Synthesis and Crystal Structure of aCopper
InSeI单晶的制备及其结构与性能研究

第49卷第12期人工晶体学报Vol.49No.12 2020年12月JOURNAL OF SYNTHETIC CRYSTALS December,2020 InSei单晶的制备及其结构与性能研究周玄1,2,程国峰2,何代华1(1.上海理工大学材料科学与工程学院,上海200093;2.中国科学院上海硅酸盐研究所,上海200050)摘要:利用化学气相传输法(CVT)制备了InSeI单晶。
该晶体为黄色的针状物,晶体较脆。
在室温下进行X射线衍射分析发现,其属于四方晶系,晶胞参数为a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,空间群为他/a。
紫外可见光吸收光谱、光致发光光谱等结果显示该晶体的禁带宽度是2.48eV,在一定波段光的激发下,InSeI单晶在600nm左右有较宽的发射峰,表明该晶体的发光方式为缺陷态发光。
介电温谱表明InSeI单晶在440K时其四方相的结构发生了相变。
关键词:InSeI;金属基硫卤化合物;化学气相传输法;光致发光;禁带宽度;介电性能中图分类号:O78文献标识码:A文章编号:1000-985X(2020)12-225244 Synthesis,Structure and Properties of InSei Single CrystalsZHOU Xuan1,2,CHENG Guofeng2,HE Daihua1(1.School of Materials Science and Engineering,Lniversity of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai200050,China)Abstract:InSeI single crystals were synthesized by the chemical vapor transport(CVT)method.The crystal is yellow needleshaped and brittle.X-ray diffraction results at room temperature show the tetragonal system of InSeI,with lattice parameters of a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,and space group is/a.The ultraviolet-visible absorption spectrum,photoluminescence spectrum results show that InSeI has a2.48eV band gap,under the excitation of a certain band of light,InSeI single crystal has a wide emission peak at about600nm,which indicates that the luminescence mode of the crystal is defect state luminescence.The dielectric temperature spectrum indicates that a phase transition happened in the tetragonal structure of InSeI crystals at440K.Key words:InSeI;metal based thiohalide;chemical vapor transport method;photoluminescence;band gap;dielectric property0引言近年来,金属基硫卤化合物MQX[1](M=Ga,In,Sb,Bi;Q=S,Se,Te;X=Cl,Br,I)由于其独特的光电性质如铁电性[2-3]、热电性[4]、光电导性[5]和非线性光学性能[6]等引起了科学界的浓厚兴趣。
Isolation and Crystal Structure of 2—Bromoaldisin

Isolation and Crystal Structure of 2—Bromoaldisin 徐效华; 陈晓; 等【期刊名称】《《结构化学》》【年(卷),期】2001(020)003【摘要】The crystal structure of the title compound (C8H7BrN2O2,Mr=243.07) was isolated from the marine sponge Phacellia fusca Schmidt collected from the South China Sea. Its crystal structure was determined by single-crystal X-ray diffraction. The crystal is orthorhombic with space group Pbca, a=12.9952(8), b=7.4479(5), c=18.598(1) ?, V=1800.1(2) ?3, Z=8, Dc=1.794g/cm3, (=0.71073 ?, ( (MoK()=4.533mm-1, F(000)=960. The structrue was refined to R=0.0349, wR(F2)=0.0925 for 1589 reflections with I > 2((I). X-ray diffraction analysis reveals that the title compound has one five-membered pyrrole ring and one seven-membered azepin ring. There are two intermolecular hydrogen bonds between two molecules.【总页数】3页(P173-175)【作者】徐效华; 陈晓; 等【作者单位】InstituteandStateKeyLaboratoryofElemento-OrganicChemistry NankaiUniversity Tianjin300071 China【正文语种】中文【中图分类】O626【相关文献】1.Isolation, Crystal Structure and Antitussive Activity of 9S,9aS-neotuberostemonine [J], WU Yi;YE Qing-Mei;LIU Jing;XU Wei;ZHU Zi-Rong;JIANG Ren-Wang2.Isolation, Crystal Structure and Na+/K+-ATPase Inhibitory Activity of 1β-Hydroxydigitoxigenin [J], XU Yun-Hui;XU Jian;JIANG Xue-Yang;CHEN Zhi-Hua;XIE Zi-Jian;JIANG Ren-Wang;FENG Feng3.Isolation and Crystal Structure of Ent-kaurane Diterpenes from Rubus corchorifolius L.f. [J], CHEN Xue-Xiang;HUANG Jian-Xi;OU Yang-Wen;LIU Xiao-Juan;ZHOU Li-Ping;CAO Yong4.Isolation, Crystal Structure,and Anti-inflammatory Activity of Sakuranetin from Populus tomentosa [J], LIU Hai-Ping;CHAO Zhi-Mao;TAN Zhi-Gao;WU Xiao-Yi;WANG Chun;SUN Wen5.Isolation and Crystal Structure of 2-Bromoaldisin [J], 徐效化; 陈晓; 廖仁安; 谢庆兰因版权原因,仅展示原文概要,查看原文内容请购买。
(物理化学专业论文)系列Co配位聚合物的合成、结构及自旋转换和光—电性能的研究

系列Co配位聚合物的合成,结构及自旋转换和光一电性能的研究系列Co配位聚合物的合成、结构及自旋转换和光一电性能的研究博士生:金晶指导教师:牛淑云教授专业:物理化学方向:功能分子设计与研制摘要配位聚合物是金属离子和有机配体通过自组装而形成的无限结构的配位化合物。
由于它在光、电、磁、催化等领域具有诱人的应用前景,被认为是当前最有潜在能力的功能材料,已成为无机化学和材料化学领域的研究热点之一。
它的目标是通过金属离子和有机配体间的相互作用,设计合成具有理想结构和特定功能的稳定分子体系和特殊功能的材料。
本文围绕当前关于配位聚合物研究的若干热点,采用溶剂热合成、水热合成和微波合成等方法,以Co(II)或Co(III)为中心原子,通过与有机配体的自组装,共合成了lO种Co(II)或Co(III)及Fe(III)的配位聚合物和3种Co(II)的二聚物,它们的分子式如下:(1){[co(p·4,4’bipy)(4,4’·bipy)2(H20)2],(OH)3-(Me4N)‘4,4’-bipy。
4H20}n(2){[Co(p-4,4’一bipy)(H20)4]-SUC-4H20}。
