小波分析在植物叶绿素高光谱遥感反演中的应用

合集下载

遥感定量反演农作物叶绿素的现状与发展

遥感定量反演农作物叶绿素的现状与发展

遥感定量反演农作物叶绿素的现状与发展黄祥;周蕊;王茜;王克晓;虞豹【摘要】叶绿素是农作物生长过程中重要的生理参数,其含量是评价农作物长势的重要指标.利用定量遥感技术对农作物叶绿素含量进行反演,可辅助大面积农作物长势监测、产量预测等.总结并分析了近几年遥感定量反演叶绿素的主要研究成果,表明物理模型法更具普适性,适宜大面积农作物叶绿素含量反演,是未来定量遥感发展的重要方向,但是有待辐射传输机理的进一步完善;统计模型法是目前应用最广的反演模型,但是无明确物理意义,探索通过不同光谱特征量组合来改善模型普适性,减弱环境因素影响,对提升当前统计模型反演精度有重要意义.【期刊名称】《安徽农业科学》【年(卷),期】2018(046)032【总页数】4页(P192-194,202)【关键词】农作物;定量遥感;叶绿素含量【作者】黄祥;周蕊;王茜;王克晓;虞豹【作者单位】重庆市农业科学院农业科技信息中心,重庆401329;重庆市农业科学院农业科技信息中心,重庆401329;重庆市农业科学院农业科技信息中心,重庆401329;重庆市农业科学院农业科技信息中心,重庆401329;重庆市农业科学院农业科技信息中心,重庆401329【正文语种】中文【中图分类】S127叶绿素是植物进行光合作用的重要物质,其含量是反映植被生长阶段以及营养状况的重要参数[1],对于作物长势监测、产量预测、病虫害监测等具有重要的意义。

常用的叶绿素含量测定方法是采用叶绿素速测仪测量叶绿素含量的相对值,如SPAD-502,它针对具体叶片进行测量,是样本点数据,而不是田块尺度的叶绿素面状分布数据,应用受限。

遥感技术以其简便快速、灵敏准确、非破坏性等优点,为区域尺度大范围的作物叶绿素含量监测提供了有效途径,它被广泛应用于农作物生化参数的估算。

当前关于叶绿素含量遥感反演已经取得了较大进展,其反演方法主要包括统计模型法、物理模型法和耦合模型法[2]。

该研究详细介绍了当前遥感反演农作物叶绿素含量的常见模型,比较了不同模型的优缺点,讨论了叶绿素含量估算模型的适用情况和发展趋势。

运用小波变换对遥感FTIR光谱进行信息提取

运用小波变换对遥感FTIR光谱进行信息提取

运用小波变换对遥感FTIR光谱进行信息提取刘芳;王俊德【期刊名称】《光谱学与光谱分析》【年(卷),期】2004(24)8【摘要】主要描述了如何利用小波变换技术, 对一些强度较弱和混叠干扰的遥感FTIR光谱图进行信息提取. 采用了墨西哥帽函数(Mexican hat function)小波, 对三氯甲烷、丙酮的标准谱图及其两者混合物的遥感谱图信号进行了连续小波变换. 结果发现, 尺度越小, 小波系数模的极大值点与突变点位置的对应就越准确. 但小尺度下, 小波系数由于受噪声影响, 往往只凭一个尺度不能定位突变点的位置. 相反, 在大尺度下, 对噪声进行了一定的平滑, 极值点相对稳定, 但由于平滑又会使定位产生偏差. 因此, 在用小波变换模极大值法判断信号突变点时, 需要把多尺度结合起来综合观察. 总之, 小波分析技术能够较准确地、稳定地定位信号突变点, 提取信息, 并且具有平滑和放大有用信号的作用. 对于非严重重叠的混合遥感光谱, 根据对不同尺度下的小波变换系数的模极大值及其定位的分析, 也可较好地识别谱图.【总页数】4页(P946-949)【作者】刘芳;王俊德【作者单位】南京理工大学化工学院现代光谱研究室,江苏,南京,210014;南京理工大学化工学院现代光谱研究室,江苏,南京,210014【正文语种】中文【中图分类】O657.33【相关文献】1.基于小波变换的遥感影像纹理信息提取 [J], 陈潇;邢立新;高志勇;元楠楠2.基于小波变换的连云港海岸线遥感信息提取 [J], 郭衍游;卢霞;邵飞卿3.利用ALI遥感图像进行矿化蚀变信息提取方法探讨 [J], 李雅辉;杨武年;刘汉湖;鲁岩4.利用农业遥感技术进行垦区水稻面积信息提取的研究 [J], 刘义;侯淑涛;于凤荣5.复杂结构构造区遥感图像的地质信息提取方法——基于小波变换的多层次图像分割 [J], 陆关祥;周鼎武;王居里;郝建荣因版权原因,仅展示原文概要,查看原文内容请购买。

高光谱图像处理与分析技术研究与应用

高光谱图像处理与分析技术研究与应用

高光谱图像处理与分析技术研究与应用高光谱图像处理与分析技术是一种利用高光谱图像获取和处理数据的技术。

它结合了光学、遥感、计算机科学和统计学等多学科的知识,旨在提取地物光谱信息、监测和分析环境变化、实现目标识别等应用。

高光谱图像处理与分析的流程包括数据获取、数据预处理、特征提取和目标识别等步骤。

首先,高光谱图像是通过高光谱遥感设备获得的,可以获取到地物的多个光谱波段信息。

数据预处理是为了去除噪声、校正图像等,使得图像更加清晰和准确。

特征提取是对图像进行分割和分类,从中提取出地物的特征信息。

目标识别是根据这些特征信息来判断地物的类别,并进行进一步的分析。

高光谱图像处理与分析技术在许多领域都有重要的应用价值。

首先,在农业中,利用高光谱图像可以对作物的生长状况、病虫害等进行监测和分析,帮助农民调整农作物的管理策略,提高农作物的产量和质量。

其次,在环境监测中,高光谱图像能够对大气污染、土壤质量、水质等进行监测,实现环境变化的动态监测和模拟预测。

此外,在城市规划和交通管理中,高光谱图像处理与分析技术可以帮助相关部门有效地进行资源利用和交通流量管理。

更为重要的是,在医学领域,高光谱图像处理与分析技术可以为医生提供更准确的影像诊断,促进疾病的早期发现和治疗。

然而,高光谱图像处理与分析技术也存在一些挑战和问题。

首先,高光谱图像的数据量大,处理起来时间和空间复杂度较高。

其次,不同遥感平台的高光谱图像具有不同的特点,如空间分辨率、光谱分辨率等,需要根据具体应用场景进行选择和优化。

此外,在目标识别过程中,需要考虑到不同地物的光谱特征和相互之间的干扰,以提高目标识别的准确性和实用性。

为了进一步提升高光谱图像处理与分析技术的研究与应用水平,我们可以从以下几个方面进行努力。

首先,需要加强对高光谱图像处理算法的研究与优化,提高图像的质量和准确性。

其次,可以利用机器学习和人工智能等技术,构建高效的目标识别模型,提高目标识别的效率和准确度。

高光谱遥感图像处理与应用研究

高光谱遥感图像处理与应用研究

高光谱遥感图像处理与应用研究遥感技术是地球科学和自然资源管理领域的核心技术之一。

高光谱遥感是一种近年来发展迅猛的高分辨率遥感技术,其具有高维度、高分辨率和高覆盖面积等优势,被广泛应用于农业、森林、城市规划和环境监测等领域。

本文将对高光谱遥感图像的处理方法和应用进行简要介绍。

一、高光谱遥感图像的处理方法(一)预处理高光谱遥感图像的预处理是为了降低图像噪声和增强图像特征,以提高后续分析处理的准确性和可信度。

1、辐射校正:即将图像灰度值归一化为反射率,以消除光照不均匀和大气影响。

2、几何校正:对图像进行几何校正可以消除成像中的扭曲和畸变,使得图像更为准确和精确。

3、噪声去除:高光谱遥感图像常常伴随着高噪声,因此需要通过噪声滤波或概率降噪等方法来降低图像噪声。

(二)特征提取特征提取是高光谱遥感图像处理的重要环节,它是提取图像中某些特定目标信息的过程。

1、主成分分析法(PCA):PCA是最常见的特征提取算法之一,可以将高光谱数据降维并提取主成分,以保留更有效的信息,提高分类精度。

2、端元分解法(VCA):VCA是一种基于混合像元模型的特征提取方法,可以将每个像素分解为混合的端元(pure pixels)和混杂像元,从而更好地识别目标对象。

