苏科版七年级上册数学练习题
苏科版七年级数学上册同步练习4.2 解一元一次方程第4课时 去分母(word版含答案解析)

4.2 解一元一次方程第4课时去分母
一、选择题(共4小题;共20分)
1. 解方程时,需在方程两边乘公分母
A. B. C. D.
2. 解方程有下列四个步骤,其中首先发生错误的是
A. B.
C. D. ,
3. 方程去分母得
A. B.
C. D.
4. 若代数式与的值相等,则的值是
A. D.
二、填空题(共5小题;共25分)
5. 方程的解是.
6. 将方程分母中的小数转化成整数后的方程
为:.
7. 在公式中,已知,,,则
.
8. 现规定一种新的运算,则满足等式的的值
为.
9. 若关于的方程与方程的解相同,则的值
为.
三、解答题(共6小题;共78分)
10. 解下列方程:
(1);
(2);
(3);
(4);
(5);
(6).
11. 解下列方程:
(1);
(2).
12. 已知与是关于的方程且有相同的解,
求的值.
13. 若是方程的解.
(1)问,满足什么条件?
(2)当时,求的值.
14. 规定新运算符号的运算过程为,则
(1)求;
(2)解方程.
15. 解方程.。
苏科版七年级数学上册阶段综合练(角、余角、补角、对顶角)【含答案】

苏科版七年级数学上册阶段综合练(角、余角、补角、对顶角)一、选择题1、如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .2、如图所示,∠1和∠2是对顶角的图形是( )A .B .C .D .3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④(3题) (4题) (6题)4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误6、如图,射线平分,以为一边作,60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒则 (BOP ∠=)A . B . C .或 D .或15︒45︒15︒30︒15︒45︒7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .(8题) (9题) (10题)9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC ∠=∠AOC AOE∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20(13题) (14题) (16题)14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.(17题) (18题)18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角; ③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).三、解答题19、计算:(1); (2); (3); (4).32175342427︒'''+︒'''90361215︒-︒'''2512355︒'''⨯536︒÷20、完成推理填空:如图,直线AB 、CD 相交于O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC =90°,∠COF =34° ( )∴∠EOF = °又∵OF 是∠AOE 的角平分线 ( )∴∠AOF ═ =56° ( )∴∠AOC =∠ ﹣∠ = °∴∠BOD =∠AOC = °( )21、如图,已知直线,相交于点,平分,平分.若,AB CD O OE BOD ∠OF COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF ?并说明理由.23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠答案一、选择题1、如图,下列各个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是( )A.B.C.D.【解题思路】根据角的表示方法判断即可.【解答过程】解:A、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;B、图形中的∠1,能用∠AOB,∠O表示,本选项符合题意;C、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;D、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;故选:B.2、如图所示,∠1和∠2是对顶角的图形是( )A.B.C.D.【答案】B【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可求解.【详解】解:对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,满足条件的只有B .故选:B .3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④【答案】B【分析】根据对顶角和邻补角的定义逐个判断即可得.【详解】解:和不是对顶角,互为邻补角,则①错误,②正确;1∠2∠,但和不一定相等,则③错误;12180∠+∠=︒1∠2∠由对顶角相等得:,则④正确;13∠=∠综上,正确的是②④,故选:B .4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数【答案】C【分析】由角平分线性质解得,根据对角线性质、平角性质解得,90EOF ∠=︒180AOD BOD ∠=︒-∠,据此解题.1,2AOC BOD DOF BOD∠=∠∠=∠【详解】解: OE ,OF 平分∠AOD ,∠BOD 11,22AOE EOD AOD DOF FOB BOD∴∠=∠=∠∠=∠=∠180AOD BOD ∠+∠=︒ 111()90222EOD DOF AOD BOD AOD BOD ∴∠+∠=∠+∠=∠+∠=︒90EOF ∴∠=︒180AOD BOD∴∠=︒-∠1,2AOC BOD DOF BOD∴∠=∠∠=∠都与∠BOD 大小变化有关,只有∠EOF 的度数与∠BOD 大小变化无关,故选:C .5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误【解题思路】根据方向角定义即可进行判断.