(3)[C02(Ia2一btec)(phen)2(H20)4](4)【C02(92一btec)(bipyh(H20)4‘H20(5)[C02(1a2-btec)(phen)2(H20)d·2H20(6)fC04(出一btec)(bipy)4(HzO)4]n(7)[Fe2(№一btec)(I_t2-H2btec)(bipy)}2(H20)21n(8)[Fe2(kt2-btec)(pa—H2btec)(phenh(H20)21n(9)[Co(phen)(H20)(№一btec)o5】n(10){[Co(p_4-btec)o5(H20)2】-5H20}nl—————————!!堕堡!燮鱼竺竺竺皇:苎苎垦!垦竺垫竺垄二皇兰堂竺竺窒(11)【co(№一CH2(COO)2)(4,∥-bipy)05(H20)]Ⅱ(12)【co(№一HcOO)dco(H20)4】。
拉曼光谱测量钙钛矿电声耦合强度

拉曼光谱测量钙钛矿电声耦合强度1.拉曼光谱是一种用于分析晶体材料结构和性质的强大技术。
Raman spectroscopy is a powerful technique for analyzing the structure and properties of crystalline materials.2.钙钛矿是一类具有重要电声耦合特性的材料。
Perovskite is a type of material with important electroacoustic coupling properties.3.通过拉曼光谱,可以了解钙钛矿中电声耦合的强度和机制。
Raman spectroscopy can be used to understand the strength and mechanism of electroacoustic coupling in perovskite.4.钙钛矿的电声耦合特性对于光伏和光电器件的性能至关重要。
The electroacoustic coupling properties of perovskite are crucial for the performance of photovoltaic and optoelectronic devices.5.拉曼光谱可以提供关于晶体结构、相变和电子结构的丰富信息。
Raman spectroscopy can provide rich information about crystal structure, phase transitions, and electronic structure.6.钙钛矿材料的电声耦合性质直接影响着其光电器件的效率和稳定性。
The electroacoustic coupling properties of perovskite materials directly affect the efficiency and stability oftheir optoelectronic devices.7.拉曼光谱测量可以帮助科学家们深入了解钙钛矿材料的微观特性。
药物共晶的合成和结构分析

2017年2月 CIESC Journal ·509·February 2017第68卷 第2期 化 工 学 报 V ol.68 No.2DOI :10.11949/j.issn.0438-1157.20160928药物共晶的合成和结构分析黄耀辉1,尹秋响1,2,张霞1,郭明霞1,王昌1(1化学工程联合国家重点实验室,天津大学化工学院,天津 300072;2化学化工协同创新中心,天津 300072) 摘要:药物的理化性质与其结晶形式相关,药物共晶作为一种新型的固态形式能够在不影响药物内部结构的同时改善药物的多方面性质,提高药效。
通过药物共晶的定义、应用、制备方法和结构研究等方面对目前药物共晶的研究现状进行总结,为后续共晶方向的研究提供理论指导。
关键词:药物共晶;合成;结晶;结构研究;化学过程中图分类号:TQ 460.1 文献标志码:A 文章编号:0438—1157(2017)02—0509—10Synthesis and structural analysis of pharmaceutical co-crystalsHUANG Yaohui 1, YIN Qiuxiang 1,2, ZHANG Xia 1, GUO Mingxia 1,WANG Chang 1(1State Key Laboratory of Chemical Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072, China ; 2Collaborative Innovation Center of Chemical Science and Chemical Engineering , Tianjin 300072, China )Abstract : Co-crystals have advantages in physiochemical properties over their constituent components and are expected to use in product formulation such as enhanced active pharmaceutical ingredients, food components withimproved absorbability, and specialty chemicals with better performance. The development of pharmaceuticalco-crystals might offer advantages over the active pharmaceutical ingredients and overcome some of the limitations encountered with classical strategy (polymorph, solvate and salt formation). In recent years, co-crystals have recently gained much attention for pharmaceutical development especially because it has great advantages in improving the solubility, dissolution, melt point and oral bioavailability. Since the co-crystals lattice comprises two or more kinds of molecules, compared with the conventional structure of the drug crystal, intermolecular force comprising more types such as hydrogen, halogen bond, van der Waals forces, π-π interaction, so the structure is more complex. The research on the co-crystals structure can be helpful to understand the formation mechanism. The definition, application, preparation and structure of co-crystals were reviewed, it will provide theoretical guidance for the studies of the following research.Key words : pharmaceutical co-crystals; synthesis; crystallization; structural study; chemical processes引 言药物能够以多种不同的固态形式存在,如多晶型、溶剂化合物、盐、共晶和无定形等,每种固态形式都具有自身独特的理化性质,进而影响药物的溶解度、稳定性、生物利用度等性能[1],而药物的疗效很大程度上取决于活性药物成分自身的理化性质及其固体形态。
应用Caco-2细胞模型进行毒性中药研究的思路

等。研究表明 I相代谢酶如细胞色素 P450( CYP450)、 II相代谢酶如 UDP - 葡萄糖醛酸转移酶、磺基转移酶 和谷胱甘肽硫基转移酶在 Caco- 2细胞中也存在, 并
国外广泛使用 [ 1 ~ 3] 。本世纪初, 国内有学者经研究预 保持了 P - 糖蛋白高表达的 特征。以 上特点决 定了
四、利用 C aco- 2细胞模型研究毒性中药的思路
1 确定毒性中药的肠道吸收成分 Caco- 2细胞经毒性中药染毒后, 收集被细胞吸 收或穿透 C aco - 2细胞单细胞层的成分, 采用高效液 相法将收集到的物质与实验药物的固有成分 进行比
内两侧药物的含量变化或细胞中的药物含量变化。计 算 Papp (表观穿透系数 ) 及 Papp1 /Papp2 ( Papp1为基底面至 绒毛面方向测得的表观穿透系数; Papp2为绒毛面至基 底面方向测得的表观穿透系数 ) 的数值, 以确定吸收 成分的吸收机制。 P - 蛋白 ( P - ly - oprote in, P - gp) 和多药耐药蛋白 ( m ulti- rug resistance protein, MRP ) 是 Caco- 2细胞中两种主要转运蛋白。两者均为能量 ( ATP) 依赖性膜蛋白。我们可通过细 胞基底面及绒 毛面两侧不同方向转运速率的比较及检测加入转运蛋 白抑制剂后 Papp值的变化确定吸收成分的转运机制。
世界科学技术 中医药现代化 思路与方法
应用 Caco- 2细胞模型进行 毒性中药研究的思路
