作TE ∥AB ,连接TP .若∠ABO =n °,请探究∠APT 与∠PTE 之间的数量关系?(注:可用含n 的式子表达并说明理由)(3) 若32S △BOD ≥S △AOD ,求出m 的取值范围.。

苏科版七年级下数学期末复习整理

苏科版七年级下数学期末复习整理

考前辅导一、仔细审题二、细心做题可能出现的多解题目类型:1. 等腰三角形的腰长问题(要考虑是否满足三边关系,不满足就舍去)2. 多项式是完全平方,求m 的值(m 通常是两解,但也要看情况,见下)3. 动点问题(给的图通常不全,要自己考虑全面)遇到折叠的题目:把图还原,折叠的部分对应边相等,对应角相等题目图中有借助到三角尺的:充分利用三角尺的特殊角度【常见题型】1. 2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为.2.适合条件::2:3:4A B C ∠∠∠=的三角形ABC 是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形3.若x 、y 满足0)2(12=++++-y x y x ,则=-22y x ( ) A .1 B .2C .–1 D .–24.已知6,8==+xy y x ,则①22y x +=②(x-y )2=.5.小明从点A 向北偏东75°方向走到点B ,又从点B 向南偏西30°方向走到点C ,则∠ABC 的度数为________。

6.若()()22x ax b x ++-的乘积中不含有2x和x 的项,则a =__________,b =_________. 7.现有若干张卡片,分别是正方形卡片A 、B 和长方形卡片C ,卡片大小如图所示.如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片张数为() A .1B .2C .3D .48.现有纸片:4张边长为a 的正方形,3张边长为b 的正方形,8张宽为a 、长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A .2a +3bB .2a +bC .a +3bD .无法确定9.若代数式()()03362x x -++-有意义,则x 应满足的条件是______________10.3a x =,4b x =,则2a b x -=_____________.11.已知:52x =,57y =,528z =,则x 、y 、z 之间关系为___________.12.如果把多项式x 2-8x +m 分解因式得(x -10)(x +n ),那么m =,n =_。

