工程数学第四次作业
工程数学(本科)形考任务答案

工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组( A )可被该向量组其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 奖券中含有 3 中奖的奖券,每人购买 1 ,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时,0.65 , 0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:- -- - 专业资料- 故所求置信区间为:( 2 )当 未知时,用 替代 ,查 t (4, 0.05 ) ,得故所求置信区间为: 4 .设某产品的性能指标服从正态分布,从历史资料已知 ,抽查 10 个样品,求得均值为 17 ,取显著性水平,问原假设 是否成立. 解: ,由,查表得:因为> 1.96 ,所以拒绝 5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5 问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴ 接受 H 0。
工程数学(本)形考作业4

工程数学(本)形考作业4工程数学涉及多个数学领域的应用,包括微积分、线性代数、概率统计等。
在工程领域中,数学的应用非常广泛,可以帮助工程师解决实际问题。
在工程数学的形考作业4中,主要涉及了微积分中的极限、导数和积分等概念。
首先,极限是微积分的基础概念之一、在形考作业4中,我们需要求解一些函数的极限,通过分析函数的性质和极限定义,可以求得极限的值。
例如,在求解函数$lim\frac{某^2-1}{某-1}$的极限时,我们可以将其化简成$\frac{(某-1)(某+1)}{某-1}$,然后消去(某-1),得到极限的值为2、通过这样的练习,我们可以加深对极限概念的理解,并掌握求解极限的技巧。
其次,导数也是工程数学中常用的概念。
在形考作业4中,我们需要求解一些函数的导数。
通过求解函数的导数,我们可以求得函数的变化率,并且可以确定函数的最大值、最小值等信息。
例如,在求解函数$f(某)=某^2+某$的导数时,我们可以使用求导法则,得到导数为$f'(某)=2某+1$。
掌握导数的计算方法,可以帮助我们更好地理解函数的变化规律,并且可以在工程实践中进行更精确的分析和计算。
最后,积分也是工程数学中重要的概念之一、在形考作业4中,我们需要求解一些函数的不定积分和定积分。
通过求解函数的积分,我们可以得到函数的原函数,并且可以计算函数所代表的面积或者体积。
例如,在求解函数$f(某)=2某$的不定积分时,我们可以得到原函数为$F(某)=某^2$,并且可以计算函数在某一区间上的定积分。
掌握积分的方法,可以帮助我们求解实际问题中的面积、体积等参数,并且可以进一步推导和分析函数的性质。
综上所述,工程数学形考作业4涉及的概念包括极限、导数和积分等,通过求解函数的极限、导数和积分,我们可以加深对这些概念的理解,并且可以掌握求解极限、导数和积分的方法和技巧。
这对于工程师来说,是非常重要的,因为数学在工程领域中的应用非常广泛,可以帮助我们解决各种实际问题。
国家开发大学《工程数学(本)》形考作业四

1《工程数学(本)》作业评讲(4)重庆电大建筑学院 刘彦辉第3章 统计推断一、单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC. x 122σ D. μx 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B. 1212()x x +C. 212x x -D. x x x 123--二、填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量n x U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.三、解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值x 和样本方差s 2.解: 6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s22.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它 试分别用矩估计法和最大似然估计法估计参数θ. 解:提示教材第214页例3矩估计:,121)1()(110∑⎰===++=+=n i i x n x dx x x X E θθθθxx --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-nx n x σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ故所求置信区间为:]7.111,3.108[],[=+-ns x n s x λλ 4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立.解:237.0162.343|10/42017||/|||0=⨯=-=-=n x U σμ, 由975.021)(=-=Φαλ ,查表得:96.1=λ因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中3随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ62.2)05.0,9()05.0,1(==-=t n t λ ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
工程数学形成性考核册答案_带题目[1]
![工程数学形成性考核册答案_带题目[1]](https://img.taocdn.com/s3/m/dd5fb62510a6f524ccbf85f6.png)
【工程数学】形成性考核册答案工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ). A. 4 B. -4 C. 6 D. -6⒉若000100002001001a a =,则a=(A ). A. 12 B. -1 C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8 ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A B A B +=+---111B. ()A B B A--=11C. ()A B A B +=+---111D. ()A B A B---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. A B n A B = C. k A k A = D. -=-k Ak An() ⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则A B 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵 D. 若A B ,均为n 阶非零矩阵,则A B ≠0 ⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ). A.A ≠0 B.A ≠0 C. A *≠0 D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()A C B '=-1(D ). A. ()'---BA C 111B. '--B C A 11C. A C B ---'111() D. ()BC A---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A A B B +=++2222 B. ()A B B B A B +=+2C. ()221111A B C C B A ----= D. ()22A B C C B A '=''' (二)填空题(每小题2分,共20分)⒈21140001---= 7 . ⒉---11111111x 是关于x的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积A C B ''有意义,则C 为 5×4 矩阵. ⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且AB ==-3,则-=2A B 72 . ⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 . ⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷AB +5;⑸A B ;⑹()A BC '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求A C B C +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X . 