物理化学界面现象.pdf

合集下载

最新物理化学10-2界面现象ppt精品课件

最新物理化学10-2界面现象ppt精品课件

θ
Va Vma
再联系(10.3.3)式 可得:
bp V a θ 1 b p Vma
10.3.4
第十四页,共22页。
因此,朗缪尔吸附等温式还可写成以下形式:
Va
Vma
bp 1 bp
1 Va
1 Vma
1 Vma
b
1 p
10.3.5a 10.3.5b
由10.3.5b
可知,若以
1 Va

1 p
作图,应得一条直线,由其斜率
1 Vma /dm 3
kg1
kPa 0.01868 kPa
( 计算机求得: b = 0.01839 kPa )
由定义,饱和(bǎohé)吸附量是 1 kg 活性炭吸附的气体在标 准状态下的体积。所以在 m kg 活性炭上吸附的 CO 分子数为:
N m pVma L RT
( 这里 p、T 指标准态压力与温度)
数)N。因为吸附速率与A的压力 p 及固体表面上的空位数
( 1- )N 成正比。
v吸附 k1 p (1 θ)N
第十二页,共22页。
解吸速率与固体表面上被复盖的吸附位置数,即被吸附
的分子数成正比。 v解吸 k1θ N
动态平衡时吸附速率与解吸速率相等:v 吸附= v 解吸
k1 p1 θ N k1θ N
及截距,可求得 Vma 和 b
第十五页,共22页。
朗缪尔公式的性状:
a. 压力很低时,b p << 1, 式(10.3.5a)简化为:V a Vma b p
吸附量与压力成正比,这反映了,吸附等温线的起始段, 几乎是直线的情况。
b. 压力很高时,b p >> 1, 则有: V a Vma

物理化学08界面现象

物理化学08界面现象
第八章
界面现象
界面现象
•雨滴、露珠; •碳粉脱色;硅胶吸水、塑料防水; •玻璃毛细管内水面上升、汞面下降; •肥皂、牙膏起泡去污; •牛奶、豆浆成乳状液而稳定存在; •豆浆可破乳制作豆腐;
•水过冷而不结冰;液体过热而不沸腾;
•溶液过饱和而不结晶;

1、界面与表面

界面:任意两相的接触面
表面:物质与真空、本身的饱和蒸气或 含饱和蒸气的空气之间的接触面
液体/空气 水 表面能/ J· 2 m 72.75103 液体/液体 苯/水 表面能/ J· 2 m 35.0103

乙醇 乙二醇 甘油 液体石蜡 汞
28.88103
22.27103 46.0103 63.0103 33.1103 484103
四氯化碳/水
橄榄油/水 液体石蜡/水 乙醚/水 正丁醇/水 水/汞
凹液面: p = pg – pl
定义:弯曲液面凹面一侧压力为p内; 凸面一侧压力为p外
附加压力p = p内 – p外
弯曲液面附加压力
弯曲液面附加压力
二、拉普拉斯(Laplace )方程
pg
凸液面球缺处
r'

r
F 2r cos
'

p F
r '
2
r' 2r ' r p
G γ A s T,p
单位:J· -2 m
二、热力学公式
dU TdS pdV B dnB dA
dH TdS Vdp B dnB dA
dA SdT pdV B dnB dA
dG SdT Vdp B dnB dA

第十章__界面现象2005.11.20

第十章__界面现象2005.11.20

有等于系统增加单位面积时所增加的吉布斯函数,
所以也称为表面吉布斯函数
9
例:
20 ℃时汞的表面张力 =4.85×10
-1
N· m
-1
,若在此温度
及101.325 kPa 时,将半径r1 = 1 mm的汞滴分散成半径为 r2 =10-5 mm 的微小液滴时,请计算环境所做的最小功。 解:因为T,p 恒定,所以为常数,环境所做的最小功为可逆过程 表面功W’,
6
此实验证明,液体表面层存在着一个平行于液面,垂直 于分界线的力,此力使表面收缩 —— 表面张力。



对于弯曲液面,表面张力则与液面 相切。


表面张力
7
2. 表面功与表面张力表面吉布斯函数:
dx
当T、p、n不变的条件下,若把 MN移动dx,
F外

l
则增加面积dA=2l· dx,
此时外界必反抗表面张力做功。 WR' F外 dl 在可逆条件下:F外=F表+dF≌F表
15
5. 影响表面张力的因素
(1)表面张力和物质性质有关和它接触的另一相的性质有关。 (i)和空气接触时,液体和固体中的分子间作用力越大表面 张力越大。一般:
(金属键)> (离子键)> (极性共价键)> (非极性共价键)
(ii)同一种物质和不同性质的其它物质接触时,界面层中分 子所处的力场不同,界面张力出现明显差异。(看下表数据)
16
某些液体、固体的表面张力和液/液界面张力
物质 水(溶液) 乙醇(液)
/(10-3
N· -1) m 72.75 22.75
T/K 293 293
物质 W(固) Fe(固)