# 罗明媚 刘树民
索 晴 ( 黑龙江中医药大学 哈尔滨 150040)
摘 要: 本文概述了 C aco- 2细胞模型的基本特点、培养方法及其在中药研究方面的应用, 提出了 应用 C aco- 2细胞模型对毒性中药进行研究的新思路。
邻苯二甲酸根桥联多核铜配位聚合物的合成与晶体结构_英文_

Synthesis and Crystal Structure ofPhthalate Copper (Ⅱ)polymeric TIAN Li 1, CHEN Lin 1, YI Lanhua2(1.Department of Chemistry ,X iangtan N ormal University ,Hunan X iangtan 411201China ;2.Chemistry Institute of X iangtan University ,X iangtan 411105China )【Abstract 】 A phthalate copper (Ⅱ)polymeric has been synthesized ,namely {[Cu (Phth )(Phen )(H 2O )]・(H 2O )}n ,where Phth denotes phthalate and Phen denotes 1,10-phenanthroline.The crystal structure of the complex was deter 2mined by single crystal X -ray diffraction ,the result of which shows that the complex crystallizes in orthorhombic with space group Pca21,a =1.1159(3)nm ,b =1.1640(2)nm ,c =1.4066(5)nm ,Z =4,V =1.8270(9)nm 3,F (000)=908,D c =1.614mg.m-3,μ(M O K a )=1.238mm -1.The final R =0.0351,wR (F 2)=0.0891were based on1455observed independent reflections with F 0>4σ(F 0).X -ray analysis revealed that the m olecular is polymeric with extended phthalate bridges to form one -dimensional chain structure and that the copper (Ⅱ)ion is five -coordinated in a distorted square pyramid.K ey w ords : synthesis ;polymeric ;crystal structure邻苯二甲酸根桥联多核铜配位聚合物的合成与晶体结构Ξ田 俐1, 陈 琳1, 易兰花2(1.湘潭师范学院化学化工系,湖南湘潭411201;2.湘潭大学化学学院,湖南湘潭411105)[摘要] 合成了邻苯二甲酸根桥联多核铜的配位聚合物{[Cu (Phth )(Phen )(H 2O )]・(H 2O )}n ,(Phth :邻苯二甲酸根二阶阴离子;Phen :1,10邻菲咯啉),并得到了它的单晶.用X -射线单晶衍射法测定了配合物的晶体结构.晶体学数据如下:经验式为C 20H 16CuN 2O 6,Mr =443.89,晶体属正交晶系,Pca21,a =1.1159(3)nm ,b =1.1640(2)nm ,c =1.4066(5)nm ;Z =4,V =1.8270(9)nm 3,F (000)=908,Dc =1.614mg.m -3,μ=1.238mm -1.晶体结构由直接法解出,数据用全矩阵最小二乘法进行修正,最终结构偏差因子R =0.0351,wR =0.0891,吻合因子S =0.991,晶体中每个Cu (Ⅱ)离子配位数为5,这5个配位原子形成一个畸变的四方锥结构,配合物分子通过邻苯二甲酸根桥联呈无限延伸的一维链状结构,配合物通过分子间氢键作用形成三维网状结构.关 键 词:桥联金属多核铜配位聚合物;合成;晶体结构中图分类号:O631.1 文献标识码:A 文章编号:10005900(2003)010113041 I ntroductionP olymeric with extended ligand bridges have been widely inverstigated in the past decades [1,2].Interest in thisarea stems from attem pts to mimic the structural and functional properties of biological systems and to design andsynthesize m olecular magnets[3,4].As it has been known that phthalic is a g ood extended ligand bridge [5].Many phthalate metal com plexes have been prepared and their structures ,magnetic and spectroscopic properties have been studied recently [6].H owever ,to our knowledge ,A little single crystal structure of this kind has been reported.In this paper ,we have synthesized the phthalate copper polymeric ,the single crystal structure of which was determined by X -ray crystallography diffraction method for the first time.第25卷第1期2003年3月 湘 潭 大 学 自 然 科 学 学 报Natural Science Journal of X iangtan University V ol.25N o.1Mar.2003Ξ收稿日期:20020919 基金项目:湖南省教育厅资助项目(02C464) 作者简介:田 俐(1973),男,湖南攸县人,讲师.2 Experimental2.1 R eagentCu(NO3)・3H2O,phthalic acid,1,10-phenanthroline,K OH were of analytical grade.2.2 Synthesis of single crystalPhthalic acid(0.166g,1mm ol),Phen(0.198g,1mm ol)were diss olved in30m L of EtOHΠH2O(VΠV 1∶1)s olution adjusted to pH=7~8by addition of40%K OH s olution,and then the s olution was added dropwise with Cu(NO3).3H2O(0.246g,1mm ol)in10m L of H2O.The resulting s olution was stirred at50~60℃for6h and filtered.The blue precipitate was filtered off.The filtrate yielded blue hexag on crystals after standing in air at room tem perature for six m onths.Elemental analysis(%):Calad.F or C20H16CuN2O6:C,54.11;H,3.63;N,6.31;F ound:C,54.03;H,3.62;N,6.29.2.3 Structure DeterminationA blue hexag on single crystal(0.50mm×0.36mm×0.20mm)was m ounted on a glass fiber.Data C ollec2 tions were performed on a Siemens P4diffractometer with graphite m onochromated M O K a radiation(λ=0.071073 nm).Unit cell dimensions were obtained from a least-squares refinement using27carefully centered reflections in 2.90°<θ<15.95°range.A total of2102reflections were collected at292(2)K withω-2θscan m ode in the rang of3.5°<2θ<50.0°of which1821independent reflections were obtained.Am ong them1455observed were used for refinement with275variable parameters.The structure was s olved by direct methods and succeeding differ2 ence F ourier syntheses.A full-matrix