【解答过程】解:根据方向角定义可知:灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,画出灯塔C 的位置如图3.故选:D .6、如图,射线平分,以为一边作,则 60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒(BOP ∠=)A .B .C .或D .或15︒45︒15︒30︒15︒45︒【分析】根据,射线平分,可得,分在内,在60AOB ∠=︒OC AOB ∠30BOC ∠=︒OP BOC ∠OP 内,两种情况讨论求解即可.AOC ∠【解析】,射线平分,60AOB ∠=︒ OC AOB ∠,1302AOC BOC AOB ∴∠=∠=∠=︒又15COP ∠=︒①当在内,OP BOC ∠,301515BOP BOC COP ∠=∠-∠=︒-︒=︒②当在内,OP AOC ∠,301545BOP BOC COP ∠=∠+∠=︒+︒=︒综上所述:或.15BOP ∠=︒45︒故选:.D7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°【解析】∵∠BOD =75°,∴∠AOC =75°,∵∠AOE :∠EOC =2:3,∴设∠AOE =2x °,∠EOC =3x °,则2x +3x =75,解得:x =15,∴∠AOE =30°,故选:B .8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .【分析】根据角平分线的定义得出∠BOD =2∠BOF ,∠BOF =∠DOF ,根据∠AOD :∠BOF =4:1求出∠AOD :∠BOD =4:2,根据邻补角互补求出∠AOD =120°,∠BOD =60°,求出∠AOC =60°,根据角平分线定义求出∠COE ,再求出答案即可.【解析】∵OF 平分∠BOD ,∴∠BOD =2∠BOF ,∠BOF =∠DOF ,∵∠AOD :∠BOF =4:1,∴∠AOD :∠BOD =4:2,∵∠AOD +∠BOD =180°,∴∠AOD =120°,∠BOD =60°,∴∠AOC =∠BOD =60°,∴∠BOF =∠DOF==30°, 6021∴∠COF =180°﹣∠DOF =150°,∵OE 平分∠COF ,∴∠COE=COF=,∠21 7515021=⨯∴∠AOE =∠AOC +∠COE =60°+75°=135°,故答案为:135°.9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC∠=∠AOC AOE ∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒【分析】根据对顶角相等可得,不是的角平分线,因此和不一AOD BOC ∠=∠AO COE ∠AOC ∠AOE ∠定相等,根据,利用平角定义可得,根据邻补角互补可得90EOD ∠=︒90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒【解析】、,说法正确;A AOD BOC ∠=∠、,说法错误;B AOC AOE ∠=∠、,说法正确;C 90AOE BOD ∠+∠=︒、,说法正确;D 180AOD BOD ∠+∠=︒故选:.B 10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒【分析】根据角平分线的定义和对顶角的性质即可得到结论.【解析】设,,2EOC x ∠=9EOB x ∠=平分,OA EOC ∠,12AOE EOC x ∴∠=∠=根据题意得,解得,9180x x +=︒18x =︒,18EOA AOC x ∴∠=∠==︒,18BOD AOC ∴∠=∠=︒故选:.C 二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠【答案】 外部1∠【分析】根据角的画法步骤,先画出∠AOB=∠1,再在∠AOB 的外部画出∠2,即可得到∠AOC【解析】画法详解:(1)画∠AOB=∠1.(2)以点O 为顶点,OB 为始边,在∠AOB 的外部作∠BOC=∠2;则∠AOC=∠1+∠2.故答案: (1)∠1 (2)外部12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠【分析】根据补角定义可得的度数,再根据对顶角相等可得答案.α∠【解析】的补角为,α∠ 100︒,18010080α∴∠=︒-︒=︒与是对顶角,α∠ β∠,80βα∴∠=∠=︒的余角的度为,β∴∠10︒故答案为:.10︒13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20【答案】110︒【分析】根据时针在钟面上每分钟转,分针每分钟转,然后分别求出时针、分针转过的角度,即可得到答0.5 6案.【详解】解:∵时针在钟面上每分钟转,分针每分钟转,0.5 6 ∴钟表上12时20分钟时,时针转过的角度为,分针转过的角度为,0.52010⨯= 620120⨯=所以时分针与时针的夹角为.12:2012010110-= 14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠【答案】75°.【分析】由邻补角的定义可求得∠COB =150°,然后根据角平分线的定义可求得∠2.【详解】解:∵∠1+∠COB =180°,∠1=30°,∴∠COB =180°﹣30°=150°.∵OE 是∠BOC 的平分线,∴∠2= ∠COB =75°.12故答案为:75°.15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=【分析】分两种情况:当在内时;当在外时.