物理化学 第十章 界面现象
第十章__界面现象2005.11.20

有等于系统增加单位面积时所增加的吉布斯函数,
所以也称为表面吉布斯函数
9
例:
20 ℃时汞的表面张力 =4.85×10
-1
N· m
-1
,若在此温度
及101.325 kPa 时,将半径r1 = 1 mm的汞滴分散成半径为 r2 =10-5 mm 的微小液滴时,请计算环境所做的最小功。 解:因为T,p 恒定,所以为常数,环境所做的最小功为可逆过程 表面功W’,
6
此实验证明,液体表面层存在着一个平行于液面,垂直 于分界线的力,此力使表面收缩 —— 表面张力。
对于弯曲液面,表面张力则与液面 相切。
表面张力
7
2. 表面功与表面张力表面吉布斯函数:
dx
当T、p、n不变的条件下,若把 MN移动dx,
F外
l
则增加面积dA=2l· dx,
此时外界必反抗表面张力做功。 WR' F外 dl 在可逆条件下:F外=F表+dF≌F表
15
5. 影响表面张力的因素
(1)表面张力和物质性质有关和它接触的另一相的性质有关。 (i)和空气接触时,液体和固体中的分子间作用力越大表面 张力越大。一般:
(金属键)> (离子键)> (极性共价键)> (非极性共价键)
(ii)同一种物质和不同性质的其它物质接触时,界面层中分 子所处的力场不同,界面张力出现明显差异。(看下表数据)
16
某些液体、固体的表面张力和液/液界面张力
物质 水(溶液) 乙醇(液)
/(10-3
N· -1) m 72.75 22.75
T/K 293 293
物质 W(固) Fe(固)
10-物理化学第十章 界面现象

ln
Pr Ps
2 M r RT
凸(液滴)~ “+” 凹(气泡)~ “–”
凸(液滴,固体粉末 or r > 0)— Pr>Ps 凹(气泡 or r < 0 )— Pr<Ps
水平液面(r→∞)— Pr=Ps
❖ 亚稳状态和新相的生成 ——分散度对系统性质的影响
亚稳状态
——热力学不稳定态,一定条件下能相对 稳定的存在。
杨氏方程
cos
s l
sl
润湿条件 s sl 铺展条件 s sl l
❖ 应用
毛细管内液面
凹: 润湿
凸: 不润湿
§10–3 弯曲液面下的附加压
由此产生毛细现象,并影响饱和蒸气压
10·3·1 弯曲液面产生附加压
附加压 △P= P心-P外
➢ 杨-拉普拉斯方程
曲面— P 2 膜— P 4
第十章 界面现象
讨论界面性质对系统的影响
新的系统—多相,小颗粒系统
非体积功—表面功
❖ 需考虑界面影响的系统 界面所占比例大的系统
比表面——
aS
AS m
❖ 本章内容 表面张力
① 表面现象的成因 表面现象的总成因
与AS↓有关 ② 各类现象分析
与γ↓有关
§10–1 表面现象的成因 10·1·1 表面张力 ❖ 表面张力 γ 定义—作用于单位边界上的表面紧缩力 方向—总指向使表面积减小的方向
为降低表面张力而产生 吸附剂 —— 起吸附作用的 吸附质 —— 被吸附的
§10–4 固体表面的吸附 固体对气体的吸附
10·4·1 吸附的产生
固体特点—有大的比表面,不稳定。 通过吸附其它分子间力较小的物质,形成 新的表面能较低的界面。
两个相对的过程——吸附和解吸 吸附量——一定T、P下,吸附和解吸达平 衡时,吸附气体的量。
物理化学第十章表面现象

P = P 0 P
图10-8 弯曲液面的附加压力
§10-3 弯曲液面的附加压力和毛细现象 这种弯曲液面内外的压力差,就称之为附加压力,用 P 来表示。
P = P内 P外 = P P 0
附加压力的方向总是指向曲率中心。 二、拉普拉斯(Laplace)方程 附加压力的大小与弯曲液面曲率半径有关 。
Ga = γ s l (γ s g + γ l g ) = Wa'
图10-4 沾湿过程
§10-2 润湿现象与接触角