(三)分类识别分类识别是高光谱遥感图像分析最常用的技术之一,它是将图像中像素点进行分类,把同一类别的像素标注相同标签的过程。

1、常用分类算法:传统的分类算法包括最小距离分类、支持向量机(SVM)分类、KNN分类等。

2、深度学习分类:随着深度学习的发展,深度卷积神经网络(CNN)被广泛应用于高光谱遥感图像分类中,并在各种分类任务中取得了不错的效果。

二、高光谱遥感图像的应用研究(一)农业领域高光谱遥感图像可以用于农作物的分类、生长状态的监测和病虫害的诊断,从而帮助农业生产做出更加科学和精准的决策。

(二)森林资源管理领域高光谱遥感图像可用于森林植被覆盖度、森林生物多样性、森林类型等指标的监测和评估。

植物叶绿素含量遥感监测及其应用

植物叶绿素含量遥感监测及其应用

植物叶绿素含量遥感监测及其应用随着遥感技术的发展,越来越多的自然资源可以通过卫星遥感获取,其中植物叶绿素含量是一项热门研究领域。

植物叶绿素含量是植物光合作用的一个重要指标,可以反映植物的健康状况和生长发育情况。

因此,植物叶绿素含量的遥感监测和应用已经成为生态环境、农业和林业等领域的研究热点。

一、植物叶绿素含量遥感监测方法植物叶绿素含量的遥感监测方法主要是通过卫星的遥感数据来反演。

这些数据包括多光谱遥感数据和高光谱遥感数据。

多光谱遥感数据一般包括绿色波段、红色波段和近红外波段等,可以用来计算植被指数(例如归一化植被指数)和反演叶绿素含量。

高光谱遥感数据包含更多的光谱波段,可以更准确地反演叶绿素含量。

通过这些遥感数据,研究人员可以计算出反射率光谱曲线。

在这个过程中,需要对光谱计算进行校正,包括大气校正、地表反射校正等。

然后,可以使用遥感反演算法来计算植物叶绿素含量。

遥感反演算法基于统计模型、机器学习等方法,可以将反演光谱曲线和实测植物叶绿素含量之间的关系建立起来,从而计算出遥感获取的叶绿素含量。

二、植物叶绿素含量遥感监测应用1. 生态环境监测植物叶绿素含量可以反映生态系统和环境的状态。

通过遥感监测叶绿素含量,可以对全球性的环境进程进行追踪和评估,例如气候变化对生态系统的影响、湿地环境的变化、水质的污染状况等等。

我们可以将不同区域的植物叶绿素含量进行比较,从而了解环境变化的影响。

2. 农业生产植物叶绿素含量也广泛应用于农业领域。

在作物生长过程中,叶绿素含量与作物的生长状态和健康情况密切相关。

通过遥感监测农田中的叶绿素含量,可以对作物的生长情况进行评估并及时采取调控措施,提高作物产量和质量。

3. 森林监测森林是地球系统中重要的碳汇,森林生态系统的变化对于全球气候的影响非常重要。

植物叶绿素含量的遥感监测在森林监测中也有广泛的应用。

通过遥感监测森林中不同树种的生长状况,可以及时发现森林病虫害和火灾等问题,并采取措施预防和解决。

植物日光诱导叶绿素荧光的遥感原理及研究进展

植物日光诱导叶绿素荧光的遥感原理及研究进展

植物日光诱导叶绿素荧光的遥感原理及研究进展一、本文概述植物叶绿素荧光作为一种非侵入性的生物光学现象,已经成为遥感科学领域的研究热点。

叶绿素荧光主要来源于植物在吸收阳光能量后,经过一系列光化学反应产生的能量释放。

这一过程不仅能够反映植物的光合作用活性,还能提供关于植物生理状态、环境胁迫和生态系统功能的重要信息。

本文旨在深入探讨植物日光诱导叶绿素荧光的遥感原理,总结并分析近年来该领域的研究进展,以期为叶绿素荧光遥感技术的发展和应用提供理论支撑和实践指导。

文章首先将对植物叶绿素荧光的产生机制进行详细阐述,包括其光化学过程和影响因素。

在此基础上,进一步介绍叶绿素荧光遥感的基本原理和技术方法,包括荧光信号的获取、传输和处理等关键环节。

接着,文章将重点综述近年来植物叶绿素荧光遥感在生态系统监测、环境胁迫评估、作物生理状态诊断等方面的应用实例和研究成果。

文章还将对叶绿素荧光遥感面临的挑战和未来发展趋势进行探讨,以期为相关领域的研究者和技术人员提供有益的参考和启示。

二、植物叶绿素荧光的产生机制植物叶绿素荧光,作为一种光化学反应的产物,其产生机制涉及到光合作用过程中的能量转换和光保护机制。

叶绿素作为植物光合作用的核心色素,主要吸收光能并将其转换为化学能,驱动植物的生长和发育。

然而,当植物吸收的光能超过其光合作用系统所能利用的范围时,就会发生光抑制现象,导致叶绿素荧光的产生。

在光合作用的光反应阶段,植物通过叶绿素吸收光能,将水分解为氧气和电子,同时生成高能磷酸键,为暗反应提供能量。

然而,当光能过剩时,叶绿体内的反应中心会受到损伤,导致电子传递链受阻,从而产生荧光。

这种荧光是叶绿素分子在受到激发后,从高能级向低能级跃迁时释放的能量。

叶绿素荧光的产生与植物的光保护机制密切相关。

为了应对光能过剩带来的压力,植物会启动一系列光保护策略,包括非光化学猝灭(NPQ)和光呼吸等。

非光化学猝灭是一种通过热能形式耗散过剩光能的机制,而光呼吸则是在光合作用暗反应阶段通过消耗氧气和还原力来减轻光抑制。

ANFIS在植被叶绿素含量高光谱反演中的应用

ANFIS在植被叶绿素含量高光谱反演中的应用
第3卷 , 7 0 第 期 20 l0年 7月








Vo . 0 No 7 p 1 3 — 8 8 13 , . ,p 8 41 3
S e to c p n p c r lAn l ss p crs o y a d S eta ay i
J l ,2 1 uy 0 0
括 光谱反射率 、导数光谱 、植被指数 、 去包络线方 法l ; _ 5 二
引 言
光合作用过程 中吸收光能 的植被色 素有叶绿素 ( 叶绿 素 a ,叶绿 素 b 与类 胡萝 卜 ( ) 素 胡萝 卜 素和 叶黄素 ) 其 中叶绿 ,
素是主要 的吸收光能的物质 , 直接影响植 被光合作用 的光 能 利用 。 植被色素含量与其光合能力 、 育阶段 和氮素状况 有 发 较好 的相关性 ,已经 成为评 价植 被长势 的一种有 效手段[ 。 由于植被和叶子反射光谱在可见 光范 围主要受植被色 素( 叶
是基 于特征光谱位置变量的分析技术 ,包括 红边位置 、绿峰 位 置等[ ;三是 光学传输模型方法[ 。
迄今为止 ,高光谱遥感在检测 植被 ,尤其是农作 物的叶 绿 素含量反演方面 已经取得 了很大进展 。 蒋金豹 等对 在病害
胁迫下冬小麦冠层叶片色素含量的高光谱遥感估算进行 了研 究 [ ;宋开山等对大豆冠层的反射率光谱与 叶绿 素含 量之间 9
多且窄的特点 ,能直 接对 植被 进行 微弱 光谱 差异 的定 量 分
析 ,为植被生理参数 的定量化诊断提供 了简便 、快速、有效 、 非破坏性的数据采集 和处理方法 。 植被 叶绿 素含量 的高光谱 遥感检测首先是在 叶片级别开展 的l , 而在冠层级别得 到 l 进 3 ]