七年级下册数学期末动点问题专题复习

七年级下册数学期末动点问题专题复习

动点问题探索【例题精讲】题型一、动点问题与面积、角度例1.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为,点D的坐标为,S四边形ABDC;(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.【答案】(1)0,2)、(4,2)、8;(2)(3)见解析.【解析】解:(1)∵线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,A(﹣1,0),B(3,0),∴C(0,2),D(4,2);∵AB=4,OC=2,∴S四边形ABDC=AB×OC=8;故答案为:(0,2);(4,2);8;(2)∵点Q在y轴上,设Q(0,m),∴OQ=|m|,∴S△QAB=×AB×OQ=×4×|m|=2|m|,∵S四边形ABDC=8,∴2|m|=8,∴m=4或m=﹣4,∴Q(0,4)或Q(0,﹣4).(3)如图,过点P作PE∥AB,∵AB∥CD,∴CD∥PE,∴∠CPE=∠DCP,∵PE∥AB,∴∠OPE=∠BOP,∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,∴∠CPO=∠DCP+∠BOP.例2. 【2019·南充市期中】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D.连接AC,BD.(1)写出点C,D的坐标及四边形ABDC的面积;(2)在y轴上是否存在一点P,连接P A,PB,使S三角形P AB=S四边形ABDC?若存在,求出点P的坐标,若不存在,试说明理由;(3)点Q是线段BD上的动点,连接QC,QO,当点Q在BD上移动时(不与B,D重合),给出下列结论:①∠DCQ+∠BOQ∠CQO的值不变;②∠DCQ+∠CQO∠BOQ的值不变,其中有且只有一个正确,请你找出这个结论并求值.【答案】见解析.【解析】解:(1)C(0,2),D(4,2),∴S四边形ABCD=4×2=8.(2)设点P 的坐标为(0,y ),根据题意,得:12×4×|y |=8, 解得:y =4或y =-4.∴点P 的坐标为(0,4)或(0,-4).(3)结论①正确.过点Q 作QE ∥AB ,交y 轴于点E .∵AB ∥CD ,∴QE ∥CD .∴∠DCQ =∠EQC ,∠BOQ =∠EQO .∵∠EQC +∠EQO =∠CQO ,∴∠DCQ +∠BOQ =∠CQO .∴∠DCQ +∠BOQ ∠CQO=1. 题型二、旋转类分类讨论例3.【2018·腾冲县期末】已知∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD ,OE .(1)如图①,当∠BOC =40°时,求∠DOE 的度数;(2)如图②,当射线OC 在∠AOB 内绕O 点旋转时,∠DOE 的大小是否发生变化,说明理由; (3)当射线OC 在∠AOB 外绕O 点旋转且∠AOC 为钝角时,画出图形,直接写出∠DOE 的度数(不必写过程).【答案】见解析.【解析】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC=25°,∠COE=12∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)45°或135°,理由如下:分两种情况:如上图所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如上图所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.例4.【2018·赣州市期末】已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC 的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE 恰好与直线OC重合,求t的值.【答案】见解析.【解析】解:(1)∠COE=∠DOE-∠COD=90°-50°=40°,故答案为:40°;(2)∵OE恰好平分∠AOC,∴∠AOE=∠COE=12∠AOC,∵∠DOE=90°,∴∠COD+∠COE=90°,∠BOD+∠AOE=90°,∴∠BOD=∠COD,即OD所在射线是∠BOC的平分线.(3)设∠COD=x°,则∠AOE=4x°,∴x+4x+90=180-50,解得:x=8,即∠BOD=∠BOC+∠COD=50°+8°=58°.