解: 32A X B-= ∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X⒋写出4阶行列式1020143602533110-- 中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000000111000111011011011010111000011100011101101111112211100111000111011011111102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证AA +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ AA +'是对称矩阵 ⒏若A 是n 阶方阵,且A AI '=,试证A =1或-1. 证明: A 是n 阶方阵,且A AI '= 12==='='I A A A A AA =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1)()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ). A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组. A. αα12, B. ααα123,, C. ααα124,, D. α1 ⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A=秩()A -1 ⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解 ⒏若向量组ααα12,,, s线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 12120+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 . ⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s的秩与矩阵[]ααα12,,, s的秩 相同 . ⒎设线性方程组A X =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组A X b =有解,X 0是它的一个特解,且A X =0的基础解系为X X 12,,则A X b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x xx x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-261210009039270188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-3100010100100102000131004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解 当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中 βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解 β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,, 解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x xx x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=Aξξλλξξξξ=====----1111)()()(A A A A A A Iξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型. 解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++=222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈AB ,为两个事件,则( B )成立. A. ()A B B A +-= B. ()A B B A +-⊂ C. ()A B B A -+= D. ()A B B A -+⊂⒉如果( C )成立,则事件A 与B 互为对立事件.A. A B =∅B. A B U= C. A B =∅且A B U = D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ).A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件AB ,,命题(C )是正确的.A. 如果A B ,互不相容,则AB ,互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ,对立,则AB ,对立D. 如果A B ,相容,则AB ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.2 7.设f x ()为连续型随机变量X 的密度函数,则对任意的a b ab ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B. x f x x ab()d ⎰ C.f xx a b()d ⎰ D. f x x()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()s i n ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()s i n ,,=<<⎧⎨⎪⎩⎪020π其它 C. f x x x ()s i n ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()s i n,,=<<⎧⎨⎩00π其它 9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. Fxx a b()d ⎰ C. fa fb ()()- D. f xx ab()d ⎰ 10.设X 为随机变量,E XD X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμB. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为2. 2.已知P AP B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P A B (= 0.3 . 3.A B ,为两个事件,且BA ⊂,则P A B ()+=()A P . 4. 已知P A B P A B P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P AP B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()=0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 . 9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)XY 的 协方差 . (三)解答题 1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生. 解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-== P P X P 2)1()3(-== …………P P k X P k 1)1()(--== …………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(3216.