基于连续小波变换的土壤有机质含量高光谱反演

基于连续小波变换的土壤有机质含量高光谱反演

中国农业科技导报ꎬ2021ꎬ23(5):132-142JournalofAgriculturalScienceandTechnology㊀收稿日期:2020 ̄08 ̄24ꎻ接受日期:2020 ̄10 ̄24㊀基金项目:内蒙古自治区科技重大专项(2019ZD003)ꎮ㊀联系方式:陈昊宇E ̄mail:chenhaoyu0807@163.comꎻ∗通信作者杨光E ̄mail:yg331@126.com基于连续小波变换的土壤有机质含量高光谱反演陈昊宇ꎬ㊀杨光∗ꎬ㊀韩雪莹ꎬ㊀刘昕ꎬ㊀刘峰ꎬ㊀王宁(内蒙古农业大学沙漠治理学院ꎬ内蒙古自治区风沙物理与防沙治沙工程重点实验室ꎬ呼和浩特010010)摘㊀要:以托克托县境内120个土壤有机质含量以及对应光谱数据为数据源ꎬ探究了不同土壤类型与土地利用类型下土壤有机质高光谱反演研究的可行性ꎬ采用连续小波变换对原始光谱(R)㊁光谱倒数(1/R)㊁光谱对数(LnR)㊁光谱一阶微分(Rᶄ)进行分解生成小波系数并与土壤有机质进行相关系分析ꎬ提取特征波段建立BP神经网络与支持向量机模型(SVM)ꎮ结果表明:①R㊁1/R㊁LnR㊁Rᶄ与土壤有机质相关系数经过连续小波变换后ꎬ较之前增加了0.204㊁0.090㊁0.199㊁0.252ꎬ表明连续小波变换可深度挖掘光谱潜在信息ꎬ提升与有机质含量之间的相关系数ꎮ②未经过连续小波处理前ꎬSVM无法实现对当地土壤有机质含量的预测ꎬ经过处理后ꎬ模型SVM ̄CWT ̄R与SVM ̄CWT ̄Rᶄ的精度决定系数分别达到了050㊁0.56ꎬ均方根误差为0.17㊁0.15ꎬ相对分析误差为1.62㊁1.53ꎬ实现了对土壤有机质的有效估算ꎮ③经过连续小波变换后BP神经网络预测模型结果得到提升ꎬ其中BP ̄CWT ̄LnR预测模型效果最佳ꎬ精度决定系数达到0.76ꎬ较之前BP ̄LnR提升了0.2ꎻ均方根误差达到0 15ꎬ降低0.04ꎻ相对分析误差为2.12ꎬ增加了0.87ꎮ因此利用BP ̄CWT ̄LnR高光谱反演模型进行区域土壤有机质遥感监测ꎬ可为当今精准农业提供理论参考与技术支持ꎮ关键词:连续小波变换ꎻBP神经网络ꎻ支持向量机ꎻ精准农业doi:10.13304/j.nykjdb.2020.0742中图分类号:S127㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008 ̄0864(2021)05 ̄0132 ̄11HyperspectralInversionofSoilOrganicMatterContentBasedonContinuousWaveletTransformCHENHaoyuꎬYANGGuang∗ꎬHANXueyingꎬLIUXinꎬLIUFengꎬWANGNing(KeyLaboratoryofAeolianPhysicsandDesertificationControlEngineeringfromInnerMongoliaAutonomousRegionꎬCollegeofDesertControlScienceandEngineeringꎬInnerMongoliaAgriculturalUniversityꎬHohhot010010ꎬChina)Abstract:Takingorganicmattercontentsof120soilsamplesandcorrespondingspectraldatainTuoketuoCountyasdatasourcesꎬthefeasibilitiesofhyperspectralinversionofsoilorganicmattersunderdifferenttypeofsoilsandlandsofdifferentusewereexplored.Theoriginalspectrum(R)ꎬspectralreciprocal(1/R)ꎬspectrallogarithm(LnR)andspectralfirst ̄orderdifferential(Rᶄ)weredecomposedbycontinuouswavelettransformtogeneratewaveletcoefficientsꎬandthecorrelationbetweensoilorganicmatterandwaveletcoefficientswasanalyzedꎬandBPneuralnetworkandsupportvectormachine(SVM)wereestablishedbyextractingthecharacteristicbands.Theresultswerefollowed.①ThecorrelationcoefficientsbetweenRꎬ1/RꎬLnRꎬRᶄandsoilorganicmatterwereincreasedby0.204ꎬ0.090ꎬ0.199and0.252aftercontinuouswavelettransformꎬrespectivelyꎬwhichshowedthatcontinuouswavelettransformcoulddeeplyminethepotentiallyspectralinformationandenhancethecorrelationwithorganicmattercontent.②BeforecontinuouswaveletprocessingꎬSVMcouldnotpredictthecontentofsoilorganicmatterꎬwhileafterprocessingꎬtheaccuracies(R2)ofSVM ̄CWT ̄RandSVM ̄CWT ̄Rᶄwere0.50and0.56ꎬRootmeansquareerrors(RMSE)were0.17and0.15ꎬresidualpredictivedeviations(RPD)were1.62and1.53ꎬrespectivelyꎬwhichrealizedtheeffectiveestimationofSOM.③AftercontinuouswavelettransformꎬtheresultsofBPneuralnetworkpredictionmodelwereimproved.AmongthemꎬBP ̄CWT ̄LnRpredictionmodelhadthebesteffectꎬR2was0.76ꎬwhichwashigherthanBP ̄lnRꎬRMSEwas0.15reducedby0.04ꎬRPDwas2.12increasedby0.87.ThereforeꎬtheBP ̄CWT ̄LnRhyperspectralinversionmodelcouldprovidetheoreticalreferenceandtechnicalsupportforprecisionagriculture.Keywords:continuouswavelettransformꎻBPneuralnetworkꎻsupportvectormachineꎻprecisionagriculture㊀㊀精准农业作为目前农业发展的主要方向ꎬ是一种基于信息和知识管理的现代化生产系统ꎬ主要是通过3S(GPS㊁GIS和RS)技术与现代农业相结合ꎬ最大限度地提高农业生产力ꎮ所以快速㊁无损㊁精确地获取土壤中水分㊁养分的空间分布成为了实现精准农业的关键环节ꎬ近年来ꎬ光谱分析在土壤化学分析领域得到了迅猛发展ꎬ为实现土壤养分的快速诊断提供了新思路[1]ꎮ有机质是土壤养分供应能力和肥力的重要指标之一ꎬ在全球碳循环中发挥着重要作用ꎮ因此ꎬ快速准确地估测土壤有机质含量对于发展精准农业具有重要意义[2]ꎮ传统的土壤有机质测定方法虽然精度比较高ꎬ但周期较长㊁成本较高ꎬ只能达到瞬测量ꎬ很难进行长时间大面积测量ꎮ高光谱遥感具有波段多㊁波段窄㊁信息丰富和实时高效等特点ꎬ为快速测量土壤有机质含量提供了一种新的方法和手段[3]ꎮ国内外已经有大量研究表明ꎬ通过对光谱数据进行不同的数学变换(主要通过对光谱进行倒数㊁对数㊁微分㊁平方根㊁吸收峰深度㊁包络线去除等方法)可以有效提高光谱数据与土壤有机质含量之间的相关系数ꎬ有效筛选出光谱信息中的敏感波段[4]ꎮ现在各学者主要将研究重心放到了模型建立上[5]ꎬ普遍运用的线性模型有多元逐步回归与偏最小二乘回归[6]ꎻ常见的非线性模型包括BP神经网络[7]㊁支持向量机[8]㊁决策树[9]等ꎬ而且随着非线性模型算法的逐步改良与完善ꎬ在土壤有机质含量估算中已经成为不可取代的一部分ꎮ随着小波算法的改进与发展ꎬ最初仅运用于植物叶绿素㊁冠层成分含量预测中[10 ̄11]ꎬ目前已成为土壤养分预测的热点问题[12 ̄13]ꎬ连续小波变换是目前被广泛应用的一种方法ꎮ王祥浩[14]选择土地裸露地区为样区ꎬ利用神经网络算法对光谱连续小波变换㊁一阶导数㊁对光谱的平均值处理㊁光谱背景及深度4种方法建模ꎬ模型结果表明ꎬ小波变换方法得到的神经网络模型精度最高ꎻ包青岭等[15]选择渭干河-库车河三角洲具有代表性的干旱区绿洲为研究区ꎬ对光谱进行8层分解ꎬ结果表明小波变换不同分解层ꎬ从低频到高频范围内与土壤有机质含量的相关性呈现先减后增的趋势ꎬ结合随机森岭模型可以对干旱区土壤有机质含量进行有效的估算ꎻ王延仓等[16]以北京东部区潮土为例ꎬ对不同梯度重采样的光谱进行连续小波变换后ꎬ利用偏最小二乘法建立模型ꎬ结果表明连续小波分析算法可深入挖掘土壤光谱内的有益信息ꎬ提升对有机质含量的估测能力ꎬ与土壤高光谱反射率相比ꎬ经连续小波技术处理后ꎬ模型精度得到了有效的提升ꎻ叶红云等[17]同样针对干旱区土壤ꎬ通过对两种常用光谱变换Rᶄ㊁Ln(1/R)进行连续小波变换建立偏最小二乘模型ꎬ结果表明连续小波变换不会因人类干扰程度的提高而使模型精度大幅度降低ꎬ更加适用于干旱区有机质含量的预测ꎻ林鹏达等[18]通过解决黑土有机质高光谱野外反演的困难ꎬ同样证明了连续小波变换可有效提升模型精度ꎮ小波技术在土壤有机质高光谱反演研究中逐渐趋于成熟ꎬ但目前学者的研究多数都在同一土壤类型下或同一区域内ꎬ对于不同土壤类型及土地利用下土壤有机质高光谱反演是否存在影响的研究目前并不多ꎮ本文研究区内土壤类型主要包括3类:沙壤土㊁栗钙土㊁盐碱土ꎬ且部分区域土壤盐渍化程度严重ꎬ导致土壤养分空间分布上存在较大差异ꎬ取样表层土地利用类型主要包括:耕地㊁林地㊁草地㊁盐渍地㊁荒地ꎮ通过对原始光谱(R)㊁原始光谱倒数(1/R)㊁原始光谱对数(LnR)以及原始光谱一阶微分(Rᶄ)4种不同情况进行连续小波变换ꎬ利用BP神经网络以及支持向量机2种模型ꎬ探究了不同土壤类型与不同土地利用类型下是否会对土壤有机质高光谱反演模型产生影响ꎬ小波变换前后土壤有机质反演模型的精度ꎬ旨为区域土壤有机质含量监测及实现精准农业提供理论与技术支持ꎮ1㊀材料与方法1.1㊀研究区概况托克托县隶属于内蒙古自治区呼和浩特市ꎬ位于自治区中部㊁大青山南麓㊁黄河上中游分界处北岸的土默川平原上(图1)ꎮ地理坐标东经3315期陈昊宇等:基于连续小波变换的土壤有机质含量高光谱反演111ʎ2ᶄ30ᵡ 111ʎ32ᶄ21ᵡ㊁北纬40ʎ5ᶄ55ᵡ 40ʎ35ᶄ15ᵡꎬ总面积1409.67km2ꎬ平均海拔1117mꎬ属于温带大陆性干旱气候ꎬ年均气温7.3ħꎬ年均降雨362mmꎮ托克托县耕地总面积达400km2ꎬ其中古城镇㊁新营子镇和五申镇的耕地较多ꎬ占全县耕地面积的60%以上[19]ꎬ主要作物包括小麦㊁玉米㊁莜麦ꎮ工农业及生产生活用水主要来源于大黑河和黄河水资源ꎬ整个地形以大黑河为轴ꎬ呈现由丘陵向平原过渡的趋势ꎬ地势为东南高㊁西北和西南低ꎮ东南向西北土壤类型依次为栗钙土㊁砂壤石灰性冲积土㊁盐渍化石灰性冲积土[20]ꎬ土壤类型的不同导致土壤养分存在差异性分布ꎮ植被类型从西向东依次为草甸草原㊁干草原和退化灌丛草原分布ꎮ以Landsat8OLI影像为基础数据源ꎬ运用人工目视解译与BP神经网络分类法得到托克托县2019年7月份土地利用数据ꎬ其中耕地面积最大为730.12km2ꎬ占51.79%ꎻ林草地338.7km2ꎬ占24.02%ꎻ盐碱地141.1km2ꎬ占10.00%ꎮ详细土地利用空间分布见图1ꎮ图1㊀土样采集点及土地利用空间分布Fig.1㊀Collectionpointsofsoilsamplesandspatialdistributionoflanduse1.2㊀研究方法1.2.1㊀土样采集与处理㊀土壤样本点均匀地分布在托克托县境内ꎬ采集方法为五点采样法ꎬ采集深度为0 20cmꎬ共采集120个点ꎮ采集的土样置于通风干燥室内进行自然风干㊁研磨ꎬ过10目筛ꎬ进行土壤光谱测定ꎻ过100目筛ꎬ采用重铬酸钾外加热法进行土壤有机质含量测定ꎮ1.2.2㊀光谱测量及光谱处理㊀土壤光谱于暗室内测量ꎬ采用SVCHR ̄1024(北京东方佳气科技有限公司)便携式光谱仪ꎬ光谱范围在350~2500nmꎮ在350~1000nm波段之间光谱分辨率ɤ3.5nmꎻ在1000~1850nm波段之间ꎬ光谱分辨率ɤ9.5nmꎻ在1850~2500nm波段之间ꎬ光谱分辨率ɤ6.5nmꎮ光源采用与太阳光接近的50W卤素灯ꎬ将土壤样品放入深2cm㊁宽10cm的黑色器皿内ꎬ用直尺将土壤表面刮平ꎬ探头距离土样10cmꎬ光源距离土壤表面30cmꎬ天顶角为15ʎꎮ测量前用白板进行标定ꎬ每个土样采集5条光谱作为该土样的光谱数据ꎮ由于受噪音与仪器暗电流的的影响ꎬ导致光谱数据混入噪音等信息ꎬ因此删除350~399nm和2400~2500nm的波段ꎬ采用五点平滑法对光谱进行平滑处理ꎬ并将光谱重采样至5nmꎬ同时对原始光谱(R)进行一阶微分(Rᶄ)㊁倒数(1/R)㊁对数(LnR)等传统数学变换ꎮ1.2.3㊀连续小波变换㊀采用连续小波变换ꎬ并用Mexh小波母函数对原始光谱㊁原始光谱的倒数㊁对数㊁一阶微分进行10层小波变换ꎬ生成一系列小波系数ꎮΨaꎬb=1㊀aΨλ-baæèçöø÷(1)式中ꎬa为伸缩因子ꎬb为平移因子ꎬλ为土壤高光谱数据的波段数ꎮWfaꎬb()=fꎬΨaꎬb()=ʏ+ɕ-ɕfλ()Ψaꎬbλ()dy(2)式中ꎬfλ()为土壤光谱反射率ꎬ小波系数Wfaꎬb()包含二维ꎬ分别为波长(350~2500)与分解尺度(1ꎬ2ꎬ3 10)ꎬ故小波系数行为尺度数ꎬ列为波长数的矩阵[16]ꎮ1.2.4㊀模型及精度验证㊀采用BP神经网络与支持向量机模型(supportvectormachineꎬSVM)建立土壤有机质预测模型ꎬ支持向量机采用线性核函数ꎬ相对于径向基函数(radialbasisfunctionꎬ431中国农业科技导报23卷RBF)来说计算高效ꎬ不易过拟合ꎮBP神经网络的迭代次数设置为1000ꎬ学习率0.01ꎬ训练的均方根误差(rootmeansquareerrorꎬRMSE)小于0.001ꎮ依据相关系数筛选的特征波段以及小波系数作为自变量ꎬ土壤有机质含量为因变量ꎬ分别建立模型ꎬ模型精度采用决定系数(R2)㊁均方根误差(RMSE)㊁相对分析误差(relativepercentdeviationꎬRPD)以及1ʒ1线共同评价ꎮR2表征模型的稳定性ꎬ越接近于1模型越稳定ꎬ拟合程度越好ꎮ均方根误差(RMSE)用来检验模型的预报能力ꎬRMSE越小则表明模型的估测能力越好ꎮRPD是样本的标准差与RMSE的比值ꎬRPD<1.4时ꎬ模型无法对样品进行预测ꎻ1.4ɤRPD<2时ꎬ模型效果一般ꎬ可以用来对样品进行粗略评估ꎻRPDȡ2时ꎬ模型具有极好的预测能力ꎮ1ʒ1线表示实测值与预测值构成的点偏离y=x线的程度[21]ꎮ2㊀结果与分析2.1㊀土壤有机质含量统计分析建模样品集㊁不同土地利用方式㊁不同土壤类型下土壤有机质含量描述性统计见表1ꎮ本研采样点内土地利用方式主要包括林地㊁草地㊁耕地㊁盐渍地ꎬ土壤有机质在草地内均值含量最大(0 80%)ꎬ其次为林地(0.72%)㊁耕地(0.67%)㊁盐渍地有机质含量最低(0.63%)ꎻ土壤有机质含量最大值位于耕地(1.28%)ꎬ最小值位于林地(0 