(4)由题意可得,当旋转180°-40°=140°时,OE是线段CO的反向延长线,即旋转时间t=140÷5=28 秒;当旋转360°-40°=320°时,OE是线段CO的反向延长线,即旋转时间t=320÷5=64秒;即t值为28或64.题型三、动点与规律性题型例5.【2018·长葛市期中】如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是______.【答案】(-1,-1).【解析】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,运动时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为24,甲行的路程为24×13=8,乙行的路程为24×23=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为36,甲行的路程为36×13=12,乙行的路程为36×23=24,在A点相遇;…每相遇三次,两点回到出发点,由2018÷3=672…2,第2018次相遇地点的是:第二次相遇地点,此时相遇点的坐标为:(-1,-1),故答案为:(-1,-1).【刻意练习】1. 【2019·德阳市期中】如图所示,已知平面直角坐标系内A(2a-1,4),B(-3,3b+1),A、B两点关于y轴对称.(1)求A、B的坐标;(2)动点P、Q分别从A点、B点同时出发,沿直线AB向右运动,同向而行,P点的速度是每秒2个单位长度,Q点的速度是每秒4个单位长度,设P、Q的运动时间为t秒,当0<t<3时,①请用含t的代数式表示三角形OPQ的面积S.②在平面直角坐标系中存在一点M,点M的横纵坐标相等,且满足S∆PQM:S∆OPQ=3:2,求出点M的坐标,并求出当S∆AQM=15时三角形OPQ的面积.【答案】见解析.【解析】解:(1)∵A(2a-1,4),B(-3,3b+1),A、B两点关于y轴对称.∴2a-1+(-3)=0,4=3b+1,解得:b=1,a=2,即A点坐标为(3,4),B点坐标为(-3,4).(2)①由题意知,0<t<3时,点P坐标为(3+2t,4),Q点坐标为(-3+4t,4),且3+2t>-3+4t,PQ=3+2t-(-3+4t)=6-2t,所以S=12PQ×4=2(6-2t)=12-4t.②设点M坐标为(m,m),∵S∆PQM:S∆OPQ=3:2,∴12PQ×|m-4|:(12PQ×4)=3:2,解得:m=10或m=-2,即点M坐标为(10,10)或(-2,-2).当S∆AQM=15时,即12AQ×|m-4|=15,∴12|4t-6|×6=15,解得:t=14或t=114,此时,S=12-4t=11或1.2.【2018·重庆市期末】在平面直角坐标系中,点A坐标为(2,0),点B坐标为(﹣2,y),过点B作BC⊥x 轴于C.(1)如图1,如果△ABC的面积为6,求点B的坐标;(2)如图2,在(1)的情况下,AB=5,将线段AB向左平移,点A的对应点是点C,点B的对应点是点B′,连接BB′.若一动点P从点A出发,沿A→C→B→B′的路径以每秒2个单位的速度运动,设△ABP的面积为S(平方单位),时间为t(秒),请用t的式子表示S;(3)如图3,延长B′C交y轴于D,且AQ,DQ分别平分∠CAB,∠ODC,求∠AQD的度数.【答案】见解析.【解析】解:(1)由题意得,AB=4,则12×4×y=6,解得,y=3,即点B的坐标为(﹣2,3);(2)①当点P在AC上时,S=12×AP×BC=3t,②当点P在BC上时,S=12×(3+4﹣2t)×4=﹣4t+14,③当点P在B′B上时,S=12×(2t﹣7)×3=3t﹣212,(3)由题意得,∠ODC=∠ABC,∵∠ABC+∠BAC=90°,∴∠ODC+∠BAC=90°,∵AQ,DQ分别平分∠CAB,∠ODC,∴∠AQD=∠BAQ+∠CDQ=12(∠BAC+∠CDO)=45°.3.【2019·中山市期中】如图,在平面直角坐标系中,点A,B的坐标为(a,0),(0,b),且满足(a﹣4)2+=0,现将OA平移到BC的位置,连接AC,点P从点B出发,沿BC﹣CA运动,速度为每秒1个单位长度,设运动时间为t秒.(1)求出a和b的值;(2)求点P在运动过程中的坐标(用含t的式子表示).(3)点Q以每秒3.5个单位长度的速度从点A出发,在AO间往返运动,(两个点同时出发,当点P到达点A停止时点Q也停止),在运动过程中,直接写出当PQ∥OB时,点P的坐标.