根据角平分线的定义,角的和差进行OC AOB ∠OC AOB ∠解答便可.【解析】当在内时,如图1,OC AOB ∠;11119020352222EOF BOE BOF AOB BOC ∠=∠-∠=∠-∠=⨯︒-⨯︒=︒当在外时,如图2,OC AOB ∠,11119020552222EOF BOE BOF AOB BOC ∠=∠+∠=∠+∠=⨯︒+⨯︒=︒故答案为:或.35︒55︒16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠【分析】首先根据余角的性质可得,再根据角平分线的性质可算出905040AOM ∠=︒-︒'=︒,再根据对顶角相等可得的度数,40280AOC ∠=︒⨯=︒BOD ∠【解析】.,90MON ∠=︒ 50BON ∠=︒,905040AOM ∴∠=︒-︒'=︒射线平分,OM AOC ∠,40280AOC ∴∠=︒⨯=︒.80BOD AOC ∴∠=∠=︒故答案为:.80︒17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.【答案】63°【分析】先求出∠AOD =54°,再求出∠BOD 和∠DOF ,即可求出∠BOF .【详解】解:∵∠DOE =90°,∠AOE =36°,∴∠AOD =90°﹣36°=54°,∵∠AOB =90°,∴∠BOD =90°﹣54°=36°,∵OF 平分∠AOD ,∴∠DOF ∠AOD =27°,12=∴∠BOF =36°+27°=63°.18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角;③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.【解析】,相交于点,,AB CD O 90BOE ∠=︒①与互为余角,正确;∴AOC ∠COE ∠②与互为余角,正确;BOD ∠COE ∠③,正确;AOC BOD ∠=∠④与互为补角,正确;COE ∠DOE ∠⑤设,则,,故与互为补角错误;30AOC ∠=︒120DOE ∠=︒180AOC DOE ∠+∠≠︒AOC ∠BOC DOE ∠=∠⑥,错误;AOC BOD COE ∠=∠≠∠故答案为:⑤⑥.三、解答题19、计算:(1); (2); (3); (4).32175342427︒'''+︒'''90361215︒-︒'''2512355︒'''⨯536︒÷【分析】(1)1度分,即,1分秒,即,依此计算加法;60=160︒='60=160'=''(2)1度分,即,1分秒,即,依此计算减法;60=160︒='60=160'=''(3)1度分,即,1分秒,即,依此计算乘法;60=160︒='60=160'=''(4)1度分,即,1分秒,即,依此计算除法.60=160︒='60=160'=''【解析】(1)原式;=︒'''=︒74596075(2)原式;=︒'''534745(3)原式;=︒'''=︒'''12560175126255(4)原式.850=︒'20、完成推理填空:如图,直线AB、CD相交于O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC=90°,∠COF=34°( )∴∠EOF= °又∵OF是∠AOE的角平分线( )∴∠AOF═ =56°( )∴∠AOC=∠ ﹣∠ = °∴∠BOD=∠AOC= °( )【分析】利用角的和差关系和角平分线定义可得∠AOF的度数,然后利用垂垂线定义计算出∠AOC的度数,再根据对顶角相等可得∠BOD的度数.【解析】∵∠EOC=90°,∠COF=34°(已知),∴∠EOF=56°,又∵OF是∠AOE的角平分线(已知),∴∠AOF ═∠EOF =56° (角平分线定义),∴∠AOC =∠AOF ﹣∠COF =22°,∴∠BOD =∠AOC =22°(对顶角相等).故答案为:已知;56;已知;∠EOF ;角平分线定义;AOF ;COF ;22;22;对顶角相等.21、如图,已知直线,相交于点,平分,平分.若,AB CD O OE BOD ∠OF COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠【答案】(1)40°;(2)150°【分析】(1)根据邻补角的性质,可求出的度数,再根据角平分线的性质即可求出的度数,DOB ∠DOE ∠(2)根据邻补角的性质,可求出的度数,再根据角平分线的性质,求出,在根据对顶角COE ∠COF ∠的性质求出,即可求出的度数.AOC ∠AOF ∠【详解】(1)∵直线,相交于点,AB CD O ∴,180AOD BOD ∠+∠=︒∵,100AOD ∠=︒∴,18080BOD AOD ∠=-∠=°°∵平分,OE BOD ∠∴.1402DOE BOD ∠=∠=°(2)∵,180COE DOE ∠+∠=°∴,180140COE DOE ∠=-∠=°°∵平分,OF COE ∠∴,1702COF COE ∠=∠=°∵,80AOC BOD ∠=∠=︒∴.150AOF AOC COF ∠=∠+∠=°22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF?并说明理由.【答案】(1)30°;(2)平分,理由见解析.【分析】(1)根据邻补角的概念求出,根据角平分线的定义计算,得到答案;BOC ∠(2)求出,根据题意分别求出,根据角平分线的定义证明即可.AOE ∠AOF EOF ∠∠、【详解】解:(1)∵∠AOC =120°,∴∠BOC =180°﹣120°=60°,∵OE 平分∠BOC ,∴∠BOE =∠BOC =×60°=30°;1212(2)OA 平分∠DOF ,理由如下:∵∠BOE =30°,∴∠AOE =180°﹣30°=150°,∵∠AOF :∠EOF =2:3,∴∠AOF =60°,∠EOF =90°,∵∠AOD =∠BOC =60°,∴∠AOD =∠AOF ,∴OA 平分∠DOF .23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠【分析】(1)根据互余、互补以及角平分线的定义可得答案;(2)由(1)的方法列出方程可求出答案.