19%)ꎮ采样点内主要土壤类型为栗钙土㊁沙壤土㊁盐碱土ꎬ沙壤土有机质含量最高(0.77%)ꎬ其次为盐碱土(0.68%)和栗钙土(0.67%)ꎬ土壤有机质含量最大值位于沙壤土内(1.28%)ꎬ最小值位于盐碱土内(0.19%)ꎮ表1㊀土壤有机质含量描述性统计结果Table1㊀Descriptivestatisticsresultsoforganicmattercontentinsoilsamples项目Item样品集及类型Samplesetandtype土样数Numberofsamples最大值Maximum/%最小值Minimumvalue/%均值Meanvalue/%标准差Standarddeviation/%模型样品集Modelsampleset样品全集Wholeset1201.200.1940.710.276建模集Modelingset901.200.190.720.227验证集Validationset301.280.250.70.257土地利用方式Landusepattern耕地Cultivatedland551.280.200.670.20林地Woodland201.150.190.720.23草地Grassland251.180.250.800.21盐渍地Salinesoil201.030.250.630.22土壤类型Soiltype栗钙土Chestnutsoil541.20.20.670.22沙壤土Sandyloam511.280.250.770.24盐碱土Saline ̄alkalisoil151.150.190.680.222.2㊀土壤反射光谱特征对R㊁1/R㊁LnR㊁Rᶄ进行小波变换ꎬ变换结果如图2所示ꎬR㊁1/R㊁LnR光谱曲线较为平滑ꎬ分解曲线随波峰波谷变化.Rᶄ其光谱曲线并不规则存在较多波峰波谷ꎬ分解小波系数与前三者不同ꎮR㊁1/R㊁LnR㊁Rᶄ分解后ꎬ小波系数均随分解尺度的增加而增加ꎬ同时可以看出ꎬ由Mexh小波母函数进行的连续小波变换ꎬ对于光谱波峰与波谷有较高的敏感性ꎬ对于放大㊁挖掘光谱信息有着显著的作用ꎮ2.3㊀相关性分析2.3.1㊀不同导数变换光谱与土壤有机质含量相关性㊀土壤有机质含量与光谱相关性曲线及敏感波段见图3ꎮR与土壤有机质含量呈负相关关系(相关系数r=-0.463)ꎬ主要集中于735~780nm处波段ꎻ1/R与土壤有机质的相关性则与R相反ꎬ呈正相关关系(r=0.462)ꎬ集中于600~800nm与1800~2200nm处波段ꎻLnR的相关性曲线图与R相关性曲线类似ꎬ总体呈现负相关关系ꎬ相关系数(r=-0.465)ꎬ主要集中于745~7955315期陈昊宇等:基于连续小波变换的土壤有机质含量高光谱反演nm处的波段ꎻRᶄ相关性在500nm(r=-0.589)与1400nm(r=-0.411)处为负相关ꎬ在800nm(r=0.408)与1380nm(r=0.412)处为正相关ꎬ相关系数曲线变换趋势与前三者不同ꎬ呈无规律变化ꎮ2.3.2㊀不同分解尺度小波系数与土壤有机质含量的相关性㊀图4为不同光谱变换方式经过连续小波变换后与土壤有机质含量的相关系数矩阵图ꎬ其中红色代表相关性高的区域ꎬ蓝色代表相关性低的区域ꎮR在800~1000㊁1400~1600nm处相关性明显增加ꎬ在500㊁800㊁2200nm波段处相关系数达到最大值(r=0.667)ꎻ1/R在800~1200nm处相关系数达到最大值(r=0.552)ꎬ在2400~2500nm处相系数达到0.4ꎬ受噪音和仪器本身的影响ꎬ此波段的相关系数不进行相关性参考ꎻLnR在分解尺度1下相关性较低ꎬ在2~10尺度下ꎬ相关性出现最大值(r=0.664)ꎻRᶄ相关性主要集中在500~900㊁1200~1600㊁2100~2300nm处ꎮ筛选的敏感波段与尺度如表2所示ꎮ有效的光谱信息主要存在于低分解尺度ꎬ随分解尺度的增加呈递减趋势ꎬ相关性最大值较未处理前分别增加了0.204㊁0.09㊁0.199㊁0.252ꎬ对于挖掘潜在光谱信息有着重要意义ꎮ2.4㊀土壤有机质高光谱模型建立2.4.1㊀BP神经网络预测模型㊀采用BP神经网络构建反演模型ꎬ结果如表3所示ꎮ未进行连续小波变换处理的模型中ꎬBP ̄R与BP ̄Rᶄ效果较好ꎬR2分别为0.69和0.73ꎬRPD为1.45与1.53ꎬ模型能粗略估算土壤有机含量ꎬBP ̄LnR与BP ̄1/R样本外预测能力较差ꎬ同时RPD未达到1.4以上ꎬ不能对土壤有机质未能进行有效预测ꎻ连续小图2㊀连续小波变换光谱特性Fig.2㊀Spectralcharacteristicsofcontinuouswavelettransform631中国农业科技导报23卷图3㊀土壤光谱相关性曲线及敏感波段Fig.3㊀Correlationcurveandsensitivebandofsoilspectrum图4㊀土壤有机质与小波系数相关性Fig.4㊀Correlationbetweensoilorganicmatterandwaveletcoefficients7315期陈昊宇等:基于连续小波变换的土壤有机质含量高光谱反演表2㊀筛选的敏感波段Table2㊀Sensitivebandforscreening处理方式Treatmentmethod相关系数Correlationcoefficient分解尺度Decompositionscale敏感波段Sensitiveband/nmCWT ̄R0.6671~10214㊁212㊁91㊁91㊁109㊁109㊁109㊁110㊁111㊁112CWT ̄1/R0.5521~7400㊁212㊁108㊁108㊁108㊁108㊁109CWT ̄LnR0.6642~8213㊁212㊁45㊁45㊁45㊁109㊁110CWT ̄Rᶄ0.6641~10212㊁215㊁215㊁216㊁99㊁99㊁99㊁98㊁98㊁98波变换处理之后的模型ꎬ仅BP ̄CWT ̄1/R模型RPD未达到预测水平ꎬ其余3种模型R2与RPD较未处理前均有所增加ꎬRMSE均减少ꎬ其中BP ̄CWT ̄LnR模型预测效果较好ꎬRPD达到2.12可以有效地对土壤有机质进行预测ꎮ将BP ̄CWT处理的4个模型的实测值与预测值进行1ʒ1线分析ꎮ由图5可知ꎬ除BP ̄CWT ̄1/R模型外ꎬ其余模型的实测值与预测值样点基本分布在1ʒ1线附近ꎬBP ̄CWT ̄LnR效果较为明显ꎬ且估算精度高ꎬ可较好地进行土壤有机质含量的估算ꎮ2.4.2㊀支持向量机预测模型㊀SVM构建反演模型ꎬ结果如表4所示ꎮ未经过连续小波处理的光谱特征波段未能较好地对土壤有机质进行预测反演ꎬ经过CWT后模型SVM ̄CWT ̄R与SVM ̄CWT ̄Rᶄ预测结果较之前有较大的提升ꎬR2分别达到了0.50与0.56ꎬ二者RPD均达到1.4以上ꎬ可以粗表3㊀土壤有机质BP神经网络估测模型结果Table3㊀ResultsofBPneuralnetworkestimationmodelforsoilorganicmatter模型Model建模集ModelingsetR2RMSE验证集ValidationsetR2RMSERPDBP ̄R0.690.170.520.191.45BP ̄1/R0.680.170.330.221.25BP ̄LnR0.560.190.240.221.25BP ̄Rᶄ0.730.160.520.181.53BP ̄CWT ̄R0.800.140.540.171.62BP ̄CWT ̄1/R0.640.180.210.280.98BP ̄CWT ̄LnR0.760.150.740.132.12BP ̄CWT ̄Rᶄ0.770.140.660.161.72表4㊀土壤有机质支持向量机估测模型结果Table4㊀Supportvectormachineestimationmodelresultsofsoilorganicmatter模型Model建模集ModelingsetR2RMSE验证集ValidationsetR2RMSERPDSVM ̄R0.210.200.190.201.38SVM ̄1/R0.210.200.200.211.31SVM ̄LnR0.210.200.200.211.31SVM ̄Rᶄ0.430.170.270.201.38SVM ̄CWT ̄R0.500.160.480.171.62SVM ̄CWT ̄1/R0.290.190.160.211.31SVM ̄CWT ̄LnR0.490.160.270.201.38SVM ̄CWT ̄Rᶄ0.560.150.410.181.53831中国农业科技导报23卷图5㊀BP ̄CWT模型土壤实测值与预测值对比Fig.5㊀ComparisonofmeasuredvalueandpredictedvalueofBP ̄CWTmodel略地对土壤有机质进行预测ꎮ同时根据图6ꎬSVM ̄CWT模型进行1:1线分析ꎬ二者实测值与预测值分布情况在4种模型下较好ꎬ虽然模型SVM ̄CWTLnR分布同样较为集中ꎬ但其样本外预测情况较差(RPD=1.38)ꎬ综合考虑不对其进行土壤有机质预测ꎮ结合表3和表4的结果分析ꎬ连续小波变换能够有效地提升模型精度与模型泛化能力ꎬ对于光谱信息挖掘有着重要意义ꎬBP神经网络与支持向量机对CWT ̄R与CWT ̄Rᶄ都能够提升R2减少RMSEꎬ可对土壤有机质做出较好的预测ꎮ虽然BP神经网络与支持向量机在处理非线性回归问题中有较强的能力ꎬ但本身模型中存在不稳定性ꎬ对模型的环境设置同样要求较高ꎬ所以未能对所有数据集进行良好的预测ꎮ3㊀讨论本研究采用连续小波变换对光谱进行处理ꎬ用BP神经网络与支持向量机(SVM)两种模型对土壤有机质含量进行反演预测ꎮ未经过连续小波变换前ꎬR㊁1/R㊁LnR㊁Rᶄ与土壤有机质的相关系系数最大值分别为-0.463㊁0.462㊁-0.465㊁0.589ꎬ可以看出ꎬRᶄ与土壤有机质的相关系数最高ꎬ与吴倩等[22]㊁张新乐等[23]的研究结果相同ꎻ经过连续小波变换后ꎬCWT ̄R㊁CWT ̄1/R㊁CWT ̄LnR㊁CWT ̄Rᶄ相关系数最大值分别为0 667㊁0.552㊁0 664㊁0.662ꎬ较之前分别增加了0 20㊁0.09㊁0.19㊁0.07ꎮ王延仓等[1]㊁于雷等[4]㊁叶红云等[17]等同样证明连续小波变换可有效提高与土壤有机质含量的相关系数ꎮ不同分解尺度对于光谱数据的深度挖掘有着重要意义ꎬ本研究只利用Mexh小波母函数进行处理ꎬ未对其他函数进行考虑ꎬ分解层数同样是根据前人经验所得[4ꎬ10]ꎬ小波技术的研究与发展仍然有很大的探索空间ꎮ相对于两种模型来看ꎬ未进行连续小波处理9315期陈昊宇等:基于连续小波变换的土壤有机质含量高光谱反演图6㊀利用SVM ̄CWT模型土壤实测值与预测值的对比Fig.6㊀ComparisonofsoilmeasuredvalueandpredictedvalueofSVM ̄CWTmodel的支持向量机模型中ꎬ只有SVM ̄Rᶄ模型R2最高达到0.43ꎬ其余三者均未到达0.4ꎮ综合多种模型评价方法ꎬ由于其RPD未达到1.4以上ꎬ无法对土壤有机质含量进行预测ꎮ经过连续小波处理后ꎬ各模型的R2有明显提高ꎬ其中SVM ̄CWT ̄R与SVM ̄CWT ̄Rᶄ模型效果较好ꎬR2分别提高了0.29㊁0.13ꎬRPD达到1.62与1.53实现了对土壤有机质有效的预测ꎬ但预测结果较BP神经网络较低ꎮ在BP神经网络预测模型中ꎬ未进行连续小波变换前ꎬBP ̄R与BP ̄Rᶄ预测效果较好ꎬR2达到0.69与0.73ꎬRPD为1.45与1.53ꎻ进行连续小波处理后ꎬ除SVM ̄CWT ̄1/R模型未到达预测效果ꎬ其余3种模型预测结果较之前均有明显改善ꎬ可实现对土壤有机质较好的预测ꎬ其中BP ̄CWT ̄LnR预测模型效果最佳R2达到0.76ꎬRPD达到2.12ꎮ根据1:1线分析图也可看出ꎬ其实测值与预测值分布较为集中ꎬ于雷等[4]㊁叶红云等[17]㊁林鹏达等[18]同样通过连续小波变换有效提升了模型的精度与泛化能力ꎮ针对土壤有机质高光谱反演研究中ꎬ姚聪[24]对耕层土壤通过BP神经网络与支持向量机模型ꎬ反演精度R2分别为0.42与0.67ꎻ叶红云等[17]采用连续小波变换对干旱区土壤有机质反演ꎬ模型精度R2=0.75㊁EMSE=0.71ꎻ谢文[25]在森林土壤有机质反演研究中ꎬBP神经网络模型R2=0 78㊁EMSE=0.77ꎬ支持向量机模型R2=0.87㊁EMSE=0.76ꎮ本研究对耕地㊁林草地㊁盐碱地㊁栗钙土㊁沙壤土㊁盐渍土等不同土地利用类型与土壤类型进行综合反演ꎬ最佳反演模型为BP ̄CWTLnRꎬR2=0.76㊁EMSE=0.15㊁RPD=2.12ꎬ与前人研究的结果基本相符ꎬ证明通过连续小波变换处理ꎬ不同土壤类型与土地利用类型未对土壤反演模型精度产生影响ꎮ所以采用连续小波变换进行光谱数据挖掘ꎬ采用BP ̄CWT ̄LnR神经网络建041中国农业科技导报23卷立反演模型ꎬ可对不同土地利用于土壤类型条件下土壤有机质高光谱反演提供一定的理论支持与应用价值ꎮ参㊀考㊀文㊀献[1]㊀王延仓ꎬ杨秀峰ꎬ赵起超ꎬ等.二进制小波技术定量反演北方潮土土壤有机质含量[J].光谱学与光谱分析ꎬ2019ꎬ39(9):2855-2861.WANGYCꎬYANGXFꎬZHAOQCꎬetal..Quantitativeinversionofsoilbasedonbinarywavelettransform[J].SpectroscopySpectralAnal.ꎬ2019ꎬ39(9):2855-2861. [2]㊀于雷ꎬ洪永胜ꎬ耿雷ꎬ等.基于偏最小二乘回归的土壤有机质含量高光谱估算[J].农业工程学ꎬ2015ꎬ31(14):103-109.YULꎬHONGYSꎬGENGLꎬetal..Hyperspectralestimationofsoilorganicmattercontentbasedonpartialleastsquaresregression[J].Trans.CSAEꎬ2015ꎬ31(14):103-109. [3]㊀钟浩ꎬ李西灿ꎬ翟浩然ꎬ等.耕层土壤有机质高光谱间接估测模型[J].测绘科学技术学报ꎬ2019ꎬ36(1):74-78ꎬ85.ZHONGHꎬLIXCꎬZhAIHRꎬetal..Hyperspectralindirectestimationmodelofsoilorganicmattercontentinploughlayer[J].J.GeomaticsTechnol.ꎬ2019ꎬ36(1):74-78ꎬ85. [4]㊀于雷ꎬ洪永胜ꎬ周勇ꎬ等.连续小波变换高光谱数据的土壤有机质含量反演模型构建[J].光谱学与光谱分析ꎬ2016ꎬ36(5):1428-1433.YULꎬHONGYSꎬZHOUYꎬetal..Inversionofsoilorganicmattercontentusinghyperspectraldatabasedoncontinuouswavelettransformation[J].SpectroscopySpectralAnal.ꎬ2016ꎬ36(5):1428-1433.[5]㊀STENBERGBꎬVISCARRARRAꎬMOUAZENAMꎬeta1..Visibleandnearinfraredspectroscopyinsoilscience[J].Adv.Agron.ꎬ2010ꎬ107:163-215.[6]㊀聂哲ꎬ李秀芬ꎬ吕家欣ꎬ等.东北典型黑土区表层土壤有机质含量高光谱反演研究[J].土壤通报ꎬ2019ꎬ50(6):1285-1293.NIEZꎬLIUXFꎬLYUJXꎬetal..HyperspectralretrievalofsurfacesoilorganicmattercontentinatypicalblacksoilregionofnortheastChina[J].Chin.J.SoilSci.ꎬ2019ꎬ50(6):1285-1293.[7]㊀沈润平ꎬ丁国香ꎬ魏国栓ꎬ等.基于人工神经网络的土壤有机质含量高光谱反演[J].土壤学报ꎬ2009ꎬ46(3):391-397.SHENRPꎬDINGGXꎬWEIGSꎬetal..Retrievalofsoilorganicmattercontentfromhyper ̄spectrumbaseonAnn[J].ActaPedol.Sin.ꎬ2009ꎬ46(3):391-397.[8]㊀沈强ꎬ张世文ꎬ夏沙沙ꎬ等.基于支持向量机的土壤有机质高光谱反演[J].安徽理工大学学报(自然科学版)ꎬ2019ꎬ39(4):39-45.SHENQꎬZHANGSWꎬXIASSꎬetal..Hyperspectralinversionofsoilorganicmatterbasedonsupportvectormachine[J].J.AnhuiUniv.Sci.Technol.(Nat.Sci.)ꎬ2019ꎬ39(4):39-45.[9]㊀BREIMANLꎬFRIEDMANJHꎬOLSHENRAꎬetal..ClassificationandRegressionTrees[M].Belmont:WadsworthInternationalGroupꎬ1984.[10]㊀方圣辉ꎬ乐源ꎬ梁琦.基于连续小波分析的混合植被叶绿素反演[J].武汉大学学报ꎬ2015ꎬ40(3):296-302.FANGSHꎬLEYꎬLIANGQ.Retrievalofchlorophyllcontentusingcontinuouswaveletanalysisacrossarangeofvegetationspecies[J].GeomaticsInform.Sci.WuHanUniv.