设随机变量X 的概率分布为012345601015020301201003.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P 7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X(),(). 解:32322)()(1031==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0. 解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P10.设X XX n 12,,, 是独立同分布的随机变量,已知E XD X (),()112==μσ,设X n X i i n==∑11,求E X D X (),(). 解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n 1)]()()([1)(1)1()(2122121n n n i i X D X D X D n X X X D n X n D X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n=⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量. A. x 1 B. x 1+μ C. x 122σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. m a x {,,}xxx 123B. 1212()x x + C. 212x x - D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量n x U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值x 和样本方差s 2.解: 6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为fx x x (;)(),,θθθ=+<<⎧⎨⎩1010其它 试分别用矩估计法和最大似然估计法估计参数θ. 解:提示教材第214页例3矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθxx --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x n x σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ故所求置信区间为:]7.111,3.108[],[=+-nsx n sx λλ4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=nx U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s 1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
【第4次】2022年国家开放大学工程数学第4次作业及答案

工程数学(本)形成性考核作业4综合练习书面作业(线性代数部分)一、解答题(每小题10分,共80分)1. 设矩阵1213A ⎡⎤=⎢⎥⎣⎦,123110B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,已知XA B =,求X . 解:[]121012101032 130101110111A I -⎡⎤⎡⎤⎡⎤=→→⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 13211A --⎡⎤=⎢⎥-⎣⎦11232311110X BA --⎡⎤-⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦548532-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦2. 设矩阵012213114,356211A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦,解矩阵方程AX B '= 解:[]012100114010114010,114 010012100012100211001211001037021A I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦114010012100001321⎡⎤⎢⎥→⎢⎥⎢⎥--⎣⎦1101274010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦100532010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 1532742321A --⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦1532237421532136X A B ---⎡⎤⎡⎤⎢⎥⎢⎥'==-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦131********-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦3. 解矩阵方程AX X B -=,其中4559A ⎡⎤=⎢⎥⎣⎦,1234B ⎡⎤=⎢⎥⎣⎦. 解:AX IX B -=()A I X B -=[]3510,5801A I I ⎡⎤-=⎢⎥⎣⎦35101221⎡⎤→⎢⎥---⎣⎦12213510---⎡⎤→⎢⎥⎣⎦12210153---⎡⎤→⎢⎥--⎣⎦12210153-⎡⎤→⎢⎥-⎣⎦10850153-⎡⎤→⎢⎥-⎣⎦()18553A I --⎡⎤-=⎢⎥-⎣⎦()1X A I B -=-8553-⎡⎤=⎢⎥-⎣⎦1234⎡⎤⎢⎥⎣⎦7442⎡⎤=⎢⎥--⎣⎦4. 求齐次线性方程组12341234134 30240 450x x x x x x x x x x x -+-=⎧⎪--+=⎨⎪-+=⎩的通解.解:113111312114017610450176A ----⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦104501760000-⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦134234450760x x x x x x -+=⎧⎨-+=⎩方程组的一般解为1342344576x x x x x x =-⎧⎨=-⎩(其中34,x x 是自由未知量)令341,0x x ==,得14710X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令330,1x x ==,得25601X -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1122k X k X +(其中12,k k 为任意常数) 5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪的通解.解:13125123111253504A --⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥⎣⎦13120143701437014310--⎡⎤⎢⎥--⎢⎥→⎢⎥--⎢⎥-⎣⎦13120143700000003--⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎣⎦1312310114200010000--⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦131030101400010000-⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5101430101400010000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦13234501430140x x x x x ⎧+=⎪⎪⎪-=⎨⎪=⎪⎪⎩,一般解为132345143140x x x x x ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩(其中3x 为自由未知量) 令314x =,得1245,3,0x x x =-==基础解系为153140X -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦通解为1X kX =(k 为任意常数) 6. 