【解析】(1),,90DOE ∠=︒ 20AOE ∠=︒.902070AOD DOE AOE ∴∠=∠-∠=︒-︒=︒.180********BOD AOD ∴∠=︒-∠=︒-︒=︒平分.OF BOD ∠.∴111105522BOF BOD ∠=∠=⨯︒=︒故答案为:.55︒(2)设,AOE x ∠=则.5BOF x ∠=.90AOD x ∴∠=︒-.180(90)90BOD x x ∠=︒-︒-=︒+平分,OF BOD ∠.∴11(90)4522BOF x x ∠=︒+=︒+,∴14552x x ︒+=即9452x =︒,∴245109x =︒⨯=︒.10AOE ∴∠=︒24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠【答案】(1)10°;(2)①;②60°1602COF AOE∠=︒-∠【分析】(1)利用角平分线的定义以及角的和差计算即可求解;(2)利用角平分线的定义以及角的和差列式即可;(3)利用邻补角的定义结合(2)的结论即可求解.【详解】解:(1)∵,,∴,.80BOE ∠=︒60COE ∠=︒40AOC ∠=︒100AOE ∠=︒∵是的平分线,∴,OF AOE ∠1502AOF AOE ∠=∠=︒∴;10COF AOF AOC ∠=∠-∠=︒(2)①∵是的平分线,∴,OF AOE ∠12EOF AOE∠=∠∴;1602COF COE EOF AOE∠=∠-∠=︒-∠②∵∠BOE=180-∠AOE ,︒∴∠BOE-2∠COF=180-∠AOE-2(60-∠AOE)=180-∠AOE-120+∠AOE .︒︒12︒︒60=︒25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α【分析】(1)根据角平分线的定义先求出,再根据互补求出即可;AOD ∠BOD ∠(2)根据互余求出,再根据角平分线的定义求出,最后根据互补求出的答案;DOE ∠AOD ∠(3)由(2)的解题过程可得答案;(4)根据互余、互补、角平分线的定义可求出答案.【解析】(1)射线平分,,OE AOD ∠22250100AOD AOE DOE ∴∠=∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(2),,,90COD ∠=︒ 30COE ∠=︒903060DOE ∴∠=︒-︒=︒又平分,,OE AOD ∠2260120AOD DOE ∴∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(3),,,90COD ∠=︒ COE α∠=90DOE α∴∠=︒-又平分,,OE AOD ∠22(90)1802AOD DOE αα∴∠=∠=⨯︒-=︒-,180********BOD AOD αα∴∠=︒-∠=︒-︒+=故答案为:;2α(4)由图②得,,90DOE α∠=-︒平分,,OE AOD ∠22180AOD DOE α∴∠=∠=-︒,18018021803602BOD AOD αα∴∠=︒-∠=︒-+︒=︒-故答案为:.3602α︒-26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠【答案】(1)2,、,对顶角相等;(2)90°;(3)105°=COB AOD ∠∠=AOC BOD ∠∠【分析】(1)根据对顶角相等证明即可;(2)设,表示已知条件中的角推理计算即可;=AOC x ∠(3)结合(2)中的关系列方程即可求出x 的值,再由和互补求AOC COF ∠∠、DOF ∠COF ∠出.DOF ∠【详解】(1)根据对顶角相等可得图1中有2对相等的角(平角除外)分别是:,.=COB AOD ∠∠=AOC BOD ∠∠故答案为:2,、,对顶角相等;=COB AOD ∠∠=AOC BOD ∠∠(2)设°,则=AOC x ∠180BOC x ∠=︒-︒∵平分∴OF COB ∠11=9022COF BOC x ∠∠=︒-︒∴1==90+2AOF AOC COF x ∠∠+∠︒︒∵∴90COE ∠=︒1=2EOF COE COF x ∠∠-∠=︒∴;11=90+=9022AOF EOF x x ∠-∠-︒(3)∵:2:5AOC COF ∠∠=∴5=2AOC COF∠∠由(2)可知:,=AOC x ∠1=902COF x ∠︒-︒∴解得15=2(90)2x x ︒︒-︒30x =︒∴, ∴190=752COF x ∠=-︒180105DOF COF ∠=-∠=︒27。
第四章一元一次方程单元练习2024-2025学年苏科版数学七年级上册

第四章 一元一次方程单元练习 2024-2025学年苏科版数学七年级上册一、单选题1.将等式m n =变形错误的是( ) A .55m n +=+ B .22m n =-- C .0.20.2m n -=-D .22m n -=2.下列说法中,正确的是( ) A .如果34x -=,那么34x =- B .如果a bc c =,那么a b = C .如果ac bc =,那么a b =D .如果163x -=,那么2x =-3.已知2x =是关于x 的一元一次方程240x m +-=的解,则m 的值为( ) A .0B .2C .1-D .14.在下列方程中,解是1x =-的是( ) A .211x += B .122023x -= C .1x = D .13232x x +--= 5.若方程()2140m m x+++=是一元一次方程,则( ) A .1m =-或3-B .1m =-C .3m =-D .0m =6.若关于x 的一元一次方程1322023x x b +=+的解为3x =-,则关于y 的一元一次方程()()113212023y y b ++=++的解为( ) A .1y = B .2y =-C .=3y -D .4y =-7.解方程21101136x x ++-=时,去分母正确的是( ) A .21(101)1x x +-+= B .411016x x +-+= C .421016x x +--=D .2(21)(101)1x x +-+=8.