ꎬ2015ꎬ40(3):296-302.[11]㊀何汝艳ꎬ乔小军ꎬ蒋金豹ꎬ等.小波法反演条锈病胁迫下冬小麦冠层叶片全氮含量[J].农业工程学报ꎬ2015ꎬ31(2):141-146.HERYꎬQIAOXJꎬJIANGJBꎬetal..Retrievingcanopyleaftotalnitrogencontentofwinterwheatbycontinuouswavelettransform[J].Trans.CSAEꎬ2015ꎬ31(2):141-146. [12]㊀陈红艳ꎬ赵庚星ꎬ李希灿ꎬ等.小波分析用于土壤速效钾含量高光谱估测研究[J].中国农业科学ꎬ2012ꎬ45(7):1425-1431.CHENHYꎬZHAOGXꎬLIXCꎬetal..Applicationofwaveletanalysisforestimationofsoilavailablepotassiumcontentwithhyperspectralreflectance[J].Sci.Agric.Sin.ꎬ2012ꎬ45(7):1425-1431.[13]㊀高洪智ꎬ卢启鹏.土壤主要养分近红外光谱分析及其测量系统[J].光谱学与光谱分析ꎬ2011ꎬ31(5):1245-1249.GAOHZꎬLUQP.Nearinfraredspectralanalysisandmeasuringsystemforprimarynutrientofsoil[J].SpectroscopySpectralAnal.ꎬ2011ꎬ31(5):1245-1249.[14]㊀王祥浩.土壤有机质高光谱反演模型研究[J].黑龙江工程学院学报ꎬ2019ꎬ33(5):34-39.WANGXH.Researchonhighspectralinversionmodelofsoilorganicmatter[J].J.HeilongjiangInstituteTechnol.ꎬ2019ꎬ33(5):34-39.[15]㊀包青岭ꎬ丁建丽ꎬ王敬哲ꎬ等.基于随机森林算法的土壤有机质含量高光谱检测[J].干旱区地理ꎬ2019ꎬ42(6):1404-1414.BAOQLꎬDINGJLꎬWANGJZꎬetal..Hyperspectraldetectionoforganicmattercontentbasedonrandomforestalgorithm[J].AridLandGeographyꎬ2019ꎬ42(6):1404-1414.[16]㊀王延仓ꎬ张兰ꎬ王欢ꎬ等.连续小波变换定量反演土壤有机质含量[J].光谱学与光谱分析ꎬ2018ꎬ38(11):3521-3527.WANGYCꎬZHANGLꎬWANGHꎬetal..Quantitativeinversionofsoilorganicmattercontentbasedoncontinuouswavelettransform[J].SpectroscopySpectralAnal.ꎬ2018ꎬ38(11):3521-3527.[17]㊀叶红云ꎬ熊黑钢ꎬ张芳ꎬ等.基于CWT的人类不同程度干扰下干旱区土壤有机质含量估算研究[J].激光与光电子学进展ꎬ2019ꎬ56(5):115-124.YEHYꎬXIONGHGꎬZHANGFꎬetal..CWT ̄Basedestimationofsoilorganicmattercontentinaridareaunderdifferenthumandisturbancedegrees[J].LaserOptoelectronicsProgr.ꎬ2019ꎬ56(5):115-124.[18]㊀林鹏达ꎬ佟志军ꎬ张继权ꎬ等.基于CWT的黑土有机质含量野外高光谱反演模型[J].水土保持研究ꎬ2018ꎬ25(2):46-52ꎬ57.LINPDꎬTONGZJꎬZHANGJQꎬetal..Inversionofblacksoilorganicmattercontentwithfieldhyperspectralreflectancebasedoncontinuouswavelettransformation[J].Res.SoilWaterConnserv.ꎬ2018ꎬ25(2):46-52ꎬ57.1415期陈昊宇等:基于连续小波变换的土壤有机质含量高光谱反演[19]㊀范晓冰ꎬ鲁丽波ꎬ范海娇.托克托县耕地动态变化及驱动因子分析[J].内蒙古师范大学学报ꎬ2017ꎬ46(1):151-155.FANGXBꎬLULBꎬFANGHJꎬetal..AnanalysisofdynamicchangesanddrivingfactorsofarablelandinTogtohcounty[J].J.InnerMongoliaNorm.Univ.ꎬ2017ꎬ46(1):151-155. [20]㊀李政葵.内蒙古托克托县潜水与土壤中氟化物的分布规律及其相关性研究[D].呼和浩特:内蒙古大学ꎬ硕士学位论文ꎬ2015.LIKZ.DistributionandcorrelationoffluoridebetweenunconfinedwaterandsoilofInnerMongoliaTuoketuocounty[D].Hohhot:InnerMongoliaUniversityꎬMasterDissertationꎬ2015.[21]㊀VISCARRARAꎬMCGLYNNRNꎬMCBRATNEYAB.Determiningthecompositionofmineral ̄organicmixesusingUV ̄vis ̄NIRdiffusereflectancespectroscopy[J].Geodermaꎬ2007ꎬ137(1/2):70-82.[22]㊀吴倩ꎬ姜琦刚ꎬ史鹏飞ꎬ等.基于高光谱的土壤碳酸钙含量估算模型研究[J/OL].国土资源遥感ꎬ2020:[2020-09-16].https://kns.cnki.net/kcms/detail/11.2514.P.20200810.1518.004.html.WUQꎬJIANGQGꎬSHIPFꎬetal..Estimationofsoilcalciumcarbonatecontentbasedonhyperspectraldata[J/OL].RemoteSensingLandResourcesꎬ2020:[2020-09-16].https://kns.cnki.net/kcms/detail/11.2514.P.20200810.1518.004.html.[23]㊀张新乐ꎬ于滋洋ꎬ李厚萱ꎬ等.东北水稻叶片SPAD遥感光谱估算模型[J].中国农业大学学报ꎬ2020ꎬ25(1):66-75.ZHANGXLꎬYUZYꎬLIHXꎬetal..RemotesensingestimationmodelofSPADforriceleavesinNortheastChina[J].J.Chin.Agric.Univ.ꎬ2020ꎬ25(1):66-75.[24]㊀姚聪.基于卷积神经网络的耕层土壤有机质含量估测模型研究[D].山东泰安:山东农业大学ꎬ硕士学位论文ꎬ2020.YAOC.Studyonestmationmodelofsoilorganicmattercontentinplowedlayerbasedonconvolutionalneuralnetwork[D].ShandongTaian:ShandongAgriculturalUniversityꎬMasterDissertationꎬ2020.[25]㊀谢文.基于高光谱技术的森林土壤不同养分含量光谱特征及估测模型研究[D].南昌:江西农业大学ꎬ博士学文论文ꎬ2017.XIEW.Studyonspectralcharacteristicsandestimationmodelsofdifferentnutrientcontentsinforestsoilsbasedonhyperspectraltechnology[D].Nanchang:JiangsuAgriculturalUniversityꎬDoctorDissertationꎬ2017.(责任编辑:陈凌云)241中国农业科技导报23卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