least-squares refinement gave final R=0.0351,w R(F2)=0.0891 and S=0.991withω=1Π[σ2(F20)+(0.0652p)2]while P=(F20+2F20)Π3.The maximum and minimum re2 sidual peaks on the final difference F ourier map were514e(nm)-3and-605e(nm)-3,respectively.T ab.1 N on-hydrogen atomic coordinates[×104]and equivalentisotropic displacement p arameters[(nm2×10)(U eq)]表1 配合物非氢原子坐标(×104)和等效各向同性温度因子[(nm2×10)(U eq)]X Y Z U eqΠnm2×10 Cu1135(1)5233(1)5973(3)26(1)N(1)995(9)3925(9)5042(7)21(2)N(2)942(10)3963(10)6923(9)35(3)O(1)1397(8)6111(8)6910(7)39(2)O(2)3138(8)5847(7)7462(7)36(2)O(3)3697(7)6434(8)10032(6)28(2)O(4)1863(7)5807(7)9489(8)35(2)O(5)-999(3)5516(3)5988(9)36(1)C(1)2642(9)6508(10)9540(8)27(3)C(2)2630(10)7575(10)9005(8)25(3)C(3)2746(9)8701(10)9427(9)32(3)C(4)2611(10)9674(8)8960(11)34(3)C(5)2389(11)9701(11)7991(11)45(4)C(6)2271(11)8606(10)7508(10)35(3)C(7)2386(10)7649(9)8027(9)24(3)C(8)2228(10)6516(8)7421(8)28(3)C(9)979(11)3972(11)4117(10)36(3)C(10)748(14)2996(13)3568(11)42(4)C(11)409(11)1984(9)3997(11)41(4)C(12)406(12)1914(12)4970(11)38(3)C(13)96(11)942(11)5498(12)37(4)C(14)88(13)907(12)6451(15)53(5)C(15)381(10)1958(12)6995(10)34(3)C(16)429(12)2030(12)8007(9)45(4)C(17)705(13)3030(12)8446(10)40(4)C(18)991(11)3963(13)7882(9)35(3)C(19)667(10)2897(9)6484(8)27(3)C(20)689(10)2982(10)5450(8)35(3)O(6W)-649(7)8056(5)6021(18)135(3) 1) U(eq)is defined as one third of trace of the orthog onalie Uij tens or.411 Natural Science Journal of X iangtan University 20033 R esults and discussionNon -hydrogen atomic coordinates and equivalent thermal parameters are listed in T able 1.The selected bond lengths and bond angles are given in T able 2and T able 3,respectively .The packing diagram of the title m olecules in a unit cell is illustrated in Fig.1.and the m olecular structure of the com plex is shown in Fig.2.T ab.2 Selected bond lengths [L b ]表2 配合物主要键长(L b )L b ΠnmL b ΠnmL b ΠnmCu -O (1)0.1923(10)Cu -O (3)310.1934(8)Cu -N (2)0.2004(12)Cu -N (1)0.2014(10)Cu -O (5)0.2404(3)N (1)-C (20)0.1285(16)N (1)-C (9)0.1302(18)N (2)-C (18)0.1349(18)N (2)-C (19)0.1420(15)O (1)-C (8)0.1181(14)O (2)-C (8)0.1281(12)O (3)-C (1)0.1369(12)O (3)-Cu 330.1934(8)O (4)-C (1)0.1195(13)C (1)-C (2)0.1451(15)C (2)-C (7)0.1406(7)C (2)-C (3)0.1444(15)C (3)-C (4)0.1317(17)C (4)-C (5)0.1386(8)C (5)-C (6)0.1450(18)C (6)-C (7)0.1338(16)C (7)-C (8)0.1579(14)C (9)-C (10)0.1398(18)C (10)-C (11)0.1377(19)C (11)-C (12)0.1371(19)C (12)-C (13)0.1400(2)C (12)-C (20)0.1449(16)C (13)-C (14)0.1341(8)C (14)-C (15)0.1480(2)C (15)-C (19)0.1347(18)C (15)-C (16)0.1426(18)C (16)-C (17)0.1353(19)C (17)-C (18)0.1383(18)C (19)-C (20)0.1459(8)T ab.3 Selected bond angles[θb ]表3 配合物主要键角(θb )θb Π(°)θb Π(°)θb Π(°)O (1)-Cu -O (3)386.49(14)O (1)-Cu -N (2)94.5(5)O (3)3-Cu -N (2)178.6(5)O (1)-Cu -N (1)174.7(4)O (3)3-Cu -N (1)96.2(5)N (2)-Cu -N (1)82.41(16)O (1)-Cu -O (5)92.7(3)O (3)3-Cu -O (5)90.2(3)N (2)-Cu -O (5)89.3(4)N (1)-Cu -O (5)91.8(3)C (20)-N (1)-C (9)118.5(11)C (20)-N (1)-Cu 112.1(8)C (9)-N (1)-Cu 128.3(9)C (18)-N (2)-C (19)116.3(11)C (18)-N (2)-Cu 128.3(9)C (19)-N (2)-Cu 112.2(9)C (8)-O (1)-Cu 127.6(8)C (1)-O (3)-Cu 33118.4(7)O (4)-C (1)-O (3)127.8(10)O (4)-C (1)-C (2)123.2(10)O (3)-C (1)-C (2)108.9(9)C (7)-C (2)-C (3)111.3(12)C (7)-C (2)-C (1)124.1(12)C (3)-C (2)-C (1)124.3(10)C (4)-C (3)-C (2)124.4(12)C (3)-C (4)-C (5)122.0(13)C (4)-C (5)-C (6)124.4(12)C (7)-C (6)-C (5)117.9(13)C (6)-C (7)-C (2)127.1(12)C (6)-C (7)-C (8)113.0(10)C (2)-C (7)-C (8)119.9(12)O (1)-C (8)-O (2)125.9(11)O (1)-C (8)-C (7)120.2(9)O (2)-C (8)-C (7)113.3(10)N (1)-C (9)-C (10)121.4(13)C (11)-C (10)-C (9)120.3(14)C (12)-C (11)-C (10)119.3(13)C (11)-C (12)-C (13)125.4(13)C (11)-C (12)-C (20)114.5(13)C (13)-C (12)-C (20)120.1(14)C (14)-C (13)-C (12)123.9(16)C (13)-C (14)-C (15)119.4(17)C (19)-C (15)-C (16)118.4(13)C (19)-C (15)-C (14)116.5(13)C (16)-C (15)-C (14)125.0(14)C (17)-C (16)-C (15)121.0(13)C (16)-C (17)-C (18)117.7(13)N (2)-C (18)-(17)124.4(12)C (15)-C (19)-N (2)121.9(11)C (15)-C (19)-C (20)126.3(13)N (2)-C (19)-C (20)111.8(13)N (1)-C (20)-C (12)125.7(11)N (1)-C (20)-C (19)120.5(12)C (12)-C (20)-C (19)113.8(13) Symmetry trans formations used to generate equivalent atoms :3:-X +1Π2,Y,Z -1Π2; 33:-X +1Π2,Y,Z +1Π2As shown in the figures ,the m olecule is polymeric with extended phthalate bridges to form one -dimensional chain structure.The copper (Ⅱ)ion is five -coordinated with tw o N atoms of the ligand Phen and three O atoms from tw o phthalates and H 2O respectively ,occupying site at the base of a distorted square pyramid capped by the O atom from H 2O.The interm olecular hydrogen bonding interactions join the m olecules to form three -dimensional web structure which is shown in Fig.3.The uncoordinated water m olecule connects with the coordinated water m olecule (O (6W )…O (5)=0.2983(3)nm ,H (6A )…O (5)=0.257(9)nm ,O (6w )-H (6A )…O (5)=113(7)°)inv olving H (5A )atom (O (2)…O (5)=0.2782(14)nm ,H (5A )…O (2)=0.207(3)nm ,O (5)-H (5A )…O (2)=143(5)°)and H (5B )atom bonded with O (4)(O (4)…O (5)=0.2784(13)nm ,H (5B )…O (4)=0.1960(19)nm ,O (5)-H (5B )…O (4)=170(7)°).511N o.1 TI AN Li et al Synthesis and Crystal S tructure of Phthalate C opper (Ⅱ)polymeric Fig.1 Arrangement of the com plex in unit cell图1 配合物分子在晶胞中的排列Fig.2 M olecular structure of the com plex图2 配合物的分子结构R eferences[1] W illett R D ,G attesschi D ,K ahn O (Eds ).M agmeto -S tructure C orrelations in Exchange C oupled Systems[M].NAT O ASI Series C 140,ReidelPress ,1985.[2] M iller J S (Eds ).Extended Linear Chain C om pound[M].Plenum Press ,1983.[3] Xue F C ,Jiang Z Y,Liao D Z ,et al.Synthesis and Characterization of new μ-phthalate trinuclear C opper (Ⅱ)and Nickle (Ⅱ)com plexes[J ].Acta Sci Nat Univ N orm HuNan ,1993,16(3):241-245.[4] Shi J M ,Liao D Z ,Jiang Z H ,et al.Synthesis ,M agnetism and Cancer -Inhibiting Activity of μ-4-Nitrophthalato Binuclear C obalt (Ⅱ)C om 2plexes[J ].Chin J Appl Chem ,1996,13(4):86-88.[5] Li X Y,Jiang Z H ,Liao D Z ,et al.Synthesis ,S pectrum and M agnetism of μ-phthalate Binuclear real earths C om plexes with 5-Nitro -1,10-phenanthroline[J ].J Inorg Chem ,1994,10(2):184-187.[6] M iao M M ,Sun X R ,Shi J M ,et al.Synthesis and M agnetism of T etrabrom ophthalate -Bridged C obalt (Ⅱ)Binuclear C om plexes[J ].Chin J Appl Chem ,1996,13(1):42-45.611 Natural Science Journal of X iangtan University 2003。
a new supermolecular compound18冠

Synthesis and crystal structure of a new supermolecular compound: [C12H24O6][H3PMo12O40]·22H2O(C12H24O6 18-crown-6) Wansheng You a,Enbo Wang a,*,Qinglin He a,Lin Xu a,Yan Xing b,Hengqing Jia ba Northeast Normal University,Department of Chemistry,Changchun Jilin130024,People’s Republic of Chinab Changchun Institute of Applied Chemistry,Academic Sinica,Changchun Jilin130022,People’s Republic of ChinaReceived8October1999;received in revised form9November1999;accepted9November1999AbstractThe title compound,[C12H24O6][H3PMo12O40]·22H2O,was synthesized by the self-assembly of18-crown-6(abbreviated as C12H24O6or18C6)and H3PMo12O40in the mixed solvent of CH3OH and CH3CN,and was characterized by IR,1H NMR and X-ray diffraction for thefirst time.Crystal data:Triclinic,P 1;a 13:428 3 A;b 13:557 3 A;c 14:642 3 A;a 105:39 3 Њ;b 90:06 3 Њ;g 119:56 5 Њ;V 2207:5 8 A3;Z 1;R1 0:0719;wR2 0:1990:It has a disordered a-Keggin PMo12O3Ϫ40anion,which contains the strong alternating short(mean1.844A˚)and long(mean1.958A˚)Mo–O–Mo bonds.In the unit cell,crown ethers and molybdophosphates are alternatively arranged in good order along c-axis.An oxonium ion is located at the center of a crown ether molecule.,Oxonium ion interacts with18C6by the means of hydrogen bonds(mean 2.7771A˚),which are electrostatic or resonant.The observations show the existence of[H3O(C12H24O6)]ϩ.᭧2000Elsevier Science B.V.All rights reserved.Keywords:Molybdophosphate;Crown ethers;Oxonium ion;Hydrogen bonds;X-ray crystallography1.IntroductionSupermolecular compounds of polyoxometalates, or hybrid materials,produced by combining different inorganic and organic moieties by means of molecular assemblies,are of current interest in some important areas of chemistry such as catalysis,non-linear optical materials,liquid crystals and charge-transfer salts[1–3].Crown ethers have excellent ability of molecular recognition.Furthermore,combining crown ether molecules with polyoxometalates would open up broadfields for studies on supermolecular compounds and hybrid materials[4,5].Thefirst oxonium–crown ether complexes wereobtained by Izatt et al.