当λ取何值时,齐次线性方程组123123123204503720x x x x x x x x x λ++=⎧⎪++=⎨⎪++=⎩有非零解?在有非零解的情况下求方程组的通解. 解:将齐次线性方程组的系数矩阵化为阶梯形12112145034372011A λλ⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦103011034λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 103011007λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦故当7λ=时,方程组有非零解方程组的一般解为13233x x x x =-⎧⎨=⎩(其中3x 是自由未知量)令31x =,得方程组的一个基础解系1312X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1kX (其中k 为任意常数) 7. 当λ取何值时,非齐次线性方程组123123123124225x x x x x x x x x λ++=⎧⎪-+-=⎨⎪+-=⎩ 有解?在有解的情况下求方程组的通解.解:11111242251A λ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦111103330332λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦111103330005λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦当5λ=时,方程组有解111103330000A ⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦111101110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦102001110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦一般解为132321x x x x =-⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0010X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)8. 求线性方程组12312312312324523438213496x x x x x x x x x x x x -+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩的通解.解:将方程组的增广矩阵化为阶梯形矩阵12452314382134196A --⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥--⎣⎦124507714014142807714--⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥-⎣⎦1245011200000000--⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦1021011200000000-⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦ 方程组的一般解为1323212x x x x =--⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0120X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)二、证明题(每题10分,共20分) 1. 对任意方阵A ,试证A A +'是对称矩阵. 证明:()()A A A A A A ''''''+=+=+ 故A A '+是对称矩阵2. 设n 阶方阵A 满足2A A I O +-=,试证矩阵A 可逆. 证明:2A A I += A A A I I ⋅+⋅= ()A A I I += 所以矩阵A 可逆。
工程数学作业第四次方健 (10.26)

姓名:方健学号:652081701073问题:在MATLAB中关联一个线性方程组,这个方程组是overdetermined的,并且对于rand命令进行取随机数,并且对于rand命令进行理解,以及对于超定方程的求解。
并且学会对于实验数据进行拟合,下面是如何对于在超定系统中遇到曲线拟合的问题。
尝试建模数据与一个一次函数s=a1+a2*t前面的方程表示,向量s应该用两个向量线性组合近似,一个是一个常数向量包含所有的,另一个是向量和组件t,未知系数a1和a2可以通过最小二乘匹配计算。
有10个方程两个未知数,由10-by-2表示矩阵。
> t=rand(10,1) %选取十个随机数t =0.64630.70940.75470.27600.67970.65510.16260.11900.49840.9597>> a1=2.4;a2=3.1;>> s=a1+a2*ts =4.40364.59904.73953.25574.50714.43082.90412.76893.94495.3752>> E = [ones(size(t)) t]E =1.0000 0.64631.0000 0.70941.0000 0.75471.0000 0.27601.0000 0.67971.0000 0.65511.0000 0.16261.0000 0.11901.0000 0.49841.0000 0.9597使用反斜杆求解最小二乘解。
>> a = E\sa =2.40003.1000z=s.*(1+0.04*(t-0.5))z =4.42934.63754.78783.22654.53954.45832.86492.72673.94475.4741S = [ones(size(t)) t]*aS =3.45524.21433.09384.72893.19083.96854.56715.16185.37384.0964hold onplot(t,S,'-',t,z,'*');%作出数据点和拟合曲线的图形总结:通过本次作业的学习,主要对于matlab 中的线性方程计算考虑三种系统,广场系统(Square Systems )、超定系统(Overdetermined Systems )以及欠定系统(Underdetermined Systems )有所了解,主要对于overdetermined system 学习。
工程数学(本科)形考任务答案

1 )判断该向量组是否线性相关
解: 该向量组线性相关 5.求齐次线性方程组
的一个基础解系. 解:
方程组的一般解为 6.求下列线性方程组的全部解.
令
,得基础解系
解:
令
,
方程组一般解为 ,这里 , 为任意常数,得方程组通解
7.试证:任一4维向量
都可由向量组
,
,
,
线性表示,且表示方式唯一,写出这种表示方式.
著性水平 检验 5.假设检验中的显著性水平
,需选取统计量
.
为 事件
( u为临界值) 发生的概率.
(三)解答题 1.设对总体得到一个容量为 10的样本值 4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5, 5.0, 3.5, 4.0
试分别计算样本均值
和样本方差 .
解:
2.设总体 的概率密度函数为
解:
( 1)当
时,由 1- α = 0.95,
查表得:
故所求置信区间为:
( 2)当 未知时,用 替代 ,查 t (4, 0.05,) 得
故所求置信区间为:
4.设某产品的性能指标服从正态分布 10个样品,求得均值为 17,取显著性水平 立.
,从历史资料已知 ,问原假设
,抽查 是否成
解:
,
由 因为
,查表得: > 1.96,所以拒绝
⑴
中至少有一个发生;
⑵
中只有一个发生;
⑶
中至多有一个发生;
⑷
中至少有两个发生;
⑸
中不多于两个发生;
⑹
中只有 发生.