物理化学 第八章界面现象及胶体

物理化学 第八章界面现象及胶体

(1)过饱和蒸气 P473
压力超过通常液体的饱和 p 蒸气压的蒸气为过饱和蒸气. 过饱和蒸气的压力尚未达 到该液体微小液滴的饱和蒸 P’ p0 气压(见图示). 减轻过饱和程度的方法 是引入凝结中心, 使液滴核 心易于生成(如人工降雨).
O
液相区
B A
气相区
T0
T
• 过饱和蒸气的产生
(2)过热液体 温度高于沸点的液体为过热液体. 过热液体是因为液体内微小气泡难以生成 而不能在正常沸点沸腾所造成的(见图示).
/(10-3
N· - 1) m 2900 2150 1880 485 227 110 1200 450 0.308 18.6
润湿与铺展
8.2 亚稳定状态和新相的生成 P332
物质相变时, 由于最初生成的新相体积 极小而具有很大的比表面和表面吉布斯函 数, 因而新相难以形成而引起各种过饱和 现象, 此时系统处于亚稳状态.
• 单分子层吸附: 固体表面上每个吸附位只能吸附一个分子,
气体分子只有碰撞到固体的空白表面上才能被吸附; • 固体表面是均匀的:表面上各个晶格位臵的吸附能力相同; • 被吸附的气体分子间无相互作用力: 吸附或脱附的难易与 邻近有无吸附分子无关;
• 吸附平衡是动态平衡: 达吸附平衡时, 吸附和脱附过程同
Tf Tf
T
• 过冷液体的产生
在过冷液体中投入小晶体作为新相 的种子, 能使液体迅速凝固成晶体.
(4)过饱和溶液
浓度超过饱和浓度的溶液为过饱和溶液. 过饱和溶液产生的原因是微小晶粒具有 比普通晶体更大的溶解度.
微小晶体的饱和蒸 气压大于普通晶体, 而 蒸气压与溶解度有密切 的关系.
p
c3 c2 c1

B

(物理化学D(下))第10章 界面现象

(物理化学D(下))第10章 界面现象
产生表面(界面)现象的原因是什么?
是由于当物质被高度分散时,界面的质量与体相相比不可 忽略,界面的作用很明显。
10nm 的
球型小水滴
圆球形小液滴
分成 1018个
表面积: 3.1416cm2
表面积相 总表面积 314.16m2 差 106倍
与一般体系相比,小颗粒的分散体系有很大的表 面积,它对系统性质的影响绝对不可忽略。
2020/7/9
2. 热力学公式
d G S d T V d P d A s B dB n
B
恒T、p、 、恒组分 下积分,有: Gs A s
全微分得: d G T s,pd A s A sd
可知自发降低表面自由焓有两种途径——降低表面积 降低表面张力
dT ,pG s < 0
2020/7/9
2020/7/9
物质的分散度用比表面积 as 表示,它的定义为 物质的表面
积 As 与质量 m 的比:
as
As m
10.0.1单位:m2·kg-1
对于以上水滴的例子,若近似认为其在室温下密度为 1g ·cm-3,则以上两种情况,比表面积 as 分别约为:6 cm2 ·g1 及600 m2 ·g-1 。
物理化学电子教案—第十章
2020/7/9
界面不是接触两相间的几何平面!界面有一定的厚 度,所以有时又称界面为界面相 。
A




B 相
2020/7/9
特征:几个分子厚、 结构与性质与两侧 体相均不同
日常自然界中许多现象与界面的特殊性质有关,例如: 1.汞在光滑的玻璃上呈球形,在玻璃管中呈凸形。 2.水在光滑的玻璃上完全铺展,在玻璃管中上升,呈凹形。 3. 固体表面会自动吸附其它物质。 4. 微小液滴更易于蒸发。

物理化学 界面现象

物理化学 界面现象

最简单的例子是液体及其蒸气组成的表面。
表面张力(surface tension): 在两相(特别是气-液)界面上,处处存在 着一种张力,它可看成是引起液体表面收缩的单 位长度上的力,方向与液体表面相切。 把作用于单位边界线上的这种力称为表面 张力,用g 表示,单位是N· m-1。
F 2g l
物理化学
第十章
界面现象
Interface Phenomenon
第一节 界面张力
1、 液体的表面张力、表面功和表面吉布斯函数
2、 表面热力学基本方程 3、 影响界面张力的因素 第二节 弯曲液面的附加压力与毛细现象 1、 弯曲液面的附加压力 2、 毛细现象 第三节 开尔文公式和亚稳状态
1、 微小液滴的饱和蒸气压 — 卡尔文公式