[6];they consisted ofH3Oϩand dicyclohexano-18-crown-6adductsassociated with ClOϪ4and PFϪ6counterions.There-after,some adducts of oxonium ion and crownether were obtained,associated with BFϪ4;CIOϪ4; PFϪ6;IϪ,BrϪ,PtCl2Ϫ6;SbFϪ6and CF3SOϪ3ions[7–9].In these studies,it was generally assumed thatH3Oϩion in the adducts is located at or near thecenter of the macrocyclic ether cavity and thiswould maximize the electrostatic interactionbetween the two units.This was also expectedon the basis of the strong hydrogen bonds asrevealed by IR spectra.To our acknowledge,thishypothesis had been confirmed by only one X-raydiffraction study on[18C6][H3OϩBF4][10].Thelimited number of the crystal structure data hasJournal of Molecular Structure524(2000)133–1390022-2860/00/$-see front matter᭧2000Elsevier Science B.V.All rights reserved.PII:S0022-2860(99)00447-0www.elsevier.nl/locate/molstruc*Corresponding author.Tel.:ϩ86-43-1562-3492;fax:ϩ86-43-1568-4009.E-mail address:huchw@(E.Wang).hampered the structural study on the interaction between the oxonium ion and crown ether.To the best of our knowledge,the adducts of oxonium ion and crown ether associated with polyox-ometalates have not been reported so far.We describe herein the synthesis and crystal structure of a new supermolecular compound of crown ether and poly-oxometalate acid:[C12H24O6][H3PMo12O40]·22H2O.It is a good example of an interaction between crown ether and the oxonium ion.2.Experimental2.1.Materials and methodsAll chemicals purchased were of reagent grade and used without further purification.Infrared spectrum was recorded as KBr pellets on a Nicolet170SX FT-IR spectrometer;1H NMR spectrum was obtained with a Bruker Am-500spectrometer operating at 500MHz using CD3OD-d4as solvent.C,H elemental analysis were performed on Perkin–Elmer240c Elemental analyzer.P and Mo elemental analysis were performed on a PLASMA SPECI(I)quant-ometer.TG analysis was performed on a Q-Derivato-graph thermal analyzer.2.2.Preparation of[C12H24O6]·[H3PMo12O40]·22H2O H3PMo12O40was prepared according to the litera-ture[11].18C6(0.1g)in20ml acetonitrile was added drop-wise to a20ml methyl alcohol solution of0.8g H3PMo12O40with stirring for1h.The yellow solution was allowed to stand for3–5days and the product, [C12H24O6][H3PMo12O40]·22H2O,was collected. Yield:25%.Anal.calc.:C,5.8;H,2.8;P,1.2;Mo, 46.3%;found:C,6.0;H,2.9;P,1.1;Mo,45.7%.Calc. total loss was28.8%;found30.1%.2.3.X-ray crystallographyThe data were collected on Siemens P4four-circle diffractometer(Mo-Ka radiation l 0:71073 A;v–2u scan mode).A yellowish-green single crystal wasW.You et al./Journal of Molecular Structure524(2000)133–139134Table1Crystal data and structure refinementEmpirical formula C12H71Mo120O68PFormula weight2485.97Temperature293(2)KWavelength0.71073A˚Crystal system TriclinicSpace group P 1Unit cell dimensions a 13:428 3 A a 105:39 3 Њb 13:557 3 A b 90:06 3 Њc 14:642 3 A g 119:56 5 ЊVolume,z2207.5(8)A˚3,1Density(calc.) 1.870Mg/m3Absorption coefficient 1.758mmϪ1F(000)1206Crystal size0:46×0:38×0:16mm3u Range for data collection 1.95–23.01Limiting indicesϪ1ՅhՅ13;Ϫ13ՅkՅ12;Ϫ16ՅlՅ16Reflections collected7071Independent reflections5937 R int 0:0184Max.and min transmission0.62097and0.51046Data/restraints/parameters5927/152/433Goodness-of-fit on F2 1.004Final R indices IϾ2s I R1 0:0719;wR2 0:1990R indices(all data)R1 0:1057;wR2 0:2271Extinction coefficient0.0008(2)Largest diff.peak and hole 1.291andϪ0.816e A˚Ϫ3mounted inside a glass capillary.A semiempirical absorption correction (PSISCAN)was applied.The hydrogen atoms of crown ether were introduced in calculated positions with fixed C–H distance andisotropic displacement parameters C–H 0:97 Afor ϾCH 2and U iso 0:08 A2 :A summary of the crystallographic data and structure parameters for [C 12H 24O 6][H 3PMo 12O 40]·22H 2O is provided in TableW.You et al./Journal of Molecular Structure 524(2000)133–139135Table 2Atomic coordinates ×104 and equivalent isotropic displacementparameters A×103 for [C 12H 24O 6][H 3PMo 12O 40]·22H 2O.U (eq)is defined as one-third of the trace of the