32




2
2010年
第 8期
2
canopy che m istry prog ra m ) 数据集, 该数 据集提供了 干叶、 鲜叶和冠层的光谱数据和生化组分数据。本 文主要针对其中大叶枫树的数据进行研究, 该数据 包括了叶片化学分析后的 生化组分含量和光 谱数 据。叶绿素含量通过多个烘干 叶片的平均值 计算 得到 , 单位为 [ m g ] [ g dry w e ig ht]。光 谱数据 以 lg( 1 /R ) ( R 为光谱反 射率 ) 形式表 示, 波长范 围为 400~ 2 498 nm, 采 用 2 nm 的 采样 间 隔 和 10 n m 的带宽。 2 . 研究方法 为了分析和比较小波分析方法的效果, 首先通 过精选出的六种植被指数对叶绿素进行回归反演, 然后选择三种不同的小波基: Gassian 小波、 Pau l小 波和 M orlet小波 ( 分解尺度指定为八个尺度 ) 对反 射光谱进行连续小波变换, 得到不同尺度的小波系 数, 用于单变量和多变量回归反演。样本数据被分 为两部分 , 其中 75% 的样 本用于 建立统 计回归 模 型, 其余的 25 % 用于 模型验证。此外 , 为了研究不 同回归模型的影响 , 本文使用了以下四个线性和非 线性回归模型进行反演, 包括 : 简单线性 函数: Y = 2 A + BX; 抛物线函 数: Y = A + BX + CX ; 对 数函 数: Y = A + B lg X + C lg X 和指数函数 : Y = A e + C。
图 1 、 图 2 为不同光谱指数的回归结果 , m 1、 m 2、 m 3、 m 4 分别代表四种回归模型。三种非线性回归模
2010 年
第 8期
郭洋洋, 等 : 小波分析在植物叶绿素高光谱遥感反演中的应用
33
对 Gaussian 小波来说 , 线性模型无论是确定性系数 还是均方根误差都优于两种非线性模型 , 但不同的 模型对另两种小波函数影响不大。非线性模型 Y = A + B lg X + C lg X 用于三种不同的小波函数时, 确 定性系数和均方根误差变化不大, 表明该模型对不 同的小波函数具有更好的稳定性。
图 4 各种植被指数 和单变 量小波 系数的 线性 回 归 R2 与 RM SE 变化趋势
个特定 波段 的 小 波 系 数。以 采 用 的 小 波 函数 为 M orlet小波为例, 对分解尺度为 32 , 依据该尺度小波 系数与叶绿素含量的相关系数图, 选取 560 、 680 和 800 三 个 波 段 的 小 波 系 数 作 为 回 归 变 量 , 其 中 560 nm波长附近是叶绿素的强反射峰 , 650~ 800 nm 则是叶绿素的强吸收带; P aul小波选取波段为 600 、 750 、 800 ; Guassian 小 波 选 取 波 段 为: 510 、700 、 800 。图 7 为不同小波函数的多元回归结果与一元 线性回归结果的比较图。可以看出, 对三种小波函 数, 多元回归的预测精度都有所提高, 其中以 Gaus sian小波为母小波时, 多元回归的结果优于另外两种 小波函数, 这一结论与单变量小波系数回归的结论一 致。表明了选取波段的合理性和多元回归的可行性。
2 BX - 1
型中, Y = A + BX + CX 和 Y = A + B lg X + C lg X 模 型对六种植被指数的回归效果差异不大 , 且精度均 高于线性模型, 表明这两种非线性模型对不同的光 谱指数具有更好的稳定性。而指数模 型稳定性太 差 , 且有不收敛的情况, 因此以下仅用 前三种模型 进行回归反演。
[ 2]
x ( n ) [ ( n - k ) ] 可知 , 小波系 a
数通过尺度因子 a 表征了信号的频率特性, 通过位 移因子 k 表征了信号的位置特性, 相当于反射光谱 在位置 k 附近的局部范围内的加权平均值。 由于小 波函数的局部衰减性 , 这一加权平均的权重是递减 的 , 因此 , 小波系数可以表征反射光谱在特定位置 k 的局部区间内的信息 , 较光谱指数使用的特定波段 而言, 具有更好的稳定 性。 本文通过小波分析技术 对叶片反射光谱进行分解, 并分别以得到的小波系 数为自变量进行单变量与多变量回归分析, 从而对 叶片叶绿素含量进行估算。 研究内容包括小波函数 的影响、 尺度因子及位置因子的确定等 。
[ 3]
二、 数据来源和研究方法
1 . 数据来源 本文所使 用 的数 据 来源 于 ACCP ( accelerated
收稿日期 : 2010 01 14 基金项目 : 国家自然科学基金资助项目 ( 40771143 ) 作者简介 : 郭洋洋 ( 1984 ) , 女 , 江苏徐州人 , 硕士生 , 主要研究方向为遥感与地理信息系统应用。
注 : R 为波段 处的反射率。
图 2 光 谱指数与叶绿素的回归 RM SE 变化趋势
四、 基于单变量小波系数的回归反演
出处 Si m s and G a m on ( 2002) Si m s and G a m on ( 2002) L e M a ire e t a.l ( 2004) G itelson ( 2002) G itelson ( 2002) D aughtry ( 2000)
2010 年
第 8期
郭洋洋, 等 : 小波分析在植物叶绿素高光谱遥感反演中的应用 中图分类号: P237 文献标识码 : B
31
文章编号 : 0494 0911( 2010) 08 0031 03
小波分析在植物叶绿素高光谱遥感反演中的应用
郭洋洋, 张连蓬, 王德高, 马维维
( 徐州师范大学 测绘学院, 江苏 徐州 221116)
将小波分 析应
用于反射光谱并通过逐步 多元回归的方法来 反演 叶片叶绿素含量, 取得了较高的反演精度。逐步多 元回归技术的原理是针对一种最优的准则, 通过逐 步搜索的方式确定最终的 回归变元集合及相 应的 回归模型 , 但入选的 变元很难进行 物理解释, 结果 往往导致最终的模 型缺乏普适性。宋开山 等利 用不同尺度的小波能量建立逐步多元回归, 同样取 得了较高的反 演精度。由于小 波能量表征的 是信 号在整个时域区间的总信息量 , 不仅包含了叶绿素
图 1 光谱指数与叶绿素的回归 R2 变化趋势
三、 基于光谱指数的叶绿素回归反演
表 1 为本文采用的六种光谱指数, 这些光谱指 数在叶片尺度上具有较好的反演效果。
表 1 6 种光谱指数 植被指数 mND 705 公式 ( R750 - R 705 ) / ( R750 + R 705- 2R 445) ( R750 - R 445 ) / ( R705 R 445) ( R 750 - R 720 ) - ( R700 R 670) ( R750 - R 550 ) / ( R750 + R 550) R 750 /R 700 3! ( ( R700 - R670) - 0. 2 ! T CAR I ( R 700 - R 550 ) ! ( R 700 / R 670) )
对样本光谱数据应用上 述的三种小波 母函数 进行连续 小 波分 解 , 得 到不 同 尺 度的 小 波 系数。 将各尺度 小 波系 数 与叶 绿素 含 量进 行 相关 性 分 析 , 图 3 为三 种小波 函数各 尺度的 小波 系数的 最 大相关系数。可见 , 不 同尺度 的小 波系 数与叶 绿 素含量之间的相 关性 存在着 较大差 异, 选取不 同 小波函数 下 相关 性 最强 的尺 度 对应 的 小波 系 数 ( M o rlet小波对应 sca le64 , Paul小波和 G aussian 对 应 scale16) 为自变量建立 一元回 归模型。图 4 为 各种植被指 数和 单变量 小波 系数 的线 性 回归 R
摘要 : 监测叶绿素含量对研究作物与环境之间的相互影响具有 重要的意 义 , 高光谱 遥感是提 取叶绿素 含量的可 行技术。将小 波
分析的方法用于植物叶片的反射光谱 , 以小波系数作为回归变量来反演植物的叶绿素浓度。研究结果表明 , 通过对叶片光谱 进行 连续小波分解后得到的小波系数 , 可以准确地反演叶绿素浓度 , 反演的精度优于基于光谱指数的精度。
Application ofW avelet Analysis for D eter m ining Ch lorophyll Concentration in V egetation by Hyperspectra l Reflectance
GUO Y angyang , ZHANG L ianpeng, W ANG Degao , MA W e i w ei
图 3 各尺度最大相关系数变化图
2
五、 基于多变量小波系数的回归反演
选取不同小波下的最优分解尺度 ( M orlet小波 选取 scale64, Pau l小波和 Gaussia n选取 scale16) , 参 照选取出的尺度的小波系数与叶绿素 相关系数图 并考虑到叶绿 素的吸收特征 , 选取三个特 征波段, 以其相应 的小波 系数 为自变 量作 多元 回归分 析。 数学表达式为 C = A + BW 1+ CW 2+ DW 3 其中, C 代表叶绿素含量 ; W 1、 W 2 及 W 3 分别代表三
关键词 : 高光谱遥感 ; 植被指数; 小波变换
一、 引

的光谱吸收特征信息 , 同时也包含了多种其他成分 的光谱吸收或反射 特征的信息 , 因此, 将小波能量 作为叶绿素经验反演的回归变元也缺 乏一定的物 理解释支持。 小波分析可以将一 个复杂的信号 分解为不同 尺度 (频率 ) 的小波信号 , 与傅立叶分析相比, 其最 主要的特点是可以表征信号的局部频谱特征。 由于 植被的各种理化成分的吸收或反射特 征具有明显 的局部性质 , 小波分析的局部信号分析能力将会得 到有效 的 利 用。由 连 续 小 波 变 换 的离 散 化 公 式 WTx ( a, k ) = T a
相关文档
最新文档