【答案】见解析.【解析】解:(1)∵(a﹣4)20,∴a﹣4=0,2a﹣3b﹣2=0,∴a=4,b=2,点A,B的坐标分别为(4,0),(0,2).(2)当0≤t≤4时,点P在线段BC上,BP=t,所以P点坐标可表示为(t,2),当4<t≤6时,点P在线段CA上,AP=6﹣t,所以P点坐标可表示为(4,6﹣t);(3)分两种情况:①0≤t≤4,点P在线段BC上时,BP=t,当OQ=BP时,PQ∥OB,i) 点Q的运动路线是A﹣O∵AQ=3.5t,∴OQ=OA﹣AQ=4﹣3.5t,∵OQ=BP,即4﹣3.5t=t,解得:t=,∴点P的坐标为(,2);ii)点Q的运动路线是A﹣O﹣A,OQ=3.5t﹣4,∵OQ=BP,∴3.5t﹣4=t,解得:t=,iii)点Q的运动路线是A﹣O﹣A﹣O,OQ=12﹣3.5t,∵OQ=BP,∴12﹣3.5t=t,解得:t=,∴点P的坐标为(,2);②点P在线段CA上时,4<t<6,Q只能在A点,此时t==,6﹣=,∴点P的坐标为(4,);综上所述,所求点P的坐标为(,2)或(,2)或(,2)或(4,).4. 【2018·赣州市期末】已知,在平面直角坐标系中,点A(0,m),点B(n,0),且m、n满足(m﹣n)2.(1)求A,B的坐标;(2)点E(x,4)为第二象限内一点,且满足S三角形AOE=13S三角形AOB,求点E的坐标;(3)如图,把线段AB向左平移a(a>0)个单位长度得到A1B1.①直接写出点B1的坐标:(用含a的式子表示)②若S四边形ABA1B1=3S三角形AOB,求a的值.【答案】见解析.【解析】解:(1)∵(m﹣n)2.∴m-n=0,n-4=0,∴m=n=4,即A点坐标为(0,4),B点坐标为(4,0).(2)∵S三角形AOE=13S三角形AOB,∴4×(-x)÷2= 13×4×4÷2得:x= 43,即E点坐标为(43,4).(3)①B1(4-a,0);②∵S四边形ABA1B1=3S三角形AOB,∴4a=3×12×4×4,得:a=6.5. 【2018·延庆县期末】已知:如图1,DE∥AB,DF∥AC.(1)求证:∠A=∠EDF.(2)点G是线段AC上的一点,连接FG,DG.①若点G是线段AE的中点,请你在图2中补全图形,判断∠AFG,∠EDG,∠DGF之间的数量关系,并证明.②若点G是线段EC上的一点,请你直接写出∠AFG,∠EDG,∠DGF之间的数量关系.【答案】见解析.【解析】解:(1)∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如图所示,过点G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG﹣∠EDG=∠DGF.如图所示,过点G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG﹣∠EDG=∠FGH﹣∠DGH=∠DGF.6.【2019·长沙市期末】在平面直角坐标系中,A(6,a),B(b,0),M(0,c).p点为y轴上一动点,且(b﹣2)2+|a﹣6|+=0.(1)求点B、M的坐标;(2)不论P点运动到直线OM上的任何位置(不包括点O、M),∠PAM、∠APB、∠PBO三者之间是否都存在某种固定的数量关系,如果有,请利用所学知识找出并证明;如果没有,请说明理由.【答案】见解析.【解析】解:(1)∵(b﹣2)2+|a﹣6|+=0,(b﹣2)2≥0,|a﹣6|≥0,≥0,∴a=6,b=2,c=6.∴M(0,6),B(2,0);(2)①如图,当点P在线段OM上时,结论:∠APB+∠PBO=∠PAM;理由:过点P作PQ∥AM,则PQ∥AM∥ON,∴∠1=∠PAM,∠2=∠PBO,∴∠1+∠2=∠PAM+∠PBO,即∠APB=∠PAM+∠PBO,∠APB+∠PBO=∠PAM;②如图,当点P在MO的延长线上时,结论:∠APB+∠PBO=∠PAM.理由:∵AM∥OB,∴∠PAM=∠3,∵∠3=∠APB+∠PBO,∴∠APB+∠PBO=∠PAM.③如图,当点P在OM的延长线上时,结论:∠PBO=∠PAM+∠APB.理由:∵AM∥OB,∴∠4=∠PBO,∵∠4=∠PAM+∠APB,∴∠PBO=∠PAM+∠APB;④如图,∠PBO=∠APB+∠MAP理由:∵AM∥OB,∴∠4=∠MAP,∵∠PBO=∠PAB+∠4,∴∠PBO=∠APB+∠MAP.7.【2018·阆中市期末】如图,长方形ABCD的顶点A,D在x轴上,OA=OD=2,AB=6.点P从原点出发,沿O﹣A﹣B﹣C﹣D﹣O的路径,以每秒2个单位的速度移动.(1)写出长方形4个顶点的坐标.