orthogonalized U ij tensorxy z U (eq)Mo(1)2433(1)6262(1)6801(1)63(1)Mo(2)Ϫ1565(1)1869(1)3801(1)64(1)Mo(3)Ϫ2842(1)3185(1)5448(1)66(1)Mo(4)1027(1)3185(1)5447(1)67(1)Mo(5)Ϫ392(1)4215(1)7159(1)65(1)Mo(6)Ϫ1172(1)6262(1)6806(1)64(1)P 05000500046(1)O(1)Ϫ2264(4)443(4)3230(3)84(2)O(2)Ϫ4136(4)2308(5)5657(4)85(2)O(3)Ϫ559(5)3893(5)8196(3)101(2)O(4)3552(4)6808(4)7621(4)81(1)O(5)Ϫ1747(4)6818(4)7623(4)81(1)O(6)1445(4)2298(4)5665(4)86(2)O(7)2200(4)4677(4)6177(4)86(2)O(8)305(4)7519(4)6951(3)82(2)O(9)2230(4)7520(4)6971(4)84(2)O(10)1220(4)5520(4)7428(4)84(2)O(11)93(4)3237(4)6463(4)90(2)O(12)Ϫ2516(4)1981(4)4705(4)90(2)O(13)Ϫ1866(4)3235(4)6470(4)85(2)O(14)Ϫ3161(4)3394(4)4309(4)87(2)O(15)Ϫ1560(5)6629(5)5714(4)92(2)O(16)Ϫ2517(4)4678(4)6168(4)82(2)O(17)Ϫ498(4)1993(4)4698(4)89(2)O(18)125(5)3921(5)4556(5)46(2)O(19)Ϫ691(4)5532(4)7437(4)88(2)O(20)Ϫ1199(5)3920(6)4556(5)44(2)O(21)Ϫ517(5)5232(6)4229(5)43(2)O(22)749(5)5233(6)4222(5)42(2)O(23)6355(4)4122(5)9110(4)103(2)O(24)4363(4)3734(5)8075(4)106(2)O(25)2762(4)4125(5)9109(4)104(2)C(1)7533(6)4829(8)9479(6)112(4)C(2)6132(8)3866(8)8117(7)115(2)C(3)4923(6)3101(7)7767(7)112(2)C(4)3166(7)3090(7)7767(7)113(3)C(5)2739(7)3888(7)8102(7)116(3)C(6)2325(6)4882(7)9483(7)118(4)O(10W)50000500010000177(4)Table 3Selected bond lengths (A˚).Symmetry transformations used to generate equivalent atoms:#1,Ϫx ;Ϫy ϩ1;Ϫz ϩ1;#2,Ϫx ϩ1;Ϫy ϩ1;Ϫz ϩ2Mo(1)–O(4) 1.631(5)Mo(1)–O(9) 1.812(6)Mo(1)–O(10) 1.836(5)Mo(1)–O(14)#1 1.948(6)Mo(1)–O(7) 1.961(5)Mo(1)–O(20)#1 2.473(8)Mo(1)–O(21)#1 2.498(6)Mo(2)–O(1) 1.632(5)Mo(2)–O(17) 1.856(6)Mo(2)–O(12) 1.870(6)Mo(2)–O(8)#1 1.967(5)Mo(2)–O(9)#1 1.997(6)Mo(2)–O(20) 2.493(7)Mo(2)–O(18) 2.499(6)Mo(3)–O(2) 1.638(5)Mo(3)–O(16) 1.942(5)Mo(3)–O(14) 1.847(6)Mo(3)–O(12) 1.950(6)Mo(3)–O(13) 1.954(6)Mo(3)–O(20) 2.468(7)Mo(3)–O(22)#1 2.495(6)Mo(4)–O(6) 1.653(6)Mo(4)–O(7) 1.850(4)Mo(4)–O(15)#1 1.875(6)Mo(4)–O(17) 1.948(5)Mo(4)–O(11) 1.956(6)Mo(4)–O(18) 2.457(9)Mo(4)–O(21)#1 2.492(8)Mo(5)–O(3) 1.675(5)Mo(5)–O(11) 1.833(6)Mo(5)–O(13) 1.841(5)Mo(5)–O(10) 1.954(4)Mo(5)–O(19) 1.958(6)Mo(5)–O(22)#1 2.456(8)Mo(5)–O(21)#1 2.469(7)Mo(6)–O(5) 1.642(5)Mo(6)–O(8) 1.831(4)Mo(6)–O(19) 1.835(6)Mo(6)–O(15) 1.937(6)Mo(6)–O(16) 1.963(4)Mo(6)–O(18)#1 2.470(8)Mo(6)–O(22)#1 2.492(8)P–O(21)#1 1.501(8)P–O(21) 1.501(8)P–O(22) 1.513(7)P–O(22)#1 1.513(7)P–O(20)#1 1.525(5)P–O(20) 1.525(5)P–O(18)#1 1.526(7)P–O(18) 1.526(7)O(23)–C(1) 1.393(8)C(23)–C(2) 1.397(11)O(24)–C(3) 1.392(10)O(24)–C(4) 1.399(9)O(25)–C(6) 1.411(10)O(25)–C(5) 1.421(11)C(1)–C(6)#2 1.453(13C(2)–C(3) 1.424(11)C(4)–C(5)1.438(12)C(6)–C(1)#21.453(13)Fig.1.IR spectrum of [C 12H 24O 6][H 3PMo 12O 40]·22H 2O.1,the partial atomic coordinates with standard devia-tions and isotropic atomic displacement parameters are provided in Table 2and the selected bond lengths are listed in Table 3.3.Results and discussionThe title compound was prepared by mixing 18C6and H 3PMo 12O 40in a mixed solvent of CH 3CN and CH 3OH.The product was obtained as yellowish-green crystals with an yield of about 25%.Elemental analysis,IR and NMR data of the compound are consistent with the crystal structure.3.1.IR spectrumThe IR spectrum of the title compound is shown in Fig. 1.The characteristic peaks at 803,880,957,and 1062cm Ϫ1demonstrate that PMo 12O 3Ϫ40is a a -Keggin structure.The peaks at 1600–1100cm Ϫ1are characteristic of 18C6.The stretching mode of H 3O ϩis a very broad band at ϳ2900cm Ϫ1,which overlaps the sharper peaks arising from the C–H stretching motions of the crown ether.The C–O–C stretching vibration of 18C6was observed at 1250cm Ϫ1(s).W.You et al./Journal of Molecular Structure 524(2000)133–139136Fig.2.1H NMR spectrum of [C 12H 24O 6][H 3PMo 12O 40]·22H 2O.Fig.3.Structure of the PMo 12O 3Ϫ40anion.3.2.1H NMR spectrumThe1H NMR spectrum of the title compound isshown in Fig.2.The line at3.743ppm is assignedto CH2of18C6and the line at4.955ppm to H3Oϩand H2O.These data are characteristic of the structureof18C6.3.3.The crystal structureA single crystal X-ray diffraction analysis of thetitle compound showed the compound consisted of18C6,H3Oϩand PMo12O3Ϫ40:The PMo12O3Ϫ40anion shows the same type of crystallographic disorder ashas been found in many crystal structures with