对于非零的两个有理数a ,b ,规定1a b b a⊗=-,若()1211x ⊗+=,则x 的值为( ) A .32B .13C .12D .12-9.若关于x 的一元一次方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,则所有符合条件的整数m 之和为( )A .2B .1-C .0D .3-10.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则缺25本.设这个班有学生x 人,则可以列方程为( )A .320425x x -=+B .320425x x +=-C .202534x x +-=D .202534x x+=-11.爸爸对儿子说:“我像你这么大时,你才4岁.当你像我这么大时,我就79岁了.”现在爸爸( )岁.A .32B .54C .28D .3112.美食俱乐部共有58名成员,每个成员不是胖子就是瘦子.一次聚会时每个胖子带来15个包子分给瘦子,每个瘦子带来14个包子分给胖子.已知,每个胖子分到的包子一样多,每个瘦子分到的包子也一样多(都正好分完).那么成员中胖子的人数是( )A .27B .28C .27或30D .28或29二、填空题13.已知24x +与5x +互为相反数,则x = . 14.1x =-是方程310x m --=的解,则m 的值是 . 15.方程从4217x x +=-到4721x x -=--变形的依据是 .16.若关于x 的方程()22312x x -=-和()821k x -=+的解相同,则k 的值为 . 17.已知关于x 的方程23x m mx -=+与方程 1212x x -=+的解互为相反数,则m 的值为 .18.六(3)班全体同学去划船,如果减少一条船,每条船正好坐9人;如果增加一条船,每条船正好坐6人.六(3)班有 人. 三、解答题19.判断下列x 的值是不是一元一次方程345x x =+的解: (1)5x =. (2)3x =-. (3)5x =-.20.(1)5720.4x +=; (2)0.4:52:3x =. 21.解方程:(1)21 263 x xx--=-(2)541523412 y y y+--+=-22.小明把1020毫升果汁倒入9个小杯和2个大杯中,正好倒满.小杯的容量是大杯的14,小杯和大杯的容量各是多少毫升?23.甲、乙、丙三人同时从A跑向B,当甲跑到B时,乙离B还有20米,丙离B还有40米.当乙跑到B时,丙离B还有24米.则:(1)A B、两处相距多少米?(2)如果丙从A处跑到B处用了24秒,那么甲的速度是多少?24.有若干堆围棋子,每堆棋子数一样多,且每堆中白子都占28%.小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在所有的棋子中,白子占32%.那么,共有棋子多少堆?25.小海同学在校运动会400米赛跑中,先以6米/秒的速度跑完大部分赛程,最后以8米/秒的速度冲刺到达终点,成绩为65秒.请问:(1)小北同学冲刺的时间有多长?(2)如果他想把成绩提高1秒(即减少1秒钟),他需要提前几秒开始最后冲刺?。
苏科版七年级数学上册《2.7有理数的混合运算》同步练习题

苏科版七年级数学上册《2.7有理数的混合运算》同步练习题一、单选题)的结果是()1.计算(﹣1)÷52×(−125A.﹣1 B.1 C.5 D.2.计算24+24+24+24的结果是()A.216B.84C.28D.263.下列运算中正确的是().)=-5×2A.8-(-2)=8+2 B.(-5)÷(−12C.(-3)×(-4)=-7 D.2-7=(+2)+(+7)4.小明乘电梯从一楼到六楼,向上平移了15米,若每层楼的高度相同,则她乘电梯从十三楼到一楼()A.向下平移28.8米B.向下平移33米C.向下平移26.4米D.向下平移36米5.“24点”游戏规则是:从一副牌中(去掉大、小王)任意抽取4张牌,用上面的数字进行混合运算,使结果为24或—24.其中红色代表负数,黑色代表正数,A,J,Q,K分别代表1,11,12,13,例如张毅同学抽取的4张牌分别为红桃4、红桃3、梅花6、黑桃2,于是张毅同学列出的算式为(-4)×(-3-6÷2)=24,现在张毅同学想挑战“36点”,将这四张牌中的任意一张换成其它牌,使结果为36或—36,下列方法可行的有几种:①将红桃4换成黑桃6;②将红桃3换成红桃6;③将梅花6换成黑桃Q;④将黑桃2换成黑桃A()A.1种B.2种C.3种D.4种6.如图,是一个运算程序的示意图,若开始输入x的值为3125,则第2023次输出的结果为()A.1B.5C.25D.6257.一件衬衣进价为100元,利润率为20%,这件衬衣售价为()A.120元B.80元C.20元D.100元8.一艘船沿河向上游走了5.5千米,又继续向上游走了4.8千米,然后又向下游走了5.2千米,接着又向下游走了3.8千米,这时一艘船在出发点的()处.A.上游1.3千米B.下游9千米C.上游10.3千米D.下游1.3千米二、填空题1.计算:−7×(−227)+19×(−227)−5×(−227)= .2.若a ,b 互为倒数,c ,d 互为相反数,x 的绝对值等于2,则ab ﹣(c+d )+x 2= . 3.一辆汽车从仓库出发向东行驶了15千米后到达商场,卸完货向西行驶了20千米到达加油站,那么加油站位于仓库 面(填方向),距仓库 千米.4.在算式 4−|−2()3| 中的“( )”里,填入运算符号 ,使得算式的值最小(在符号+,-,×,÷中选一个)5.“24”点游戏,游戏规则:用一副扑克牌去掉大小王,从中任取4张,将抽出的数进行加减乘除四则运算,使其结果为24,如:1、2、3、4,可运算为 (1+2+3)×4=24 现抽3、-4、2、5,用上述规则写出运算等式使其结果为24,等式可以是 . 三、解答题 1.计算(1)(−6.5)−(−414)+834−(+312)+5 (2)12−214−312+2.25(3)−312×(−67)−(−10)÷(−23) (4)(−4)×(−3)+(−12)−23.2.