(2)经过3s,指出点P的坐标.(3)经过多长时间,△POA的面积为5平方单位.(4)经过多长时间,△POA的面积最大.【答案】见解析.【解析】解:(1)A(2,0)、B(2,6)、C(-2,6)、D(-2,0).(2)以每秒2个单位的速度移动3s,点P运动路程为:6个单位,∵OA=2,∴6-2=4,即P点在AB上,纵坐标为4,故P点坐标为(2,4).(3)若△POA的面积为5平方单位,设P点纵坐标为y,则12×2y=5,解得:y=5,即P点坐标为(2,5)或(-2,5),此时P点运动路程为:7或15,运动时间为:72秒或152秒.(4)当P点运动至线段BC上时,三角形POA的面积最大,设运动时间为t秒,即当4≤t≤6时,三角形POA的面积最大.8. 【2018·临沂市期末】如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时,①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数在变化过程中,其度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.【答案】见解析.【解析】解:(1)∵AE∥OF,∴∠A=∠BOF=30°,∵OF平分∠BOC,∴∠BOC=2∠BOF=60°,∠COF=30°,∵OF⊥OG,∴∠FOG=90°,∴∠DOF=180°-∠COF=150°.∴∠BOG=∠FOG-∠BOF=90°-30°=60°,∠DOG=∠DOF-∠FOG=150°-90°=60°,∴∠AOD=60°=∠DOG,即OD平分∠AOG.(2)由(1)知,∠A=∠BOF=α,则∠BOG=90-α,∠AOD=∠BOC=2α,∠AOG=180-∠BOG=90+α,若OD是∠AOG的三等分线,则∠AOD=13∠AOG或∠AOD=23∠AOG,即2α=13(90+α)或2α=23(90+α),解得:α=18或α=45.9. 【2019·洛阳市月考】如图1,已知直角梯形ABCO中,∠AOC=90°,AB∥x轴,AB=6,若以O为原点,OA,OC所在直线为y轴和x轴建立如图所示直角坐标系,A(0,a),C(c,0)中a,c满足|a+c﹣10|+=0(1)求出点A、B、C的坐标;(2)如图2,若点M从点C出发,以2单位/秒的速度沿CO方向移动,点N从原点出发,以1单位/秒的速度沿OA方向移动,设M、N两点同时出发,且运动时间为t秒,当点N从点O运动到点A时,点M同时也停止运动,在它们的移动过程中,当2S△ABN≤S△BCM时,求t的取值范围:(3)如图3,若点N是线段OA延长上的一动点,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∥CJ,求的值(结果用含k的式子表示).(注:可使用定理:三角形的一个外角等于与它不相邻的两个内角的和;三角形的内角和为180°)【答案】见解析.【解析】解:(1)∵|a+c﹣10|+=0,∴a+c﹣10=0,c﹣7=0,∴c=7,a+c=10,∴c=3,∴A(0,3),C(7,0),∵AB∥x轴,AB=6,∴B(6,3);(2)由A(0,3),C(7,0),得OA=3,OC=7,由题意得:ON=t,CM=2t,∴AN=3﹣t,∵2S△ABN≤S△BCM,∴2××(3﹣t)×6≤×2t×3,解得:t≥2,∵当点N从点O运动到点A时,点M同时也停止运动,∴0≤t≤3,∴t的取值范围为2≤t≤3.(3)设AB与CN交于点D,如图所示:∵AB∥OC,∴∠BDC=∠OCD,∵∠BDC=∠BND+∠ABN,∠CNQ=k∠BNQ,∠NCH=k∠OCH,∴∠BDC=(k+1)∠BNQ+∠ABN,∠OCD=(k+1)∠OCH,即(k+1)∠BNQ+∠ABN=∠OCD=(k+1)∠OCH,∴∠ABN=(k+1)∠OCH﹣(k+1)∠BNQ=(k+1)(∠OCH﹣∠BNQ),∵NQ∥CJ,∴∠NCJ=∠CNQ=k∠BNQ,∵∠HCJ+∠NCJ=∠NCH=k∠OCH,∴∠HCJ=k∠OCH﹣∠NCJ=k∠OCH﹣k∠BNQ=k(∠OCH﹣∠BNQ),∴==.10.【2018·长沙市月考】如图,以直角三角形AOC的直角顶点O为原点,以所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,020b-=.(1)则点C的坐标为;点A的坐标为;(2)已知坐标轴上有两个动点P、Q同时出发,点P从C点出发向左以1个单位长度每秒的速度匀速移动,点Q从点O出发以2个单位长度每秒的速度向上移动。