Kegginanions,which has been explained by several authors[5,12–14].The central atom P is located at the inver-sion center0,5000,5000(see Table2).It shows thatthe central atom P is surrounded by a cube of eightoxygen atoms,with each oxygen site half-occupied,and the Mo atoms situated at the corners of a regularcubooctahedron(Fig.3).P–O bonds range from1.501(8)–1.526(7)A˚(mean 1.516A˚).The Mo–O t(terminal)bonds are in the usual range of1.631(5)–1.675(5)A˚(mean1.645A˚).The Mo–O(P)bonds arein the range of2.456(8)–2.499(62)A˚(mean2.480A˚).All Mo–Mo distances are nearly equal,rangingfrom 3.5553(11)–3.5696(10)A˚(mean 3.5627A˚).The alternating long and short Mo–O–Mo bonds inall MoO6octahedra fall into two well-resolved cate-gories:the long pairs of Mo–O b(bridge)bonds in therange1.937(6)–1.997(6)A˚(mean1.958A˚)and theshort pairs of Mo–O b bonds in the range1.812(6)–1.875(6)A˚(mean1.844A˚).In the title compound,O10W is referred to asoxonium ion.The oxonium ion plays an importantrole in bonding18C6with PMo12O3Ϫ40:There are interactions between the oxonium ion and the crownether molecule(Fig.4).The oxonium ion is located onthe center of the plane defined by O(23),O(24),O(25),O(23A),O(24A)and O(25A)of the crownether molecule.The oxonium ion bonds with sixoxygen atoms of the crown ether in nearly identicaldistances,O(23,23A), 2.7825(69)A˚;O(24,24A),2.7569(50)A˚;O(25,25A), 2.7919(40)A˚(mean2.7771A˚),which are appreciably shorter thanexpected for the crown ether(2.95A˚)[9].It is difficultto determine which of six oxygen atoms of the crownW.You et al./Journal of Molecular Structure524(2000)133–139137Fig.4.View of the O10W and structure of18-crown-6showing the interactions between them.ether molecule bond with hydrogen atoms of the oxonium ion.This interaction or the hydrogen bonding is electrostatic or resonant,contrary to Behr’s opinion [15].The above-mentioned 1H NMR result,in which the line for ϾCH 2is not split,supports the conclusion.In the unit cell,polyoxometalates and crown ethers are alternatively arranged in good order along c -axis (Fig.5).Water molecules occupy the space left by polyoxometalates and crown ethers.Except O10W,42water molecules are disordered,each with an occu-pancy factor of 0.5.They form hydrogen bonds with each other,but almost not with polyoxometalates and crown ethers.4.ConclusionBy the self-assembly,the supermolecular compound,[C 12H 24O 6][H 3PMo 12O 40]·22H 2O,was synthesized.Itconsists of PMo 12O 3Ϫ40;18C6,oxonium ions andwater molecules.PMo 12O 3Ϫ40possesses a disordered a -Keggin structure.An oxonium ion is located at the center of a crown ether molecule.It is a good example of the interaction between the crown ether and an oxonium ion.Supplementary Data relating to this article are deposited with the B.L.L.D.as Supplementary Publi-cation No.SUP 26637.AcknowledgementsThis project was financially supported by the State Key Laboratory of Coordination Chemistry of Nanjing University of China and the National Science Council of China.We thank Dr Xu Yan for helpful discussion and revision on the crystal structure.W.You et al./Journal of Molecular Structure 524(2000)133–139138Fig.5.Packing diagram viewed down the a -axis for [C 12H 24O 6][H 3PMo 12O 40]·22H 2O.References[1]E.Coronado,C.J.Go´mez-Garcı´a,Chem.Rev.98(1998)273and references therein.[2]E.B.Wang, C.W.Hu,L.Xu,Concise Polyoxmetalates,Chemical Industry,Beijing,1997.[3]J.M.Lehn,Angew.Chem.27(1989)89.[4]X.M.Lu,R.F.Zhang,S.C.Liu,Polyhedron16(1997)3865.[5]R.Neier,C.Trojanowski,R.Mattes,J.Chem.Soc.DaltonTrans.(1995)2521.[6]R.M.Izatt,B.L.Haymore,J.J.Christensen,J.Chem.Soc.mun.(1972)1308.[7]R.Che`nevert, A.Rodrigue,M.Pigeon-Gosselin,Can.J.Chem.60(1982)853.[8]G.S.Heo,R.A.Bartsch,.Chem.47(1982)3557.[9]R.Che`nevert,A.Rodrigue,P.Beauchesne,Can.J.Chem.62(1984)2293.[10]J.P.Behr,P.Dumas,D.Moras,J.Am.Chem.Soc.104(1982)4540.[11]X.Wu,J.Bio.Chem.43(1920)189.[12]J.Peng,E.B.Wang,Y.S.Zhou,J.Chem.Soc.Dalton Trans.(1998)3865.[13]H.T.Evans,M.T.Pope,Inorg.Chem.23(1984)501.[14]P.Le Magueres,L.Ouahab,D.Golhen,O.Pena,Inorg.Chem.33(1994)5180.[15]J.P.Behr,P.Dumas,D.Moras,J.Am.Chem.Soc.104(1982)4540.W.You et al./Journal of Molecular Structure524(2000)133–139139。