则此过程中, Wa' 即称为沾湿功。 对于一个自发过程来讲, Wa' > 0 。 Wa' 外
W a' 所做的最大功。
ቤተ መጻሕፍቲ ባይዱ是液固沾湿时,系统对
值愈大,液体愈容易润湿固体。
(2)浸湿(immersional wetting) 所谓浸湿是指当固体浸入液体中,气—固界面完全被 固—液界面所取代的过程。如图10-5所示: 在恒温恒压可逆情况下,将具有单位表面积的固体 浸入液体中,气—固界面转变为液固界面,在该过 程中吉布斯函数的变化值为 Gi = γ s l γ s g = Wi
γ s g = γ s l + γ l g cos θ
cos θ =
γ
sg
γ
sl
γ l g
1805年杨氏(TYoung)曾得到此式,故称其为杨氏方程。 1)当 θ > 90 0 时, cosθ < 0 即 γ s g < γ s l
G = γ s l γ s g > 0
γ s g > γ s l 2)当θ < 90 0 时, θ > 0 cos 液体润湿固体过程中能自动发生,液体有扩大固—液界面的趋势,
材料物理化学:10界面现象

§10 界面现象在有关固体催化反应动力学一章中,我们已经简单地讨论了固体物质表面上的一些现象——吸附。
本章将讨论的重点放在液体的界面上。
举例有关界面现象:密切接触的两相之间的过渡区称为界面(interface),约有几个分子的厚度。
实际上,当两个不同的物相之间表现了与两个本体中的不同性质的现象就称为界面现象。
界面的相接触有:s-s,s-l,s-g,l-l,l-g。
界面现象的出现是因为界面层的分子所受到的分子-分子之间的作用力与相本体中的分子所受到作用力不一样,在相本体中的分子受到的作用力是对称的、均匀的,而界面层的分子受到两个不同相中不同分子的相互作用,而作用力是不对称的、不均匀的。
因此界面层的性质与相本体的性质不同。
作用力大的那一相有自动收缩其界面到最小值的趋势。
对于固体物质的界面就表现为对气体或液体物质的吸附。
对于一个体系而言,界面现象(界面性质)所表现的显著程度,取决于体系的相对界面积大小,相对界面积的大小可以用比表面来表示:A o =V A或 A o =mA 比表面小的体系,界面现象表现不显著,常常可以忽略;比表面大的体系,表现出很显著的界面现象。
表13.1为相同体积(或质量)不同尺寸时界面积的大小。
●§10.1表面Gibbs 自由能和表面张力 ● §10.1.1表面Gibbs 自由能和表面张力的概念由于表面上的分子所受到的力与相本体中分子所受到的力不同,所以如果将一个分子从相本体中移到表面成为表面分子(或者说扩大表面积),就必须克服体系内部的分子间作用力而对体系做功。
在等温、等压和组成不变时,可逆地使表面积增加dA 所需要对体系做的功,称为表面功:-δw ’=γdA γ=dAw 'δ- γ为比例系数。
它在数值上等于当等温、等压及组成不变的条件下,增加单位表面积时必须对体系做的可逆非膨胀功。
将表面功引入到热力学中,得到:dU= TdS ―pdV +γdA +∑BμB dn BdH= TdS +Vdp +γdA +∑BμB dn BdF =―S dT ―pdV +γdA +∑BμB dn Bd G=―S dT +Vdp +γdA +∑BμB dn Bγ=(A U ∂∂)S ,V ,n B =(A H ∂∂)S ,p ,n B =(A F ∂∂)T ,V ,n B =(AG ∂∂)T ,p ,n B 从能量的角度上看:γ就是等温、等压及组成不变的条件下,每增加单位表面积时所引起的Gibbs 自由能变化,所以可以称为表面Gibbs 自由能。
物理化学第六版第十章界面现象课后思考题

物理化学第六版第十章界面现象课后思考题
(原创版)
目录
1.物理化学第六版第十章界面现象概述