初一数学下册动点问题

初一数学下册动点问题

初一数学下册中的动点问题张文彩初中一年级数学下册中有关几何内容是相交线与平行线,初一上册数学几何内容是点,线,面,体,还有角倍分的问题。

所以在初一阶段有关动点的问题相对简单,很多都与平行线有关,有时与平面直角坐标系结合一起,目的是考察学生的观察能力与思维能力。

下面根据平时的练习与本人的经验对初一数学下册出现的动点问题进行简单的总结,为初二初三年级研究复杂的动点问题打下坚实的基础。

动点在数轴上有规律的运动。

一、平面直角坐标中的动点。

在平面直角坐标系中根据平移的性质:平移前后的线段互相平行且相等,前后的线段就构成了平行四边形的一组对边,经常就会提出平行四边形的面积问题,三角形面积问题,由平行线可以设计一些有关角度之间关系的问题。

例1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)求点C ,D 的坐标及四边形ABDC 的面积 (2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)在x 轴上是否存在一点F ,使得三角形DFC 的面积是三角形DFB 面积的2倍,若存在请求出点F 的坐标;若不存在请说明理由。

ABDCS 四边形P D CBAOxy(4)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合),设△CDP 与△BOP 的面积和为S ,则S 的取值范围是什么?(5)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:解析:(1)根据平移规律:左右平移横变化,左减右加;上下平移纵变化,上加下减。

A (-1,0),向上平移2个单位后得到坐标为:(-1,2),再向右平移1个单位,得到点C (0,2);B 的坐标分别为(3,0),向上平移2个单位后得到坐标现(3,2),再向右平移1个单位得到点D (4,2)。

七年级下册数学动点问题

七年级下册数学动点问题

七年级下册数学动点问题一、动点问题相关知识点1. 数轴上的动点问题在数轴上,点的移动规律是根据移动方向和移动距离来确定新的位置。

如果一个点A表示的数为公式,向右移动公式个单位长度,则移动后的点表示的数为公式;向左移动公式个单位长度,则移动后的点表示的数为公式。

例如:点公式在数轴上表示公式,向右移动公式个单位后,表示的数为公式;向左移动公式个单位后,表示的数为公式。

2. 平面直角坐标系中的动点问题点公式在平面直角坐标系中的移动规律。

如果点公式向右平移公式个单位,其坐标变为公式;向左平移公式个单位,坐标变为公式;向上平移公式个单位,坐标变为公式;向下平移公式个单位,坐标变为公式。

例如:点公式向右平移公式个单位后变为公式;向下平移公式个单位后变为公式。

3. 动点与几何图形的关系在三角形、四边形等几何图形中,动点的运动可能会改变图形的形状、大小或者某些线段的长度、角度等。

例如,在三角形公式中,点公式是公式边上的一个动点,当公式点运动时,三角形公式和三角形公式的面积关系可能会发生变化。

对于线段长度,若点公式,点公式,则线段公式的长度根据两点间距离公式公式来计算。

当点公式或公式为动点时,线段公式的长度会随着动点的运动而变化。

二、典型题目及解析1. 数轴上的动点问题题目:已知数轴上点公式表示的数为公式,点公式表示的数为公式,点公式从点公式出发,以每秒公式个单位长度的速度向右运动,点公式从点公式出发,以每秒公式个单位长度的速度向左运动,设运动时间为公式秒。

(1)当公式时,求点公式和点公式所表示的数。

(2)经过多少秒后,点公式和点公式相遇?(3)当公式时,求公式的值。

解析:(1)点公式从点公式出发,向右运动,速度为每秒公式个单位长度,当公式时,点公式表示的数为公式。

点公式从点公式出发,向左运动,速度为每秒公式个单位长度,当公式时,点公式表示的数为公式。

(2)点公式和点公式相遇时,它们所经过的路程之和等于公式之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在
AD 的右侧..
作ADE △,使AD AE DAE BAC =∠=∠,,连接CE . (1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度;
(2)设BAC α∠=,BCE β∠=.
①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在BC 边的延长线上时有怎样的数量关系?请直接写出你的结论.
A
E
E A C
C D B B 图1
图2 A A 备用图
B C
B C 备用图
2(锦州)如图A,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.
(1)线段AF和BE有怎样的大小关系?请证明你的结论;
(2)将图A中的△CEF绕点C旋转一定的角度,得到图B,(1)中的结论还成立吗?作出判断并说明理由;
(3)若将图A中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形C(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;
(4)根据以上证明、说理、画图,归纳你的发现.
3.如图(1)△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;
(2)如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA 和射线BC上运动”,其他条
件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.请你利用图(2)的情形,求证:∠BQP=60°;
(3)如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他
条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE吗?写出证明过程.
4、如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM 上,两边分别与OA、OB(或其所在直线)交于点C、D.
(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.
(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.
(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD 相等吗?直接写出你的结论,不需证明.。

相关文档
最新文档