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1℃,乙此时在山脚测得温度是5℃,已知该地区每增加100米,气温大约降低0.6℃,这个山峰的高度大约是多少米?3.计算:(1)3×(−2)+8÷(−4) (2)4×(−12)2−23÷(−8) (3)2÷[(−2)3−(−4)] (4)(16+136−14+112)×(−48) (5)15×34−(−15)×32−15×144.阅读下面题目解题过程: 计算:(-15)÷(13-12)×6=(-15)÷(-1)×6 (1)6=(-15)÷(-1)(2)=-15 (3)回答:①上面解题过程中有两个错误,第一处是,第二处是(填序号);②改正:5某服装厂一周计划生产2100件上衣,计划平均每天生产300件,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:件):星期一二三四五六日增减+3−1−4+10−9+5−4(1)根据记录可知该服装厂一周共生产上衣多少件?(2)产量最多的一天比产量最少的一天多生产多少件?(3)该服装厂实行计件工资制,每生产一件上衣50元,每天超额完成任务每个奖20元,每天少生产一个扣10元,那么该服装厂工人这一周的工资总额是多少?。
苏科版七年级数学上册同步练习附答案1.1 生活 数学

1.1 生活数学一、选择题1.寸是电视机常用规格之一,1寸约为拇指上面一节的长,则7寸长相当于().A.课本的宽度B.粉笔的长度C.课桌的宽度D.黑板的高度2.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为().A.量角器B.直尺C.三角板D.圆规3.已知4个矿泉水空瓶可以换矿泉水1瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水().A.3瓶B.4瓶C.5瓶D.6瓶4.有一排蜂房的形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去,则从最初位置爬到4号蜂房中,有()不同的爬法.A.4种B.6种C.8种D.10种二、填空题5.本学期,我们做过“抢30”的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30谁就获胜”改为“每次可以连说三个数,谁先抢到33谁就获胜”,那么采取适当策略,其结果者胜.6.将一根绳子两端分别涂上红色和白色,再在中间随意画3个圆点,涂上白色或红色,然后在这三个圆点处把绳子剪断,这样所得到的各小段两端都有颜色,则两端颜色不同的小段数目一定是(填奇数或偶数).三、解答题7.一辆轿车在高速公路上匀速行驶.它在经过如图的标志牌下时,速度已达40 m/s,并仍以此速度在向前开行.(1)标志牌告诉我们的信息是.(2)这辆车是否违反了交通法规?为什么?参考答案一、1.A 2.D 3.B 4.C二、5.先说数6.奇数三、7.解:(1)离临沂还有40 km远,限速100 km/h.(2)这辆车违反了交通规则.理由如下:因为40 m/s =144 km/h>100 km/h,所以这辆车超速,违反了交通法规.。
苏科版数学七年级上册第二章有理数有理数比大小(习题)

1.3.4 有理数加减混合运算【夯实基础】1.把(−2)−(+3)−(−5)+(−4)+(+3)统一成几个有理数相加的形式,正确的为( )A.(−2)+(+3)+(−5)+(−4)+(+3)B. (−2)+(−3)+(+5)+(−4)+(+3)C. (+2)+(+3)+(+5)+(+4)+(+3)D. (−2)−(+3)−(−5)+(−4)+(+3)2.下列各式不成立的是( )A.20+(−9)−7+(−10)=20−9−7−10B.−1+3+(−2)−11=−1+3−2−11C.−3.1+(−4.9)+(−2.6)−4=−3.1−4.9−2.6−4D.−7−(−18)+(−21)−34=−7−(18−21)−343.张大叔家共有十块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:千克):+32,+17,−39,−11,+15,−13,+8,+3,+11,−21.则今年小麦的总产量与去年相比( ).A.增产2千克B.减产2千克C.增产12千克D.减产12千克4.把(+6)−(−10)+(−3)−(+2)写成省略括号和加号的形式为__________________.5.小食堂会计某天办理了以下业务:支出150元,收入300元,支出210元,收入150元,支出65元,收入80元,问食堂这一天共收入____元.6.计算(1) (2)(3) (4)(+9)−(+10)+(−2)−(−8)+3−−−−+−(7)9(3)(5)−+−+4.2 5.78.410−++−14562312(5)|−0.75|+(−3)−(−0.25)+|−18|+78 (6)−478−(−512)+(−412)−318(7)−156+(−523)+2434+312 (8)634+313−514−312+123【能力提升】7.计算(1)1−2−3+4+5−6−7+8+⋯+97−98−99+100(2)12+16+112+120+130+142+156+1728.当a=23,b=−45,c=−34时,分别求下列式子的值:(1)a+b−c;(2)a−b+c;(3)a−b−c.9.若a、b、c是有理数,|a|=3,|b|=10,|c|=5,且a、b异号,b、c同号,求a−b−(−c)的值.【思维挑战】10.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8;继续依次操作下去.问:(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作所得的数串增加的所有新数之和是多少?。
苏科版数学七年级上册第二章有理数绝对值(习题)