界面 (interface) 是指两相的接触面。一般常
把与气体接触的界面称为表面(surface)。界面并
不是两相接触的几何面,Байду номын сангаас有时又将界面称为界 面相。 严格讲表面应是液体和固体与其饱和蒸气之
间的界面,但习惯上把液体或固体与空气的界面
称为液体或固体的表面。
常见的界面有: 1.气-液界面
2.气-固界面
所必须对体系做的可逆非膨胀功,故γ 也称表面功。
表面自由能:
G g ( )T , p As
δW g dAs dGT,P
'
保持温度、压力和组成不变,每增加单位表 面积时,Gibbs自由能的增加值称为表面Gibbs自
由能,或简称表面自由能或表面能,用符号 g
表示,单位为J· m-2。 表面张力、单位面积的表面功、单位面积的表面吉 布斯函数的数值和量纲是等同的。
dG g dAs

天津大学物理化学课件 界面现象

天津大学物理化学课件 界面现象
31
3. 吸附经验式——弗罗因德利希公式
对I类吸附等温线:
lgV a nlgplgkk, n 经验常数, 与吸附体系及T 有关。
直线式:
bp
1
bp
lg(Va/[ V])
T1 <T2
斜率 n; 截距 k(p =1时的吸附量)
T,k
lg(p/[p])
方程的优点:(1) 形式简单、计算方便、应用广泛;
直径:1cm 表面积:3.1416 cm2
直径:10nm 表面积:314.16 m2
表面积是原来的106倍
界面相示意图
一些多孔物质如:硅胶、活性炭等,也具有很大的比表面积。
3
物质的分散度可用比表面积as来表示,其定义为 as = As/m
单位为m2kg-1。
小颗粒的分散系统往往具有很大的比表面积,因此 由界面特殊性引起的系统特殊性十分突出。
——过饱和蒸气,过热液体,过冷液体,过饱和溶液
27
§10-3 固体表面
在固体或液体表面,某物质的浓度与体相浓度不同 的现象称为吸附。
产生吸附的原因,也是由于表面分子受力不对称。
dG = dA+Ad
被吸附的物质—— 有吸附能力的物质——
28
1. 物理吸附与化学吸附:
性质 吸附力 吸附层数 吸附热 选择性 可逆性 吸附平衡
26
(4) 过饱和溶液
na
n m
溶液浓度已超过饱和 液体,但仍未析出晶体的 溶液称为过饱和溶液。
原因:小晶体为凸面, pr>p , 表明分子从固相中逸出的倾向大 , 这造成它的浓度大,即溶解度大, 由此产生过饱和现象。
由于小颗粒物质的表面特殊性,造成新相难以生成, 从而形成四种不稳定状态(亚稳态):

物化 第十章 界面现象

物化 第十章 界面现象

δWr' γ = dAs
γ :使液体增加单位表面时环境所需作的可逆功, 使液体增加单位表面时环境所需作的可逆功, 单位表面时环境所需作的可逆功
单位: 单位:J·m-2
表面吉布斯函数: 表面吉布斯函数
恒温、 恒温、恒压下的可逆非体积功等于系统的 吉布斯函数变: 吉布斯函数变: δWr' ∂G ' γ = = δWr = dGT , p = γ dAs dAs ∂As T , p
Freundlich用指数方程描述 Ι 型吸附等温线 用指数方程描述
a
V
= kp
n
n、k 是两个经验参数,均是 T 的函数。 、 是两个经验参数, 的函数。 k: 单位压力时的吸附量。一般 ↑,k↓; 单位压力时的吸附量。一般T ↓ n :介于 介于0~1之间,反映 p 对V a 影响的强弱。 之间, 影响的强弱。 之间 直线式: lgV 直线式
毛细现象
2γ ∆p = = ρ gh r1 2γ cos θ h= rρ g
θ < 90o , h > 0 液体在毛细管中上升
r = r1 cos θ
θ > 90o , h < 0 液体在毛细管中下降
3. 开尔文公式(微小液滴的饱和蒸气压) 开尔文公式(
微小液滴的饱和蒸气压不仅与物质的本性、 微小液滴的饱和蒸气压不仅与物质的本性、 温度及外压有关,还与液滴的大小有关。 温度及外压有关,还与液滴的大小有关。 pr p dn r + dr l dG 小液滴面积 : dn液体由 p→pr : 液体由 → pr 4πr 2 → 4π( r + dr )2 dG = (dn) RT ln
界面是系统中的特殊部分
在高度分散系统中界面效应不可忽视
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档