解 : (1)
(2)
(3)
(4)
(5)
(6)
工程数学形成性考核作业4答案.pdf

ln
L
n ln(
1)
n i 1
ln
xi ,
d ln L d
n 1
n i 1
ln
xi
0,ˆ
n
n ln xi
1
i 1
3.测两点之间的直线距离 5 次,测得距离的值为(单位:m):
108.5 109.0 110.0 110.5 112.0
测量值可以认为是服从正态分布 N ( , 2 ) 的,求 与 2 的估计值.并在⑴ 2 2.5 ;⑵ 2
n
n
(2)当 2 未知时,用 s 2 替代 2 ,查 t (4, 0.05 ) ,得 2.776
故所求置信区间为:[x s , x s ] [108.3,111.7]
n
n
4.设某产品的性能指标服从正态分布 N ( , 2 ) ,从历史资料已知 4 ,抽查 10 个样品,
求得均值为 17,取显著性水平 0.05 ,问原假设 H0: 20 是否成立. 解:| U || x 0 || 17 20 | 3 0.237 , / n 4 / 10 4 3.162
由 () 1 0.975 ,查表得: 1.96 2
因为 | U |服从正态分布,过去的均值为 20.0,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位:cm):
20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5
∵ | T | < 2.62
∴ 接受 H0
2
即用新材料做的零件平均长度没有变化。
3
.
4.设x1,2是n 来自正态总体N ( ,
2 ) (
2 已知)的样本值,按给定的显著性水平
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程数学第四次作业随着工程的复杂性和综合性日益增长,工程数学成为了工程师必备的重要工具。
本次作业的主题为“线性代数与矩阵运算”。
线性代数是工程数学的一个重要分支,它研究的是向量空间及线性变换。
在工程领域,线性代数被广泛应用于计算机图形学、机器学习、物理建模和经济学等领域。
通过对线性代数的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。
矩阵是线性代数中的一个重要概念,它是向量空间中的一种特殊元素。
矩阵的运算是工程数学中的基本运算之一,它可以表示物体之间的相对位置和运动状态。
在工程中,矩阵被广泛应用于计算机图形学、计算机视觉、机器人学和控制系统等领域。
通过对矩阵的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。
本次作业的任务是完成一份关于线性代数与矩阵运算的试卷。
试卷包括了填空题、选择题和计算题等多种题型,涵盖了线性代数与矩阵运算的基本概念和基本运算。
完成本次作业需要学生掌握线性代数与矩阵运算的基本概念和基本运算,能够灵活运用所学知识解决实际问题。
通过本次作业,学生可以更好地理解和掌握线性代数与矩阵运算的基本概念和基本运算,提高解决实际问题的能力。
本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。
工程数学第四次作业是关于线性代数与矩阵运算的一次重要实践。
通过本次作业,学生可以更好地理解和掌握工程数学的基本概念和基本方法,提高解决实际问题的能力。
本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。
第四次中东战争中东战争是指在中东地区发生的多次军事冲突和战争,其中第四次中东战争是指1973年埃及和叙利亚等国家与以色列之间爆发的一场大规模战争。
这场战争的爆发原因和战场情况以及战争的影响和后果都值得我们深入探讨。
在第四次中东战争爆发前,中东地区已经存在着紧张的政治和军事局势。
以色列和埃及、叙利亚等国家之间长期存在着领土争端和民族矛盾,这是导致战争爆发的重要原因之一。
1973年10月,埃及和叙利亚等国家对以色列发动了突袭,意图消灭以色列,重新占领被以色列占领的领土。
在战争中,双方都投入了大量的军事力量。