2.课后思考题解答
正文
一、物理化学第六版第十章界面现象概述
物理化学第六版第十章主要讲述了界面现象,界面现象是指发生在两种不同相(如固相与液相、液相与气相等)之间的物理化学现象。
在这一章中,我们学习了界面张力、表面能、润湿现象等相关知识。
通过学习这些内容,我们可以更好地理解不同相之间的相互作用,从而为实际应用提供理论基础。
二、课后思考题解答
课后思考题 1:请简述界面张力的概念及其对界面现象的影响。
答:界面张力是指作用在液体界面上的力,使得液体表面有缩小的趋势。
界面张力的大小取决于液体的性质以及液体之间的相互作用。
界面张力对界面现象有重要影响,它决定了液体滴的形成、液滴的合并以及液体在固体表面的展开等过程。
课后思考题 2:请举例说明表面能的概念,并分析其在实际应用中的意义。
答:表面能是指在标准状态下,将一个物质的表面从完美晶体变为实际表面所需要的能量。
表面能可以通过吉布斯吸附等温线来测量。
在实际应用中,表面能对材料的润湿性、腐蚀性以及催化活性等方面具有重要意义。
课后思考题 3:请简述润湿现象及其分类。
答:润湿现象是指液体在固体表面上的展开过程。
根据液体在固体表面上的行为,润湿现象可分为三种类型:附着润湿、铺展润湿和毛细润湿。
润湿现象对涂料、粘合剂等材料的性能有重要影响。
通过学习物理化学第六版第十章界面现象,我们可以深入了解不同相之间的相互作用,为实际应用提供理论基础。
物理化学知识点chap 10

Pa
2.356
103
kPa
【10.5】水蒸气迅速冷却至298.15K时可达到过饱和状态。已
知该温度下水的表面张力为71.97×10-3 N·m -1 ,密度为997
kg·m-3。 当过饱和水蒸气压力为平液面水的饱和蒸气压的4
倍时,计算: (1)开始形成水滴的半径;(2)每个水滴中
所含水分子的个数。
m
= 7.569 ? 10- 10m
(2)每个水滴的体积
( ) V 水滴=
4 3
pr
3
=
4 创3.14 3
7.569 ? 10- 10 3 m 3
1.815 ? 10- 27m 3
每个水分子的体积
V 水分子=
M rL
=
骣 琪 琪 琪 桫997
创
0.018 6.022
m 3 = 3.00 ? 10- 29m 3 1023
分析: 利用拉普拉斯方程
p 2
r
解: (1)和(2)两种情况下均只存在一个气-液界面, 其附加压力相同。根据拉普拉斯方程
p
2
r
2 58.91103 0.1106
Pa
1.178
103
kPa
(3)空气中存在的气泡,有两个气-液界面,其附加压力 为
p
4
r
4
58.91103 0.1106
•
pg
••
•
气
•
p
• •
pl
(a)
pg
• 气 p • •
液•
pl (b)
附加压力方向示意图
•
•
气•
•
•
• •
p=• 0
物理化学第六版第十章界面现象课后思考题

物理化学第六版第十章界面现象课后思考题摘要:1.物理化学第六版第十章界面现象概述2.课后思考题解答正文:一、物理化学第六版第十章界面现象概述物理化学第六版第十章主要讲述了界面现象,这是物理化学中的一个重要内容。
界面现象是指两种或多种物质相互接触时,由于它们之间的相互作用力不同,会发生的一系列现象。
这些现象包括表面张力、接触角、界面电荷等。
本章主要通过讲述这些现象,使读者了解并掌握界面现象的基本概念和相关知识。
二、课后思考题解答1.问题一:请简述表面张力的概念及其产生原因。
答:表面张力是指液体分子之间的相互作用力。
当液体与气体接触时,液体表面层的分子受到气体分子的吸引,使液体表面层的分子间距大于液体内部分子间距,从而使液体表面形成一个收缩的趋势。
这种使液体表面有收缩趋势的力称为表面张力。
2.问题二:请解释接触角的概念,并举例说明。