1.2.4 绝对值【夯实基础】1. 下列说法错误的是 ( )A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数2.绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零3.已知点M ,N ,P ,Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A. MB. NC. PD. Q4.-8的绝对值是 ,记做 .5.绝对值等于5的数有 .6.________________的绝对值是2004,0的绝对值是 .7. 如果x <y <0, 那么|x | |y |.8.有理数a ,b 在数轴上的位置如图所示,则a b , ︱a ︱ ︱b ︱.9.|x |<π,则整数x =__________________________ .10.若|x |=|y |,且x =−3,则y =________.11.计算:(1)|−313|÷|−114|×|−12| (2)|−6|×(56−|−12|+|13|)12.某司机在东西路上开车接送乘客,他早晨从A地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞):+10 ,—5,—15 ,+ 30 ,—20 ,—16 ,+ 14. 若该车每百公里耗油3 L ,则这车今天共耗油多少升?13.某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数,检查结果(单位:L)如下:(1)哪几瓶是合乎要求的(即在误差范围内)?(2)哪一瓶的净含量最接近规定的净含量?【能力提升】14.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于本身的数一定是非负数A 3B 2C 1D 015.如果a=−,则a的取值范围是()2−a2A.a>O B.a≥O C.a≤O D.a<O16.已知|x|−|y|=2,且y=−4,则x=________________.17.若|−x|=−(−8),则x=____________,若|−x|=|−2|,则x=____________.【思维挑战】18.(1)式子|m−3|+6的值随m的变化而变化,当m为何值时,|m−3|+6有最小值?最小值是多少?(2)当a为何值时,式子8−|2a−3|有最大值,最大值是多少?。
苏科版七年级数学上册《6.1 线段、直线、射线》同步练习题-附带参考答案

苏科版七年级数学上册《6.1 线段、直线、射线》同步练习题-附带参考答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是()A.线段AB是A,B两点间的距离B.两点间的距离是一个正数,也是一个图形C.在所有连接两点的线中距离最短D.在连接两点的所有线中,最短的一条的长度就是两点间的距离2.已知线段AB=3cm,延长BA到C,使BC=5cm,则AC的长是()A.11cm B.8cm C.3cm D.2cm3.如图,C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD为()A.1 B.5 C.2 D.2.54.已知线段及点,若,则一定成立的是()A.点为线段的中点B.点在线段上C.点在线段的延长线上D.点在线段的延长线上5.点A、B、C是同一直线上的三个点,若,,则()A.11cm B.5cm C.11cm或5cm D.11cm或3cm6.如图,A、B、C、D四点在同一条直线上,M是AB的中点,N是DC的中点,MN=a,BC=b,那么AD等于()A.a+b B.a+2b C.2b﹣a D.2a﹣b7.如图,点AB、C顺次在直线l上,M是线段AC的中点,N是线段BC的中点.若想求出MN的长度,则只需条件()A.AC=26 B.AB=16 C.AM=13 D.CN=58.如图,数轴上有O,A,B三点,点O表示原点,点A表示的数为-1,若OB=3OA,则点B表示的数为()A.1 B.2 C.3 D.4二、填空题9.若在直线上取6个点,则图中一共出现条射线和线段.10.平面上有任意三点,过其中两点画直线,共可以画条直线.11.已知点C是直线AB上一点,AB=6cm,BC=2cm,那么AC的长是.12.如图所示,A地到B地有①②③④四条道路,其中第条道路最近,理由是13.在一场足球比赛中,运动员甲、乙两人与足球的距离分别是8m,17m,那么甲、乙两人的距离d的范围是.三、解答题14.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.15.根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,相交于点P.16.如图,已知线段AB的长为a,延长线段AB至点C,使BC=AD.(1)求线段AC的长(用含a的代数式表示);(2)取线段AC的中点D,若DB=3,求a的值.17.一辆出租车从超市(点)出发,向东走到达小李家(点),继续向东走到达小张家(点),然后又回头向西走到达小陈家(点),最后回到超市.(1)以超市为原点,向东方向为正方向,用表示,画出数轴,并在该数轴上表示、、、的位置;(2)小陈家(点)距小李家(点)有多远?(3)若出租车收费标准如下,以内包括收费元,超过部分按每千米元收费,则从超市出发到回到超市一共花费多少元?18.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为,如果点P到点M、点N的距离相等,那么x的值是;(2)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,请直接写出t的值.答案1.D2.D3.A4.D5.C6.D7.B8.C9.12;1510.1或311.4cm或8cm12.③;两点之间线段最短13.9cm≤d≤25cm14.解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cmAD=10x=10×2=20 cm15.解:画图如下:16.(1)解:∵AB=a,BC=AB∴BC=a∵AC=AB+BC∴AC=a+a=a(2)解:∵AD=DC=AC,AC=a∴DC=a∵DB=3,BC=a∵DB=DC﹣BC∴3=a﹣a∴a=1217.