以色列凭借其先进的武器装备和战术,在战争初期占据了优势。
但随着战争的深入,埃及和叙利亚等国家的军队采取了坚决的抵抗,逐渐扭转了战局。
在战争中,双方都采取了大规模的战役和战术,如埃及军队在运河地区的防御战、以色列军队在叙利亚边境的进攻战等。
第四次中东战争对于中东地区的政治和经济发展产生了深远的影响。
首先,战争加剧了中东地区的紧张局势和不稳定性,导致了许多国家之间的矛盾和冲突。
其次,战争对于中东地区的经济也产生了巨大的影响,导致了物资短缺和通货膨胀等问题。
此外,第四次中东战争也促进了中东地区的军备竞赛和军事化程度,对于该地区的和平与稳定构成了威胁。
总的来说,第四次中东战争是一场严重的军事冲突,给中东地区带来了极大的破坏和人员伤亡。
战争导致了中东地区更加复杂和紧张的政治局势,对于该地区的和平与稳定产生了负面影响。
虽然战争已经结束,但是中东地区仍然存在着许多矛盾和冲突的风险,这需要各国政府和人民共同努力来维护和平与稳定。
为了实现中东地区的和平与稳定,我们需要采取以下措施:首先,需要加强国际社会的沟通和合作,通过对话和协商解决争端和冲突。
其次,需要重视中东地区的安全和稳定,推动军事互信和裁军进程,减少军事冲突的风险。
此外,需要加强对于中东地区经济和社会的支持和发展,改善人民生活水平,减少社会不满和矛盾。
最后,需要重视中东地区文化和宗教多样性,尊重不同民族和宗教信仰之间的差异,推动文化交流和宗教和谐。
总之,第四次中东战争是一场严重的军事冲突,给中东地区带来了极大的破坏和人员伤亡。
要实现中东地区的和平与稳定,需要各国政府和人民共同努力,通过对话和协商解决争端和冲突,推动军事互信和裁军进程,加强对于中东地区经济和社会的支持和发展,以及重视文化和宗教多样性。
专利法第四次修改概述1、完善专利审查制度:包括延长专利申请的期限、扩大优先权文件范围、增加实质审查标准等。
这些措施将有助于提高专利的质量和价值,为创新者提供更强的法律保障。
2、加强专利侵权行为惩罚性赔偿:对于故意侵犯他人专利权的行为,增加了惩罚性的赔偿规定,以加强对专利权的保护和对侵权行为的打击。
3、明确职务发明人的权益:规定了单位在实施专利过程中应支付给职务发明人的报酬数额及计算方法,并明确了相关权利归属问题。
这将激励更多人从事科技创新活动。
总的来说,此次修法是在我国经济转型升级的大背景下进行的,将对我国科技创新和经济发展产生积极的影响。
第四次工业革命与人工智能创新随着科技的飞速发展,第四次工业革命即将来临,这将是人类历史上的一次重大转折。
这次革命将由创新引领,为全球经济发展和人类社会进步带来巨大的贡献。
一、背景第四次工业革命的来临,标志着人类社会进入了一个全新的阶段。
在这个阶段,智能化、网络化和数字化成为经济发展的主要特征。
人工智能技术的不断创新,为第四次工业革命提供了强有力的支撑。
人工智能创新在机器学习、自然语言处理、计算机视觉等技术方面取得了突破性进展,使得智能化生产、物流、服务成为可能。
二、发展现状目前,第四次工业革命和人工智能创新已经进入了一个快速发展的阶段。
在制造业领域,智能制造、工业机器人等技术得到了广泛应用,提高了生产效率和产品质量。
在物流领域,智能物流系统实现了货物的精准配送和优化运输,降低了物流成本。
在医疗领域,人工智能技术的应用为患者提供了更加高效、个性化的医疗服务。
此外,人工智能创新还推动了金融、教育、农业等领域的发展,为人类社会进步做出了积极贡献。
三、未来趋势1、市场规模不断扩大:随着第四次工业革命的推进,人工智能创新的应用场景将越来越广泛,市场规模也将不断扩大。
预计未来几年,人工智能市场的年复合增长率将保持在15%以上。
2、技术发展加速:人工智能技术将持续快速发展,特别是在深度学习、自然语言处理、计算机视觉等领域。
这些技术的发展将为人工智能创新提供更多可能性。
3、跨界融合:未来,人工智能技术将与其他产业进行深度融合,推动产业转型升级和跨界创新。
例如,人工智能技术与金融、医疗、教育等领域的融合,将产生更多创新应用。
4、数据安全与隐私保护:随着人工智能技术的广泛应用,数据安全和隐私保护问题将日益凸显。
未来,需要更加重视数据安全和隐私保护,并采取有效的措施来解决这些问题。