答:接触角是指液体与固体接触时,液体与固体的界面形成的角度。
接触角可以用来判断液体与固体的亲水性或疏水性。
当接触角小于90°时,液体与固体呈亲水性;当接触角大于90°时,液体与固体呈疏水性。
例如,水滴在玻璃板上时,水滴与玻璃板接触角大于90°,说明水与玻璃呈疏水性。
3.问题三:请简述界面电荷的概念及其产生原因。
答:界面电荷是指在两种介质接触的界面上,由于介质的极性不同,会产生电荷分布的现象。
当两种介质接触时,如果它们的极性不同,就会在接触界面上产生正负电荷。
这些电荷称为界面电荷。
例如,当金属与非金属接触时,由于金属表面的电子与非金属表面的电子互相转移,会在接触界面上产生界面电荷。
通过以上解答,我们可以更好地理解物理化学第六版第十章界面现象的相关知识。
物化 第十章 界面现象

δWr' γ = dAs
γ :使液体增加单位表面时环境所需作的可逆功, 使液体增加单位表面时环境所需作的可逆功, 单位表面时环境所需作的可逆功
单位: 单位:J·m-2
表面吉布斯函数: 表面吉布斯函数
恒温、 恒温、恒压下的可逆非体积功等于系统的 吉布斯函数变: 吉布斯函数变: δWr' ∂G ' γ = = δWr = dGT , p = γ dAs dAs ∂As T , p
Freundlich用指数方程描述 Ι 型吸附等温线 用指数方程描述
a
V
= kp
n
n、k 是两个经验参数,均是 T 的函数。 、 是两个经验参数, 的函数。 k: 单位压力时的吸附量。一般 ↑,k↓; 单位压力时的吸附量。一般T ↓ n :介于 介于0~1之间,反映 p 对V a 影响的强弱。 之间, 影响的强弱。 之间 直线式: lgV 直线式
毛细现象
2γ ∆p = = ρ gh r1 2γ cos θ h= rρ g
θ < 90o , h > 0 液体在毛细管中上升
r = r1 cos θ
θ > 90o , h < 0 液体在毛细管中下降
3. 开尔文公式(微小液滴的饱和蒸气压) 开尔文公式(
微小液滴的饱和蒸气压不仅与物质的本性、 微小液滴的饱和蒸气压不仅与物质的本性、 温度及外压有关,还与液滴的大小有关。 温度及外压有关,还与液滴的大小有关。 pr p dn r + dr l dG 小液滴面积 : dn液体由 p→pr : 液体由 → pr 4πr 2 → 4π( r + dr )2 dG = (dn) RT ln
界面是系统中的特殊部分
在高度分散系统中界面效应不可忽视
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 热力学基本公式
考虑了表面功,热力学基本公式中应相应增加一项,即:
dU TdS pdV
dn
B
B
dAS
B
dH TdS VdP
dn
B
B
dAS
B
dA SdT pdV
dn
B
B
dAS
B
dG SdT VdP
dn
B
B
dAS
B
由此可得:
( U AS
Ga 0 1800 任何液体与固体间都能粘湿
在等温等压条件下,单位面积的液固界面分开产生液体表面与固体表 面所需的功称为粘附功。粘附功越 大,液体越能润湿固体,液-固结合 得越牢。
Wa Ga gl (cos 1 )
Wa o
(2)浸湿(work of immersion)
浸湿:固体浸入液体,固体表面消失,液-固界面产生的润湿过程。
当将边长为10-2m的立方体分割成10-9m的小立方体 时,比表面增长了一千万倍。
可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相 催化方面的研究热点。
对具有巨大表面积的分散体系,界面分子的 特殊性对体系性质的巨大影响不能忽略
界面与表面:是指两相接触的约几个分子厚度的过渡区 (界面相),若其中一相为气体,这种界面通常称为表 面。