(1)根据数轴与点的对应关系,可知超市(O点)在原点,小李家(点)所在位置表示的数是+2,小张家(点)所在位置表示的数是+6,小陈家(点)所在位置表示的数是-4,画出数轴如图所示:(2)从数轴上值,小陈家(点)和小李家(点)距离为:2-(-4)=6(千米);(3)一共行驶了:2+4+10+4=20(千米)则一共花费了:10+(20-3)×3=61(元)则从超市出发到回到超市一共花费61元.18.(1)4;1(2)解:假设存在P,使点P到点M、点N的距离之和是8∴|−1−x|+|x−3|=8∴|x+1|+|x−3|=8当时解得;当时方程不成立;当时解得;综上所述,存在或时使点P到点M、点N的距离之和是8;(3)解:由题意得,t分钟后点P表示的数为,点M表示的数为,点N表示的数为∵t分钟时点P到点M、点N的距离相等∴|−t−(−1−2t)|=|−t−(3−3t)|∴|t+1|=|2t−3|∴t+1=2t−3或解得或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七 年 级 数 学 练习题
一、静心填一填(每题2分,共24分)
1、把长江的水位比警戒水位高0.2米,记为+0.2米,那么比警戒水位低0.25米, 记作__________。
2、绝对值等于3的数是___________。
3、在数轴上,表示与—2的点的距离为3的数是 。
4、某天早晨的气温是—7℃,中午上升了11℃,则中午的气温是 ℃。
5、某粮店出售的某种品牌的面粉袋上,标有质量为(25±0.2)的字样,从中任意 拿出两袋,它们的质量最多相差 kg 。
6、对代数式“5x ”,我们可以这样来解释:某人以5千米/小时的速度走了x 小时, 他一共走的路程是5x 千米。
请你对“5x ”再给出另一个生活实际方面的解释: 。
7、合并同类项:3a+2b —5a —b = 。
8、如图所示是计算机程序计算,若开始输入x =-1,则最后输出的结果是___ __。
9、128米长的绳子,第一次截去一半,第2次截去剩下的一半,如此截下去, 第7次后剩下的绳子长为 米。
10、请你把这五个数:+5,—2.5,
2
1
,—4,0, 按从小到大,从左到右串成葫芦状(数字写在○内) 11、某校去年初一招收新生x 人,今年比去年增加20%,
用代数式表示今年该校学生人数为 。
12、一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分
(如右图),则这串珠子被盒子遮住的部分有________颗。
二、开心选一选(每题2分,共12分)
13、 |-2|的相反数是( ) A .-
21 B . -2 C .2
1
D . 2 14、 下列四个数中,在-2到0之间的数是( )
A .-1
B . 1
C .-3
D . 3 15、-2的倒数是( )
A .2
B .
21 C .-2 D . -2
1 16、下列等式一定成立的是( )
A .3x+3y=6xy
B .16y 2
-7y 2
=9
输入x
×(—3)
—4
输出
C .-(x -6)=-x+6
D .3(x -1)=3x -1
17、为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米a 元收费;超过20立方
米,则超过部分加倍收费。
某户居民五月份交水费36a 元,则该户居民五月份实际用水为( ) A .18立方米 B .28立方米 C . 26立方米 D . 36立方米 18、已知代数式x+2y 的值是3,则代数式2x+4y+1值是( )
A. 1
B. 4
C. 7
D. 不能确定
三、细心做一做(写出必要的演算步骤)(本大题共28分)
19、计算题(每题4分,共16分)
① )5()2()10(8---+-+ ② ③ ⎪⎭
⎫ ⎝⎛-+-
⨯-31432124 ④ ()()[]
)3(22033
2-÷--+-
20、化简与求值(每题6分,共12分) ① 化简:)21(3)3(2x x -+-
② 先化简,再求值:
)3
1
23()31(221y x y x x +-+--,其中x =-1,y =2。
四、操作与解释(第21题6分,第22题4分,共10分)
回答下列问题:
①随着n
值的逐渐变大,这三个代数式的值增加最快的是。
②你预计代数式的值最先超过1000的是,此时n的值为。
22、如图,边长为12m 的正方形池塘的周围是草地,池塘边A、B、C、D处各有一棵树,且AB=BC=CD=3m。
现用长为4 m的绳子将一头羊栓在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子栓在何处?说明你的理由。
五、观察与思考(每小题6分,共12分)
23、观察右面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:
①
11 11
22⨯=-
②
22 22
33⨯=-
③
33 33
44⨯=-
④
44 44
55⨯=-
(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;
(2)猜想并写出与第n个图形相对应的等式.
24、如图,正方形的边长为a。
①用代数式表示阴影部分的面积;
②当a=12.5m,π取3.14时,计算阴影部分的面积。
(可用计算器,答案保留到百分位)
六、解决问题(第25题6分,第26题8分,共14分)
…………
25、在一条东西走向的马路上,有少年宫、学校、商场、医院四家公共场所。
已知少年宫在学校东300米,商场在学校西200米,医院在学校东500米。
若将马路近似地看成一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100米。
①在数轴上表示出四家公共场所的位置;②列式计算少年宫与商场之间的距离。
26、如图,将连续的奇数1、3、5、7 ……,排列成如下的数表,用十字框框出5个数。
问:
①十字框框出5个数字的和与框子正中间的数17有什么关系?
②若将十字框上下左右平移,可框住另外5个数,若设中间的数为a,用代数式表示十字框框住的5个数字之和;
③十字框框住的5个数字之和能等于2000吗?若能,分别写出十字框框住的5个数;若不能,请说明理由。
初中数学试卷。