5、伦理和法律问题:人工智能技术的快速发展也带来了一些伦理和法律问题,如机器决策的公正性和透明度等。
未来,需要建立健全的伦理规范和法律制度来规范人工智能技术的发展和应用。
四、总结第四次工业革命与创新是当前全球经济和社会发展的重要趋势。
在这个背景下,各国需要加强合作,共同推进技术的发展和应用,以促进经济发展和社会进步。
还需要技术的伦理、法律和安全问题,确保其可持续发展和广泛应用。
作为下一代新搜索,我愿意继续陪伴着大家在这个智能化的世界中探索更多未知的知识与智慧。
如大家有任何疑问或需要帮助,请随时与我。
期待与大家共同进步!小学数学作业设计案例随着教育改革的不断深化,越来越多的教育工作者开始注重学生在学习过程中的主体性和主动性。
对于小学数学教育而言,作业设计是其中一个重要的环节。
有效的作业设计不仅可以帮助学生巩固课堂所学知识,还可以促进他们的思维能力和解决问题的能力。
以下是一个小学数学作业设计的案例,以供参考。
案例:小学六年级的“比例”作业设计目标:通过完成作业,让学生更好地理解比例的概念,掌握比例的基本性质,并能够运用比例解决实际问题。
内容:1、概念理解:让学生通过一些实例来理解比例的概念,比如以教室的长度和宽度为例,让学生理解比例的基本性质。
2、实践活动:让学生自己动手制作一个比例模型,比如一个比例尺模型或者一个自行车的比例模型。
要求学生在制作过程中运用比例的基本性质,并标注各个部分的尺寸和比例。
3、书面作业:让学生完成一些与比例相关的练习题,比如计算比例、根据比例绘制图形等。
4、探索性问题:让学生思考一些与比例相关的探索性问题,比如“如果我们的教室的长度和宽度都增加一倍,那么我们的教室面积会增加多少倍?”评价:1、过程评价:在学生的实践活动中,观察他们的操作过程,了解他们对于比例知识的理解和运用情况。
2、结果评价:评价学生的书面作业和模型制作情况,了解他们对于比例知识的掌握程度。
3、表现性评价:在探索性问题的解答中,观察学生的思考能力和解决问题的能力,了解他们对于比例知识的运用情况。
这个作业设计案例的特点在于它充分体现了学生的主体性和主动性,同时也注重了数学知识的实际运用。
通过实践活动和探索性问题,学生可以更好地理解比例的概念和性质,同时也可以提高他们的思维能力和解决问题的能力。
这个作业设计还注重了评价的多样性和全面性,可以更好地了解学生的学习情况。
总结:小学数学作业设计是数学教育的一个重要环节。
通过有效的作业设计,可以帮助学生更好地理解和掌握数学知识,提高他们的思维能力和解决问题的能力。
在未来的教育实践中,我们应该注重学生的主体性和主动性,设计出更加符合学生实际需要的数学作业,为他们的数学学习和全面发展打下坚实的基础。
小学数学一年级上册数学作业一、书写格式规范数字和符号的书写要规范。
横线要用直尺画,要平直;竖线要用直尺画,要垂直;除号要用直尺画,要上下平行;括号要用直尺画,要左右平行。
数字要写在数字符号的线框内,写在本格中间,不能倾斜,不写到格线的外面。
二、认真审题要认真读题,仔细看清题目的要求和条件。
对于一些容易混淆的题目,要注意认真思考。
例如:500里面有( )个百,有( )个十。
有些同学往往只看到“里面有”三个字,而忽略了“有”字。
正确答案是:500里面有5个百,有0个十。
三、仔细计算计算是数学的基础,必须熟练掌握。
在计算时,要养成看到题目先观察数字特点和运算符号,想一想可以怎样算,再算出得数的习惯。
例如:3+2=( ),有些同学往往只想到3+2=5,而忽略了括号。
正确答案是:3+2=(5),括号起到改变运算顺序的作用。
四、认真检查做完题目后,要养成认真检查的好习惯。
对于一些容易出错的题目,可以重新再算一遍。
例如:3+2=( ),有些同学往往把十位上的3和十位上的2相加,个位上的3和个位上的2相加,这样是错误的。
正确答案是:3+2=(5),十位上的3和十位上的2相加等于30+20=50,个位上的3和个位上的2相加等于3+2=5,合起来是50+5=55。
所以3+2=( )的答案是55而不是5。
以上是小学一年级数学作业的几个基本要求。
希望大家能够认真学习,不断提高自己的数学水平。