Langmuir吸附等温式的缺点:
1.假设吸附是单分子层的,与事实不符。 2.假设表面是均匀的,其实大部分表面是不均匀的。
3.在覆盖度 较大时,Langmuir吸附等温式不适用。
§ 10.4 液—固界面
接触角 粘附功 浸湿功 铺展系数
1 接触角(contact angle)和Young equation
界面层会显示出一些独特的性质。
液体表面
表面分子受到被拉入体相的作用 力。
这种作用力使表面有自动收缩到最小的趋势,并使表 面层显示出一些独特性质,如表面张力、表面吸附、 毛细现象、过饱和状态等。
2 表(界)面张力 surface (interface) tension
由于以线圈为边界的两边表面张 力大小相等方向相反,所以线圈成 (a) 任意形状可在液膜上移动,见(a)图。
Gi ls sg ls ( ls lg cos ) lg cos
设b = k1/k-1
得: θ bp 1 bp
这公式称为 Langmuir吸附等温式,式中b称为吸附系数,
它的大小代表了固体表面吸附气体能力的强弱程度。
以 对p 作图,得:
θ bp 1 bp
θ bp
1.当p很小,或吸附很弱时,bp<<1, = bp, 与 p
成线性关系。
2.当p很大或吸附很强时,
把一定大小的物质分割得越小,则分散度越高, 比表面也越大。
例如,把边长为1cm的立方体1cm3逐渐分割 成小立方体时,比表面增长情况列于下表:
边长l/m
1×10-2 1×10-3 1×10-5 1×10-7 1×10-9
立方体数
1 103 109 1015 1021
比表面Av/(m2/m3) 6 ×102 6 ×103 6 ×105 6 ×107 6 ×109
第十章 界面现象
本章要点
10.1 界面张力 10.2 附加压力 10.3 固体表面 10.4 液-固界面 10.5 溶液表面
两相界面处的分子具有特殊的性质 G
比表面积
A0
A总 V
L
或
A0
A总 m
A总 : 体系的总表面积, V: 体系的体积 m :体系的质量
分散度与比表面
把物质分散成细小微粒的程度称为分散度。
(1)液体能润湿毛细管:形成凹液面
p毛细管内 p大气压 - p p毛细管外
毛细管内液面上升
p 2 gh
r
r
cos
r1
2 cos
h
r1 g
r
r1
h
(2)液体不能润湿毛细管:形成凸液面 毛细管内液面下降
§ 10.3 固体表面
物理吸附
化学吸附
吸附剂和吸附质 吸附量的表示
吸附等温线
吸附量与温度、压力的关系
(Ⅳ)多孔吸附剂发生 多分子层吸附时会有 这种等温线。在比压 较高时,有毛细凝聚 现象。例如在323K时, 苯在氧化铁凝胶上的 吸附属于这种类型。
(Ⅴ)发生多分子层吸 附,有毛细凝聚现象。 例如373K时,水汽在 活性炭上的吸附属于 这种类型。
(2) 吸附经验式—甫罗因德利希(Freundlich)吸附等温式
dT=0,dp=0时: Wr' dGT, p dAS
GT ,2
3.影响纯物质的γ的因素
(1) 表面张力与物质本身的性质(固体比液体大, 极性液体比非极性液体大。)
纯液体的表面张力是指与饱和了其本身蒸汽的 空气之间的界面张力。
(2) 界面张力与另一相物质有关
2. 吸附剂和吸附质(adsorbent,adsorbate)
当气体或蒸汽在固体表面被吸附时,固体称为 吸附剂,被吸附的气体称为吸附质。
常用的吸附剂有:硅胶、分子筛、活性炭等。 常用的吸附质有:氮气、水蒸气、苯或环己烷 的蒸汽等。
3. 吸附量的表示
吸附量通常有两种表示方法:
(1)单位质量的吸附剂所吸附气体的体积,单位:m3/kg 。
Va V m
体积要换算成标准状况
(2)单位质量的吸附剂所吸附气体物质的量,单位:
mol/kg 。
na
n
m
4 吸附量等温线
(1) 吸附等温线的类型
从吸附等温线可以反映出吸附剂的表面性质、 孔分布以及吸附剂与吸附质之间的相互作用等有关 信息。
常见的吸附等温线有如下5种类型:(图中p/ps 称为比压,ps是吸附质在该温度时的饱和蒸汽压,p
液体-气体 固体-气体
表面(surface)
液体-液体 液体-固体 固体-固体
界面(interface)
常见的界面有: 1.气-液界面
2.气-固界面
3.液-液界面
4.液-固界面
5.固-固界面
§ 10.1 界面张力(interface tension)
1.界面现象的本质
界面层分子受力不均
对于单组分体系:同一物质在不同相中的密度不同; 对于多组分体系:界面层的组成与任一相的组成均不 相同。
吸附等压线
吸附等量线
吸附等温线的类型
Langmuir吸附等温式
1 物理吸附和化学吸附
具有如下特点的吸附称为物理吸附:
(1)吸附力是由固体和气体分子之间的范德华引力 产生的,一般比较弱。
(2)吸附热较小,接近于气体的液化热,一般在几 个 kJ/mol以下。 (3)吸附无选择性,任何固体可以吸附任何气体, 当然吸附量会有所不同。
分子从内部移到界面,或可逆的增加表面积,就必须克服体系 内部分子之间的作用力,对体系做功。
温度、压力和组成恒定时,可逆使表面积增加dA所需要
对体系作的功,称为表面功。用公式表示为:
W ' F dx 2ldx dAS
W '
dAS
增加单位表面积所做的非体积功,单位:J.m-2
(3)表面吉布斯函数
(4)吸附稳定性不高,吸附与解吸速率都很快。
(5)吸附可以是单分子层的,但也可以是多分子层的。 (6)吸附不需要活化能,吸附速率并不因温度的升 高而变快。
总之:物理吸附仅仅是一种物理作用,没有电子转 移,没有化学键的生成与破坏,也没有原子重排等。
具有如下特点的吸附称为化学吸附:
(1)吸附力是由吸附剂与吸附质分子之间产生的化 学键力,一般较强。
为吸附质的压力)
(Ⅰ)在2.5nm以下微孔 吸附剂上的吸附等温 线属于这种类型。例 如78K时N2在活性炭上 的吸附及水和苯蒸汽 在分子筛上的吸附。
(Ⅱ)常称为S型等温线。 吸附剂孔径大小不一, 发生多分子层吸附。 在比压接近1时,发生 毛细管和孔凝现象。
(Ⅲ)这种类型较少见。 当吸附剂和吸附质相 互作用很弱时会出现 这种等温线,如352K 时,Br2在硅胶上的吸 附。
γ/(N m-1)
水 ----正庚烷
0.0502
苯
0.0350
汞
0.415
(3) 与温度有关
对绝大多数液体 T↑,γ↓ R-S 方程
kVm23 (Tc T 6.0)
Tc :临界温度 Vm :液体的摩尔体积 k:经验参数,对非缔合的非极性液体
k≈2.2×10-7 J K-1
(4)压力:p↑,γ↓
)S ,V
,nB
H ( AS
)S ,P,nB
F ( AS
)T ,V
,nB
G ( AS
)T ,P,nB
dT=0,dp=0,dnB=0时: dG S dAS
AS
G S - G0 G S dAS AS
0
AS
(GS
idAi i Ai)
S
S
i0
i
dG S dAS ASd 0自平发衡
如果刺破线圈中央的液膜,线 圈内侧张力消失,外侧表面张力立 (b) 即将线圈绷成一个圆形,见(b)图, 清楚的显示出表面张力的存在。
(1)表面张力
F 2l
F l
F
2l
l
F
液体表面单位长度上的收缩力, 单位:N.m-1
不是向内的拉力
(2)表面功
dx
由于表面层分子的受力情况与本体中不同,因此如果要把
(4)吸附为动态吸附
设:表面覆盖度 = Va/Vam 则空白表面为(1 - )
Va为吸附体积
Vam为吸满单分子层的体积
N为表面有吸附能力的总吸附位置
v(吸附)=k1p( 1- )N